{UTF-8} new cellulosic biofuels[scenarios]= IF THEN ELSE(Time1, 1 , 0 ) ~ ~ Scarcity indicator for materials resources. | Percent RES vs TPES[scenarios]= share RES vs TPES[scenarios]*100 ~ percent ~ Percent of primary energy from RES in the TPES. | Year init scarcity final fuels[scenarios,final sources]= INTEG ( IF THEN ELSE(scarcity final fuels[scenarios,final sources]=1,(IF THEN ELSE(scarcity final fuels counter\ [scenarios,final sources]=1 , (Time*1/TIME STEP)-20, 0)), 0), 0) ~ ~ Initial year of scarcity of final fuels. | Year init scarcity reserves[materials,scenarios]= INTEG ( IF THEN ELSE("materials availability (reserves)"[materials,scenarios]=0, (IF THEN ELSE\ ( scarcity reserves counter[materials,scenarios]=1 , (Time*1/TIME STEP) , 0 )) , 0 \ ), 0) ~ ~ Initial year of scarcity of material reserves. | Percent tot monet invest RESelec vs GDP[scenarios]= share tot monet invest Elec RES vs GDP[scenarios]*100 ~ ~ Annual total monetary investment for RES for electricity as a share of the \ annual GDP ( in percentage ). | scarcity final fuels counter[scenarios,final sources]= INTEG ( IF THEN ELSE(scarcity final fuels[scenarios,final sources]=1, 1 , 0 ), 0) ~ ~ | "Percent E-losses CC"[scenarios]= "share E-losses CC"[scenarios]*100 ~ percent ~ Percentage of energy losses in relation to TFED due to climate change \ impacts. | scarcity reserves counter[materials,scenarios]= INTEG ( IF THEN ELSE("materials availability (reserves)"[materials,scenarios]=0, 1 , 0 ), 0) ~ ~ | Year final scarcity reserves[materials,scenarios]= IF THEN ELSE(scarcity reserves counter[materials,scenarios]>0,Year init scarcity reserves\ [materials,scenarios]+scarcity reserves counter[materials,scenarios]-1,0) ~ ~ Final year of scarcity of material reserves. | Year final scarcity resources[materials,scenarios]= IF THEN ELSE(scarcity resources counter[materials,scenarios]>0,Year init scarcity resources\ [materials,scenarios]+scarcity resources counter[materials,scenarios]-1,0) ~ ~ Final year of scarcity of materials resources. | Scarcity fuels flag[scenarios,final sources]= IF THEN ELSE(scarcity final fuels counter[scenarios,final sources]>1, 1, 0 ) ~ ~ Scarcity indicator for final fuels. | Scarcity reserves flag[materials,scenarios]= IF THEN ELSE( scarcity reserves counter[materials,scenarios]>1 ,1 , 0 ) ~ ~ Scarcity indicator for materials reserves. | Year init scarcity resources[materials,scenarios]= INTEG ( IF THEN ELSE("materials availability (resources)"[materials,scenarios]=0,(IF THEN ELSE\ (scarcity resources counter[materials,scenarios]=1,(Time*1/TIME STEP),0)),0), 0) ~ ~ Initial year of scarcity of material resources. | Percent remaining potential tot RES heat[scenarios]= remaining potential tot RES heat[scenarios]*100 ~ percent ~ Remaining potential available as a percentage. | Abundance final fuels[scenarios, liquids]= abundance liquids[scenarios] ~~| Abundance final fuels[scenarios,gases]= abundance gases[scenarios] ~~| Abundance final fuels[scenarios,solids]= abundance solids[scenarios] ~~| Abundance final fuels[scenarios,electricity]= Abundance electricity[scenarios] ~~| Abundance final fuels[scenarios,heat]= Abundance heat[scenarios] ~ ~ | scarcity final fuels[scenarios,final sources]= IF THEN ELSE(Abundance final fuels[scenarios, final sources]<0.999, 1 , 0 ) ~ ~ | Percent remaining potential tot RES elec[scenarios]= remaining potential tot RES elec[scenarios]*100 ~ percent ~ Remaining potential available as a percentage. | Year final scarcity final fuels[scenarios,final sources]= IF THEN ELSE(scarcity final fuels counter[scenarios,final sources]>0,Year init scarcity final fuels\ [scenarios,final sources]+scarcity final fuels counter[scenarios,final sources]-1,0\ ) ~ ~ Final year of scarcity of final fuels. | share blue water use vs AR[scenarios]= Total water use by type[scenarios,blue water]/(AR water*dam3 per km3) ~ Dmnl ~ Share of blue water used vs accessible runoff water. | AR water= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K52') ~ km3 ~ Accessible runnoff water. Source: UN (2003). | share total water use vs AR[scenarios]= Total water use[scenarios]/(AR water*dam3 per km3) ~ Dmnl ~ Share of total water used vs accessible runnoff water. | Renewable water resources= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K51') ~ km3 ~ | share blue water use vs renewable water resources[scenarios]= Total water use by type[scenarios,blue water]/(Renewable water resources*dam3 per km3\ ) ~ Dmnl ~ Share of blue water used vs renewable water resources. | dam3 per km3= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'K22') ~ km3 ~ | share total water use vs renewable water resources[scenarios]= Total water use[scenarios]/(Renewable water resources*dam3 per km3) ~ Dmnl ~ Share of total water used vs renewable water resources. | "CO2 soil&LUC emissions"[scenarios]= "CO2 land-use change emissions exogenous" ~ GtCO2/Year ~ CO2 emissions associated to soil managemente and land-use change uses. | "Total PE solid bioE potential heat+elec EJ"[scenarios]= "Max potential NPP bioE conventional for heat+elec"[scenarios]+"PE bioE residues for heat+elec EJ"\ [scenarios] ~ EJ ~ If switch land 1 =1 the land restrictions are used, otherwise a fixed \ potential is used | "Land module activated?"= 0 ~ Dmnl ~ Switch to enable/disable Land module: 0- DISABLED 1- ENABLED | Cp RES for heat[RES heat,scenarios]= "Cp-ini RES for heat"[RES heat] ~ Dmnl ~ | "potential FES RES for heat-com EJ"[RES heat, scenarios]= "potential FES RES for heat-com TWh"[RES heat,scenarios]*EJ per TWh ~ EJ ~ Potential final energy supply renewables for commercial heat given the \ installed capacity. | "potential FES RES for heat-com TWh"[RES heat, scenarios]= "installed capacity RES heat-com TW"[RES heat,scenarios]*Efficiency RES heat[RES heat\ ]*Cp RES for heat[RES heat,scenarios]/TWe per TWh ~ TWh ~ Potential final energy supply renewables for commercial heat given the \ installed capacity. | real generation RES elec TWh[RES elec, scenarios]= potential generation RES elec TWh[RES elec,scenarios]*(1-RES elec tot overcapacity[scenarios\ ]) ~ TWh ~ Electricity generation by RES technology. | "potential FES RES for heat-nc TWh"[RES heat, scenarios]= "installed capacity RES heat-nc TW"[RES heat,scenarios]*Efficiency RES heat[RES heat\ ]*Cp RES for heat[RES heat,scenarios]/TWe per TWh ~ TWh ~ Potential final energy supply renewables for non-commercial heat given the \ installed capacity. | replacement capacity RES elec[RES elec, scenarios]= IF THEN ELSE(Time<2015,0,replacement rate RES elec[RES elec,scenarios]*wear RES elec\ [RES elec,scenarios]*(1-RES elec tot overcapacity [scenarios]))*constraint elec storage availability[scenarios,RES elec] ~ TW/Year ~ Annual replacement of RES infrastructure for electricity generation by \ technology. It is assumed that the step of planning the replaced \ infrastructure can be done while the infraestructure to be replaced is \ still under operation. For replaced infraestructures, the construction \ time should be smaller than for new infaestructures, however we compensate \ for this assuming that the demantling time is included in onstruction time \ for replaced infrastructure. | Cp RES elec[RES elec, scenarios]= MAX(min Cp baseload RES[RES elec], "Cp-ini RES elec"[RES elec]*Cp exogenous RES elec reduction\ [RES elec,scenarios]) ~ Dmnl ~ Capacity factor of RES technologies (after accounting for the \ overcapacities required to manage the intermittency of RES elec variables). | "replacement RES for heat-nc TW"[RES heat, scenarios]= "wear RES capacity for heat-nc TW"[RES heat, scenarios]*"replacement RES for heat-nc"\ [RES heat]*(1-"RES heat-nc tot overcapacity" [scenarios]) ~ TW/Year ~ Annual replacement of RES for non-commercial heat by technology. | "replacement RES for heat-com TW"[RES heat, scenarios]= "wear RES capacity for heat-com TW"[RES heat, scenarios]*"replacement RES for heat-com"\ [RES heat]*(1-"RES heat-com tot overcapacity" [scenarios]) ~ TW/Year ~ Annual replacement of RES for commercial heat by technology. | max EROI FC= 5 ~ Dmnl ~ (ad hoc) Maximum value of EROI FC to introduce in the model in the case \ that the EROIst system <= 1 (in this case the "EROI FC system from 2015" \ reports an error. | EROI FC system from 2015 1[scenarios]= IF THEN ELSE(Time<2016,1, IF THEN ELSE(EROIst system delayed 1yr[scenarios]>1,MIN(max EROI FC, (EROIst system delayed 1yr\ [scenarios]/(EROIst system delayed 1yr[scenarios] - 1))*((EROIst system until 2015[scenarios] -1)/EROIst system until 2015[scenarios])\ ), max EROI FC)) ~ Dmnl ~ EROI Feedback Coeficient. This coeficient allows to feedback the yearly change of \ the total EROI of the system on the real energy consuption of the system, \ taking as reference year 2015. IF THEN ELSE("Activate EROI FC feedback?"=0,1,(EROEI Delayed \ 1yr[scenarios]/(EROEI Delayed 1yr[scenarios] - 1))*((EROEI Delayed \ 2yr[scenarios] -1)/EROEI Delayed 2yr[scenarios])) | Evol final energy intensity by sector and fuel delayed 1yr[scenarios,sectors,final sources\ ]= DELAY FIXED ( Evol final energy intensity by sector and fuel[scenarios,sectors,final sources], 1, \ Initial energy intensity by fuel and sector 1995[sectors,final sources]) ~ EJ/Tdollars ~ | Evol final energy intensity H delayed 1 yr[scenarios,final sources]= DELAY FIXED ( Evol final energy intensity H[scenarios,final sources], 1, Initial energy intensity 1995 H\ [final sources]) ~ EJ/Tdollars ~ | Maximun yearly aceleratuin of intensity improvement H[scenarios,final sources]= -Maximun yearly aceleration of intensity improvement pct H[scenarios,final sources]*\ Evol final energy intensity H delayed 1 yr[scenarios,final sources] ~ ~ | Maximun yearly aceleratuin of intensity improvement[scenarios,sectors,final sources]= -Maximun yearly aceleration of intensity improvement pct[scenarios,sectors,final sources\ ]*Evol final energy intensity by sector and fuel delayed 1yr[scenarios,sectors,final sources\ ] ~ ~ | Initial energy intensity by fuel and sector 1995[Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'T49') ~~| Initial energy intensity by fuel and sector 1995[Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'Y49') ~~| Initial energy intensity by fuel and sector 1995[Food Beverages and Tobacco,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AD49') ~~| Initial energy intensity by fuel and sector 1995[Textiles and Textile Products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AI49') ~~| Initial energy intensity by fuel and sector 1995[Leather Leather and Footwear,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AN49') ~~| Initial energy intensity by fuel and sector 1995[Wood and Products of Woood and Cork,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AS49') ~~| Initial energy intensity by fuel and sector 1995[Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AX49') ~~| Initial energy intensity by fuel and sector 1995[Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BC49') ~~| Initial energy intensity by fuel and sector 1995[Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BH49') ~~| Initial energy intensity by fuel and sector 1995[Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BM49') ~~| Initial energy intensity by fuel and sector 1995[Other Non Metalic Mineral,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BR49') ~~| Initial energy intensity by fuel and sector 1995[Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BW49') ~~| Initial energy intensity by fuel and sector 1995[Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CB49') ~~| Initial energy intensity by fuel and sector 1995[Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CG49') ~~| Initial energy intensity by fuel and sector 1995[Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CL49') ~~| Initial energy intensity by fuel and sector 1995[Manufacturing Nec Recycling,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CQ49') ~~| Initial energy intensity by fuel and sector 1995[Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CV49') ~~| Initial energy intensity by fuel and sector 1995[Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DA49') ~~| Initial energy intensity by fuel and sector 1995[Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DF49') ~~| Initial energy intensity by fuel and sector 1995[Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DK49') ~~| Initial energy intensity by fuel and sector 1995[Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DP49') ~~| Initial energy intensity by fuel and sector 1995[Hotels and Restaurants,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DU49') ~~| Initial energy intensity by fuel and sector 1995[Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DZ49') ~~| Initial energy intensity by fuel and sector 1995[Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EE49') ~~| Initial energy intensity by fuel and sector 1995[Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EJ49') ~~| Initial energy intensity by fuel and sector 1995[Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EO49') ~~| Initial energy intensity by fuel and sector 1995[Post and Telecommunications,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'ET49') ~~| Initial energy intensity by fuel and sector 1995[Financial Intermedation,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EY49') ~~| Initial energy intensity by fuel and sector 1995[Real Estate Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FD49') ~~| Initial energy intensity by fuel and sector 1995[Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FI49') ~~| Initial energy intensity by fuel and sector 1995[Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FN49') ~~| Initial energy intensity by fuel and sector 1995[Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FS49') ~~| Initial energy intensity by fuel and sector 1995[Health and Social Work,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FX49') ~~| Initial energy intensity by fuel and sector 1995[Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'GC49') ~~| Initial energy intensity by fuel and sector 1995[Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'GH49') ~ ~ | share max of change vs historical mean H= 0.5 ~ Dmnl ~ | Efficiency energy aceleration H[scenarios,final sources]= IF THEN ELSE(Maximun yearly aceleratuin of intensity improvement H[scenarios,final sources\ ]*Pressure to improve energy intensity efficiency H[scenarios,final sources]<0,Maximun yearly aceleratuin of intensity improvement H\ [scenarios,final sources]*Pressure to improve energy intensity efficiency H[scenarios\ ,final sources],IF THEN ELSE((Maximun yearly aceleratuin of intensity improvement H\ [scenarios,final sources]*Pressure to improve energy intensity efficiency H[scenarios\ ,final sources])2008, IF THEN ELSE(Activate BOTTOM UP method[scenarios,sectors]=0:OR:\ rate change intensity BOTTOM UP[scenarios,sectors,final sources]=0, IF THEN ELSE((historical mean rate energy intensity\ [sectors,final sources]+Efficiency energy aceleration[scenarios,sectors,final sources\ ])<0,Evol final energy intensity by sector and fuel [scenarios,sectors,final sources]*(historical mean rate energy intensity[sectors,final sources\ ] +Efficiency energy aceleration[scenarios,sectors,final sources])*available improvement efficiency\ [scenarios,sectors],Initial energy intensity by fuel and sector 1995[sectors,final sources\ ] *(historical mean rate energy intensity[sectors,final sources]+Efficiency energy aceleration\ [scenarios ,sectors,final sources])),0), historic rate final energy intensity[sectors,final sources]) ~ ~ This variable models the variation of the energy intensity according to \ the historical trend and represents the variation of the technological \ energy efficiency in each economic sector for each type of energy. By \ default it will follow the historical trend but can be modified by \ policies or market conditions that accelerate change. | historical mean rate energy intensity[Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'T48') ~~| historical mean rate energy intensity[Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'Y48') ~~| historical mean rate energy intensity[Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AD48') ~~| historical mean rate energy intensity[Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AI48') ~~| historical mean rate energy intensity[Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AN48') ~~| historical mean rate energy intensity[Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AS48') ~~| historical mean rate energy intensity[Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AX48') ~~| historical mean rate energy intensity[Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BC48') ~~| historical mean rate energy intensity[Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BH48') ~~| historical mean rate energy intensity[Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BM48') ~~| historical mean rate energy intensity[Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BR48') ~~| historical mean rate energy intensity[Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'BW48') ~~| historical mean rate energy intensity[Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CB48') ~~| historical mean rate energy intensity[Electrical and Optical Equipment,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CG48') ~~| historical mean rate energy intensity[Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CL48') ~~| historical mean rate energy intensity[Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CQ48') ~~| historical mean rate energy intensity[Electricity Gas and Water Supply,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'CV48') ~~| historical mean rate energy intensity[Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DA48') ~~| historical mean rate energy intensity[Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DF48') ~~| historical mean rate energy intensity[Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DK48') ~~| historical mean rate energy intensity[Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DP48') ~~| historical mean rate energy intensity[Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DU48') ~~| historical mean rate energy intensity[Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'DZ48') ~~| historical mean rate energy intensity[Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EE48') ~~| historical mean rate energy intensity[Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EJ48') ~~| historical mean rate energy intensity[Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EO48') ~~| historical mean rate energy intensity[Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'ET48') ~~| historical mean rate energy intensity[Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'EY48') ~~| historical mean rate energy intensity[Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FD48') ~~| historical mean rate energy intensity[Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FI48') ~~| historical mean rate energy intensity[Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FN48') ~~| historical mean rate energy intensity[Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FS48') ~~| historical mean rate energy intensity[Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'FX48') ~~| historical mean rate energy intensity[Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'GC48') ~~| historical mean rate energy intensity[Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'GH48') ~ ~ | inertial rate energy intensity H TOP DOWN[scenarios,final sources]= IF THEN ELSE(Time>2008, IF THEN ELSE((historical mean rate energy intensity H[final sources\ ]+Efficiency energy aceleration H [scenarios,final sources])<0,Evol final energy intensity H[scenarios,final sources] *(historical mean rate energy intensity H[final sources] +Efficiency energy aceleration H[scenarios,final sources])*available improvement efficiency H\ [scenarios],Initial energy intensity 1995 H[final sources] *(historical mean rate energy intensity H[final sources]+Efficiency energy aceleration H\ [scenarios,final sources])), historic rate final energy intensity H[final sources]) ~ EJ/Tdollars ~ This variable models the variation of the energy intensity according to \ the historical trend and represents the variation of the technological \ energy efficiency in households for each type of energy. By default it \ will follow the historical trend but can be modified by policies or market \ conditions that accelerate change. | P rr Ti Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E303') ~~| P rr Ti Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E303') ~~| P rr Ti Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E303') ~~| P rr Ti Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E303') ~~| P rr Ti Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E303') ~~| P rr Ti Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E303') ~ Dmnl ~ | P rr Li Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E294') ~~| P rr Li Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E294') ~~| P rr Li Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E294') ~~| P rr Li Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E294') ~~| P rr Li Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E294') ~~| P rr Li Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E294') ~ Dmnl ~ | P rr V Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E304') ~~| P rr V Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E304') ~~| P rr V Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E304') ~~| P rr V Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E304') ~~| P rr V Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E304') ~~| P rr V Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E304') ~ Dmnl ~ | P rr Mg Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E295') ~~| P rr Mg Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E295') ~~| P rr Mg Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E295') ~~| P rr Mg Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E295') ~~| P rr Mg Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E295') ~~| P rr Mg Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E295') ~ Dmnl ~ | P rr Zn Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E305') ~~| P rr Zn Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E305') ~~| P rr Zn Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E305') ~~| P rr Zn Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E305') ~~| P rr Zn Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E305') ~~| P rr Zn Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E305') ~ Dmnl ~ | P rr minerals Rest[Adhesive, scenarios]= 0 ~~| P rr minerals Rest[Aluminium, scenarios]= P rr Al Rest[scenarios] ~~| P rr minerals Rest[Aluminium mirrors, scenarios]= 0 ~~| P rr minerals Rest[Cadmium, scenarios]= P rr Cd Rest[scenarios] ~~| P rr minerals Rest[Carbon fiber, scenarios]= 0 ~~| P rr minerals Rest[Cement, scenarios]= 0 ~~| P rr minerals Rest[Chromium, scenarios]= P rr Cr Rest[scenarios] ~~| P rr minerals Rest[Copper, scenarios]= P rr Cu Rest[scenarios] ~~| P rr minerals Rest[diesel, scenarios]= 0 ~~| P rr minerals Rest[Dy, scenarios]= 0 ~~| P rr minerals Rest["Electric/electronic components", scenarios]= 0 ~~| P rr minerals Rest[Evacuation lines, scenarios]= 0 ~~| P rr minerals Rest[Fiberglass, scenarios]= 0 ~~| P rr minerals Rest[Foam glass, scenarios]= 0 ~~| P rr minerals Rest[Galium, scenarios]= P rr Ga Rest[scenarios] ~~| P rr minerals Rest[Glass, scenarios]= 0 ~~| P rr minerals Rest[Glass reinforcing plastic, scenarios]= 0 ~~| P rr minerals Rest[gravel, scenarios]= 0 ~~| P rr minerals Rest[Indium, scenarios]= P rr In Rest[scenarios] ~~| P rr minerals Rest[Iron, scenarios]= P rr Fe Rest[scenarios] ~~| P rr minerals Rest[KNO3 mined, scenarios]= 0 ~~| P rr minerals Rest[Asphalt, scenarios]= 0 ~~| P rr minerals Rest[Lime, scenarios]= 0 ~~| P rr minerals Rest[Limestone, scenarios]= 0 ~~| P rr minerals Rest[Lithium, scenarios]= P rr Li Rest[scenarios] ~~| P rr minerals Rest[Lubricant, scenarios]= 0 ~~| P rr minerals Rest[Magnesium, scenarios]= P rr Mg Rest[scenarios] ~~| P rr minerals Rest[Manganese, scenarios]= P rr Mn Rest[scenarios] ~~| P rr minerals Rest[Heavy equipment, scenarios]= 0 ~~| P rr minerals Rest[Concrete, scenarios]= 0 ~~| P rr minerals Rest[Molybdenum, scenarios]= P rr Mo Rest[scenarios] ~~| P rr minerals Rest[NaNO3 mined, scenarios]= 0 ~~| P rr minerals Rest[NaNO3 synthetic, scenarios]= 0 ~~| P rr minerals Rest[Neodymium, scenarios]= 0 ~~| P rr minerals Rest[Nickel, scenarios]= P rr Ni Rest[scenarios] ~~| P rr minerals Rest["Over grid (15%)", scenarios]= 0 ~~| P rr minerals Rest["Over grid (5%)", scenarios]= 0 ~~| P rr minerals Rest[Paint, scenarios]= 0 ~~| P rr minerals Rest[Lead, scenarios]= P rr Pb Rest[scenarios] ~~| P rr minerals Rest[Plastics, scenarios]= 0 ~~| P rr minerals Rest[Polypropylene, scenarios]= 0 ~~| P rr minerals Rest[Rock, scenarios]= 0 ~~| P rr minerals Rest[Rock wool, scenarios]= 0 ~~| P rr minerals Rest[Sand, scenarios]= 0 ~~| P rr minerals Rest[Silicon sand, scenarios]= 0 ~~| P rr minerals Rest[Silicon wafer modules, scenarios]= 0 ~~| P rr minerals Rest[Silver, scenarios]= P rr Ag Rest[scenarios] ~~| P rr minerals Rest[Site preparation, scenarios]= 0 ~~| P rr minerals Rest[Tin, scenarios]= P rr Sn Rest[scenarios] ~~| P rr minerals Rest[soda ash, scenarios]= 0 ~~| P rr minerals Rest[steel, scenarios]= 0 ~~| P rr minerals Rest[synthetic oil, scenarios]= 0 ~~| P rr minerals Rest[tellurium, scenarios]= P rr Te Rest[scenarios] ~~| P rr minerals Rest[titanium, scenarios]= P rr Ti Rest[scenarios] ~~| P rr minerals Rest[titanium dioxide, scenarios]= 0 ~~| P rr minerals Rest[vanadium, scenarios]= P rr V Rest[scenarios] ~~| P rr minerals Rest[wires, scenarios]= 0 ~~| P rr minerals Rest[zinc, scenarios]= P rr Zn Rest[scenarios] ~ Dmnl ~ Recycling rates by mineral for the rest of the economy selected by user by \ scenario. | P rr Cd Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E288') ~~| P rr Cd Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E288') ~~| P rr Cd Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E288') ~~| P rr Cd Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E288') ~~| P rr Cd Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E288') ~~| P rr Cd Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E288') ~ Dmnl ~ | improvement recycling rates minerals Rest[materials,scenarios]= IF THEN ELSE(Time<2015, Historic improvement recycling rates minerals[materials], IF THEN ELSE(choose targets mineral recycling rates[scenarios]=2,common rr minerals variation Rest\ [materials,scenarios] *recycling rates minerals Rest[materials,scenarios], by mineral rr variation Rest[materials\ ,scenarios]))*constrain rr improv for Rest per mineral [materials,scenarios] ~ Dmnl ~ Annual improvement of the recycling rates of minerals for the rest of the \ economy. | b lineal regr rr alt techn[materials, scenarios]= P rr minerals alt techn[materials,scenarios]-a lineal regr rr alt techn[materials, scenarios\ ]*target year P rr minerals alt techn [scenarios] ~ ~ b parameter of lineal regression "y=a*TIME+b" where y corresponds to the \ evolution of the recycling rate of each mineral over time ("by mineral rr \ alt technology"). | b lineal regr rr Rest[materials, scenarios]= P rr minerals Rest[materials,scenarios]-a lineal regr rr Rest[materials, scenarios]*\ target year P rr minerals Rest [scenarios] ~ ~ b parameter of lineal regression "y=a*TIME+b" where y corresponds to the \ evolution of the recycling rate of each mineral over time ("by mineral rr \ Rest"). | by mineral rr Rest 1yr[materials, scenarios]= DELAY FIXED ( by mineral rr Rest[materials,scenarios], 1, current recycling rates minerals alt techn\ [materials]) ~ Dmnl ~ Recycling rates over time delayed 1 year by mineral for the rest of the \ economy. | P rr Cu Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E290') ~~| P rr Cu Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E290') ~~| P rr Cu Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E290') ~~| P rr Cu Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E290') ~~| P rr Cu Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E290') ~~| P rr Cu Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E290') ~ Dmnl ~ | a lineal regr rr alt techn[materials, scenarios]= (P rr minerals alt techn[materials,scenarios]-current recycling rates minerals alt techn\ [materials])/(target year P rr minerals alt techn [scenarios ]-start year P rr minerals alt techn[scenarios]) ~ ~ a parameter of lineal regression "y=a*TIME+b" where y corresponds to the \ evolution of the recycling rate of each mineral over time ("by mineral rr \ alt technology"). | a lineal regr rr Rest[materials, scenarios]= (P rr minerals Rest[materials,scenarios]-current recycling rates minerals[materials]\ )/(target year P rr minerals Rest [scenarios]-start year P rr minerals Rest[scenarios]) ~ ~ a parameter of lineal regression "y=a*TIME+b" where y corresponds to the \ evolution of the recycling rate of each mineral over time ("by mineral rr \ Rest"). | start year P rr minerals Rest[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B286') ~~| start year P rr minerals Rest[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B286') ~~| start year P rr minerals Rest[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B286') ~~| start year P rr minerals Rest[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B286') ~~| start year P rr minerals Rest[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B286') ~~| start year P rr minerals Rest[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B286') ~ Year ~ Start year of variation recycling rate of minerals for the rest of the \ economy. | common rr minerals variation Rest[materials,scenarios]= IF THEN ELSE(TimeLast historical RF year, Mineral aerosols and land RF\ , 0) ~ watt/(meter*meter) ~ RCP does not include solar and albedo in their other forcings; the adjusted values \ add the values for these from MAGICC. It is the adjusted other forcings \ that are included in the total radiative forcing. +IF THEN ELSE(Time>=Last historical RF year, Mineral aerosols and land RF, \ 0) | Adjustment for CH4 and N2Oref[scenarios]= CH4 N2O interaction coeffient * LN( 1 +CH4 N2O inter coef 2 *(CH4 atm conc[scenarios]*N2O reference conc *CH4 N2O unit adj*CH4 N2O unit adj)^CH4 N20 inter exp +CH4 N2O inter coef 3 *CH4 atm conc[scenarios]*CH4 N2O unit adj *(CH4 atm conc[scenarios]*N2O reference conc *CH4 N2O unit adj*CH4 N2O unit adj)^CH4 N20 inter exp 2) ~ watt/(meter*meter) ~ AR5 WG1 Chapter 8 Anthropogenic and Natural Radiative Forcing. Table 8.SM.1 \ Supplementary for Table 8.3: RF formulae for CO2, CH4 and N2O. Adjusts total RF from CH4 and N2O to be less than the sum of RF from each \ individually to account for interactions between both gases. | Adjustment for CH4ref and N2O[scenarios]= CH4 N2O interaction coeffient * LN( 1 +CH4 N2O inter coef 2 *(CH4 reference conc*N2O atm conc[scenarios] *CH4 N2O unit adj*CH4 N2O unit adj)^CH4 N20 inter exp +CH4 N2O inter coef 3 *CH4 reference conc*CH4 N2O unit adj *(CH4 reference conc*N2O atm conc[scenarios] *CH4 N2O unit adj*CH4 N2O unit adj)^CH4 N20 inter exp 2) ~ watt/(meter*meter) ~ AR5 WG1 Chapter 8 Anthropogenic and Natural Radiative Forcing. Table 8.SM.1 \ Supplementary for Table 8.3: RF formulae for CO2, CH4 and N2O. Adjusts total RF from CH4 and N2O to be less than the sum of RF from each \ individually to account for interactions between both gases. | Other Forcings History:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '110', 'C111') ~ watt/(meter*meter) ~ GISS other forcings 1850-2010. | N2O reference conc= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C99') ~ ppb ~ WG1AR5_Chapter08_FINAL.pdf. \ https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pd\ f | MP RF Total:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '107', 'C108') ~ watt/(meter*meter) ~ Radiative forcing due to Montreal Protocol gases, based on the concentration of each \ gas multiplied by its radiative forcing coefficient. CROADS. JS Daniel, GJM Velders et al. (2007) Scientific Assessment of \ Ozone Depletion: 2006. Chapter 8. Halocarbon Scenarios, Ozone Depletion \ Potentials, and Global Warming Potentials. Table 8-5. Mixing ratios (ppt) \ of the ODSs considered in scenario A1. | Effective Radiative Forcing [scenarios]=SAMPLE IF TRUE( Time<=Time to Commit RF ,Total Radiative Forcing[scenarios] ,Total Radiative Forcing[scenarios]) ~ watt/meter/meter ~ Total Radiative Forcing from All GHGs | CO2 Rad Force= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C34') ~ watt/meter/meter ~ Coefficient of Radiative Forcing from CO2 From IPCC | Halocarbon RF[scenarios]= RF from F gases[scenarios]+MP RF Total ~ watt/(meter*meter) ~ RF from PFCs, SF6, HFCs, and MP gases. | CO2 Radiative Forcing [scenarios]= CO2 Rad Force*LN(C in Atmosphere[scenarios]/Preindustrial C) ~ watt/meter/meter ~ Radiative forcing from accumulation of CO2. | CH4 N2O interaction coeffient= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C100') ~ watt/(meter*meter) ~ Coefficient of CH4 N2O interaction. AR5 WG1 Chapter 8 Anthropogenic and \ Natural Radiative Forcing. Table 8.SM.1 Supplementary for Table 8.3: RF \ formulae for CO2, CH4 and N2O. | Other Forcings[scenarios]= IF THEN ELSE(Time<=Last historical RF year, Other Forcings History, Other Forcings RCP\ [scenarios]) ~ watt/(meter*meter) ~ Forcings for all components except well-mixed GHGs. Switch over from historical data to projections in 1995 (GISS) and bridge \ to RCPs starting in 2010. | N2O radiative efficiency coefficient= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C105') ~ watt/(meter*meter) ~ AR5 WG1 Chapter 8 Anthropogenic and Natural Radiative Forcing. Table \ 8.SM.1 Supplementary for Table 8.3: RF formulae for CO2, CH4 and N2O. | CH4 N2O inter coef 3= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C102') ~ Dmnl ~ Coefficient of CH4 N2O interaction. AR5 WG1 Chapter 8 Anthropogenic and \ Natural Radiative Forcing. Table 8.SM.1 Supplementary for Table 8.3: RF \ formulae for CO2, CH4 and N2O. | N2O Radiative Forcing[scenarios]= N2O radiative efficiency coefficient*(SQRT(N2O atm conc[scenarios]*CH4 N2O unit adj) -SQRT(N2O reference conc*CH4 N2O unit adj)) -(Adjustment for CH4ref and N2O[scenarios]-Adjustment for CH4ref and N2Oref) ~ watt/(meter*meter) ~ AR5 WG1 Chapter 8 Anthropogenic and Natural Radiative Forcing. Table \ 8.SM.1 Supplementary for Table 8.3: RF formulae for CO2, CH4 and N2O. | CH4 Radiative Forcing[scenarios]= CH4 radiative efficiency coefficient*(SQRT(CH4 atm conc[scenarios]*CH4 N2O unit adj) -SQRT(CH4 reference conc*CH4 N2O unit adj)) -(Adjustment for CH4 and N2Oref[scenarios]-Adjustment for CH4ref and N2Oref) ~ watt/(meter*meter) ~ AR5 WG1 Chapter 8 Anthropogenic and Natural Radiative Forcing. Table \ 8.SM.1 Supplementary for Table 8.3: RF formulae for CO2, CH4 and N2O. | "Other GHG Rad Forcing (non CO2)"[scenarios]= Total Radiative Forcing[scenarios]-CO2 Radiative Forcing[scenarios] ~ ~ | CH4 and N2O Radiative Forcing[scenarios]= CH4 Radiative Forcing[scenarios] + N2O Radiative Forcing[scenarios] ~ watt/(meter*meter) ~ AR5 WG1 Chapter 8 Anthropogenic and Natural Radiative Forcing. Table 8.SM.1 \ Supplementary for Table 8.3: RF formulae for CO2, CH4 and N2O. Adjusts total RF from CH4 and N2O to be less than the sum of RF from each \ individually to account for interactions between both gases. | Other Forcings RCP Scenario[RCP26]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '113', 'C114') ~~| Other Forcings RCP Scenario[RCP45]:= GET XLS DATA('inputs.xlsx', 'Climate', '113', 'C115') ~~| Other Forcings RCP Scenario[RCP60]:= GET XLS DATA('inputs.xlsx', 'Climate', '113', 'C116') ~~| Other Forcings RCP Scenario[RCP85]:= GET XLS DATA('inputs.xlsx', 'Climate', '113', 'C117') ~ watt/(meter*meter) ~ RCPs starting in 2010. | HFC RF total[scenarios]= SUM(HFC RF[HFC type!,scenarios]) ~ watt/(meter*meter) ~ The sum of the RFs of the individual HFC types. | Time Const for HFC[HFC134a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D80') ~~| Time Const for HFC[HFC23]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D81') ~~| Time Const for HFC[HFC32]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D82') ~~| Time Const for HFC[HFC125]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D83') ~~| Time Const for HFC[HFC143a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D84') ~~| Time Const for HFC[HFC152a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D85') ~~| Time Const for HFC[HFC227ea]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D86') ~~| Time Const for HFC[HFC245ca]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D87') ~~| Time Const for HFC[HFC4310mee]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'D88') ~ Years ~ From AR5 WG1 Chapter 8. Table 8.A.1. Lifetimes, Radiative Efficiencies \ and Metric Values | Time Const for N2O= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C64') ~ Years ~ Value of CH4 and N2O time constants reported in AR5 WG1 Chapter 8 Table \ 8.A.1 noted to be for calculation of GWP, not for cycle. Value of 117 \ years determined through optimization. | Time Const for PFC= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C67') ~ Years ~ based on CF4 From AR5 WG1 Chapter 8. Table 8.A.1. Lifetimes, Radiative Efficiencies \ and Metric Values | Sensitivity of Methane Emissions to Permafrost and Clathrate= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C53') ~ Dmnl [0,1,0.1] ~ 0 = no feedback 1 = base feedback | Reference CH4 time constant= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C56') ~ Year [8,10,0.1] ~ Calculated from AR5 WG1 Chapter 6 | Stratospheric CH4 path share= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C58') ~ Dmnl [0,1] ~ Calculated from AR5 WG1 Chapter 6 | g per ton== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K11') ~ g/ton ~ | Init PFC in Atm con= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C66') ~ ppt ~ Historical data. NASA. GISS. https://data.giss.nasa.gov/modelforce/ghgases/ | Inital HFC con[HFC134a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B80') ~~| Inital HFC con[HFC23]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B81') ~~| Inital HFC con[HFC32]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B82') ~~| Inital HFC con[HFC125]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B83') ~~| Inital HFC con[HFC143a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B84') ~~| Inital HFC con[HFC152a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B85') ~~| Inital HFC con[HFC227ea]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B86') ~~| Inital HFC con[HFC245ca]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B87') ~~| Inital HFC con[HFC4310mee]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'B88') ~ ppt ~ | SF6[scenarios]= INTEG ( Global SF6 emissions[scenarios]-SF6 uptake[scenarios], Initial SF6) ~ tons [3.01279e-043,?] ~ | SF6 atm conc[scenarios]= SF6[scenarios]*ppt SF6 per Tons SF6 ~ ppt ~ | SF6 molar mass== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C75') ~ g/mole ~ | SF6 radiative efficiency= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C76') ~ watt/(ppb*meter*meter) ~ From AR5 WG1 Chapter 8. Table 8.A.1. Lifetimes, Radiative Efficiencies \ and Metric Values | SF6 RF[scenarios]= (SF6 atm conc[scenarios]-Preindustrial SF6 conc)*SF6 radiative efficiency/ppt per ppb ~ watt/(meter*meter) ~ | SF6 uptake[scenarios]= SF6[scenarios]/Time Const for SF6 ~ tons/Year ~ | Initial CH4= INITIAL( Initial CH4 conc/ppb CH4 per Mton CH4) ~ Mtons ~ | Initial CH4 conc= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C50') ~ ppb ~ Historical data. NASA. GISS. https://data.giss.nasa.gov/modelforce/ghgases/ | PFC radiative efficiency= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C70') ~ watt/(ppb*meter*meter) ~ Radiative efficiency of CF4. From AR5 WG1 Chapter 8. Table 8.A.1. Lifetimes, Radiative Efficiencies \ and Metric Values | CH4 Emissions from Permafrost and Clathrate[scenarios]= Sensitivity of Methane Emissions to Permafrost and Clathrate*Reference Sensitivity of CH4 from Permafrost and Clathrate to Temperature *MAX(0,Temperature change[scenarios]-Temperature Threshold for Methane Emissions from Permafrost and Clathrate ) ~ Mtons/Year ~ Methane emissions from melting permafrost and clathrate outgassing are \ assumed to be nonlinear. Emissions are assumed to be zero if warming over \ preindustrial levels is less than a threshold and linear in temperature \ above the threshold. The default sensitivity is zero, but the strength of \ the effect and threshold can be set by the user. | HFC in Atm[HFC type,scenarios]= INTEG ( Global HFC emissions[HFC type,scenarios]-HFC uptake[HFC type,scenarios], Initial HFC[HFC type]) ~ tons [2.5924e-043,?] ~ | HFC molar mass[HFC134a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C80') ~~| HFC molar mass[HFC23]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C81') ~~| HFC molar mass[HFC32]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C82') ~~| HFC molar mass[HFC125]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C83') ~~| HFC molar mass[HFC143a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C84') ~~| HFC molar mass[HFC152a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C85') ~~| HFC molar mass[HFC227ea]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C86') ~~| HFC molar mass[HFC245ca]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C87') ~~| HFC molar mass[HFC4310mee]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C88') ~ g/mole ~ http://www.qc.ec.gc.ca/dpe/publication/enjeux_ges/hfc134a_a.html | HFC radiative efficiency[HFC134a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E80') ~~| HFC radiative efficiency[HFC23]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E81') ~~| HFC radiative efficiency[HFC32]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E82') ~~| HFC radiative efficiency[HFC125]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E83') ~~| HFC radiative efficiency[HFC143a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E84') ~~| HFC radiative efficiency[HFC152a]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E85') ~~| HFC radiative efficiency[HFC227ea]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E86') ~~| HFC radiative efficiency[HFC245ca]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E87') ~~| HFC radiative efficiency[HFC4310mee]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'E88') ~ watt/(ppb*meter*meter) ~ From AR5 WG1 Chapter 8. Table 8.A.1. Lifetimes, Radiative Efficiencies \ and Metric Values | CH4 Fractional Uptake[scenarios]= 1/Reference CH4 time constant*( Tropospheric CH4 path share/(Stratospheric CH4 path share\ *(CH4 in Atm[scenarios]/Preindustrial CH4 ) + 1-Stratospheric CH4 path share) +(1-Tropospheric CH4 path share) ) ~ 1/Years [5,15,0.1] ~ dCH4/dt = E – k1*CH4*OH – k2*CH4 E = emissions. The k1 path is dominant (k2 reflects soil processes and other minor \ sinks) dOH/dt = F – k3*CH4*OH – k4*OH F = formation. In this case the methane reaction is the minor path (15-20% of loss) \ so OH in equilibrium is OHeq = F/(k3*CH4+k4) substituting dCH4/dt = E – k1*CH4* F/(k3*CH4+k4) – k2*CH4 thus the total fractional uptake is k1*F/(k3*CH4+k4)+k2 which is robust at 0 Formulated from Meinshausen et al., 2011 | Global SF6 emissions RCP[RCP26]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J63') ~~| Global SF6 emissions RCP[RCP45]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J64') ~~| Global SF6 emissions RCP[RCP60]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J65') ~~| Global SF6 emissions RCP[RCP85]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J66') ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, \ see http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | HFC uptake[HFC type,scenarios]= HFC in Atm[HFC type,scenarios]/Time Const for HFC[HFC type] ~ tons/Year ~ | Total C from permafrost[scenarios]= INTEG ( Flux C from permafrost release[scenarios]+CH4 Emissions from Permafrost and Clathrate\ [scenarios]/CH4 per C/Mtons per Gtons, 0) ~ GtonsC ~ In terms of total C mass (of both CO2 and CH4) released from permafrost \ melting, experts estimated that 15-33 Pg C (n=27) could be released by \ 2040, reaching 120-195 Pg C by 2100, and 276-414 Pg C by 2300 under the \ high warming scenario (Fig. 1c). 1 PgC = 1GtonC. | CH4 molar mass== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C55') ~ g/mole ~ | "N2O-N molar mass"== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C62') ~ g/mole ~ | CH4 Uptake[scenarios]= CH4 in Atm[scenarios]*CH4 Fractional Uptake[scenarios] ~ Mtons/Year ~ | Total CH4 released[scenarios]= INTEG ( CH4 Emissions from Permafrost and Clathrate[scenarios]/CH4 per C/Mtons per Gtons, 0) ~ GtonsC ~ Of C emissions released from melting of permafrost, only about 2.3 % was \ expected to be in the form of CH4, corresponding to 0.26-0.85 Pg CH4-C by \ 2040, 2.03-6.21 Pg CH4-C by 2100 and 4.61-14.24 Pg CH4-C by 2300 (Fig. 1d). | Natural PFC emissions= Preindustrial PFC/Time Const for PFC ~ tons/Year ~ | Choose RCP[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G116') ~~| Choose RCP[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G116') ~~| Choose RCP[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G116') ~~| Choose RCP[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G116') ~~| Choose RCP[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G116') ~~| Choose RCP[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G116') ~ Dmnl ~ Choose RCP (Representative Concentration Pathway) 1. RCP 2.6 2. RCP 4.5 3. RCP 6.0 4. RCP 8.5 | PFC atm conc[scenarios]= PFC in Atm[scenarios]*ppt PFC per Tons PFC ~ ppt ~ | ppb CH4 per Mton CH4= INITIAL( ppt per mol/CH4 molar mass*g per ton*ton per Mton/ppt per ppb) ~ ppb/Mton ~ | ppb N2O per MTonN= INITIAL( ppt per mol/"N2O-N molar mass"*g per ton*ton per Mton/ppt per ppb) ~ ppb/Mton ~ | ppt HFC per Tons HFC[HFC type]= INITIAL( ppt per mol/HFC molar mass[HFC type]*g per ton) ~ ppt/ton ~ | ppt per mol== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K12') ~ ppt/mole ~ | ppt per ppb== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K10') ~ ppt/ppb ~ | ppt PFC per Tons PFC= INITIAL( ppt per mol/CF4 molar mass*g per ton) ~ ppt/ton ~ based on CF4 | C from CH4 oxidation[scenarios]= CH4 Uptake[scenarios]/CH4 per C/Mtons per Gtons ~ GtonsC/Year ~ Flux of C into the atmosphere from the oxidation of CH4, the mode of \ removal of CH4 from atmosphere. | Reference Sensitivity of CH4 from Permafrost and Clathrate to Temperature= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C52') ~ Mtons/Year/DegreeC ~ The reference emissions of methane from melting permafrost and outgassing \ from clathrates per degree C of warming above the threshold. | Global CH4 anthro emissions[scenarios]= Total CH4 emissions fossil fuels[scenarios]+IF THEN ELSE(Choose RCP[scenarios]=1, Global CH4 anthro emissions RCP\ [RCP26], IF THEN ELSE(Choose RCP[scenarios]=2, Global CH4 anthro emissions RCP[RCP45], IF THEN ELSE(Choose RCP[scenarios]=3, Global CH4 anthro emissions RCP[RCP60], Global CH4 anthro emissions RCP\ [RCP85]))) ~ Mton/Year ~ "Representative Concentration Pathways" (RCPs, see \ http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) \ except Power Plants, Energy Conversion, Extraction, and Distribution. \ Corrected with endogenous data "Total CH4 emissions fossil fuels" Choose RCP: 1. RCP 2.6 2. RCP 4.5 3. RCP 6.0 4. RCP 8.5 | Global CH4 anthro emissions RCP[RCP26]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J51') ~~| Global CH4 anthro emissions RCP[RCP45]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J52') ~~| Global CH4 anthro emissions RCP[RCP60]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J53') ~~| Global CH4 anthro emissions RCP[RCP85]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J54') ~ Mton/Year ~ "Representative Concentration Pathways" (RCPs, see \ http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | Global CH4 emissions[scenarios]= Global CH4 anthro emissions[scenarios]+Natural CH4 Emissions[scenarios] ~ Mtons/Year ~ | Preindustrial CH4= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C51') ~ Mtons ~ Law Dome ice core | Preindustrial HFC conc= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C90') ~ ppt ~ | Global HFC emissions[HFC134a,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC134a], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC134a], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC134a], "Global HFC emissions RCP 8.5"\ [HFC134a]))) ~~| Global HFC emissions[HFC23,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC23], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC23], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC23], "Global HFC emissions RCP 8.5"\ [HFC23]))) ~~| Global HFC emissions[HFC32,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC32], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC32], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC32], "Global HFC emissions RCP 8.5"\ [HFC32]))) ~~| Global HFC emissions[HFC125,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC125], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC125], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC125], "Global HFC emissions RCP 8.5"\ [HFC125]))) ~~| Global HFC emissions[HFC143a,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC143a], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC143a], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC143a], "Global HFC emissions RCP 8.5"\ [HFC143a]))) ~~| Global HFC emissions[HFC152a,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC152a], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC152a], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC152a], "Global HFC emissions RCP 8.5"\ [HFC152a]))) ~~| Global HFC emissions[HFC227ea,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC227ea], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC227ea], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC227ea], "Global HFC emissions RCP 8.5"\ [HFC227ea]))) ~~| Global HFC emissions[HFC245ca,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC245ca], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC245ca], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC245ca], "Global HFC emissions RCP 8.5"\ [HFC245ca]))) ~~| Global HFC emissions[HFC4310mee,scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, "Global HFC emissions RCP 2.6"[HFC4310mee], IF THEN ELSE(Choose RCP[scenarios]=2, "Global HFC emissions RCP 4.5"[HFC4310mee], IF THEN ELSE(Choose RCP[scenarios]=3, "Global HFC emissions RCP 6.0"[HFC4310mee], "Global HFC emissions RCP 8.5"\ [HFC4310mee]))) ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, see \ http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) Choose RCP: 1. RCP 2.6 2. RCP 4.5 3. RCP 6.0 4. RCP 8.5 | "Global HFC emissions RCP 2.6"[HFC134a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J68') ~~| "Global HFC emissions RCP 2.6"[HFC23]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J72') ~~| "Global HFC emissions RCP 2.6"[HFC32]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J76') ~~| "Global HFC emissions RCP 2.6"[HFC125]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J80') ~~| "Global HFC emissions RCP 2.6"[HFC143a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J84') ~~| "Global HFC emissions RCP 2.6"[HFC152a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J88') ~~| "Global HFC emissions RCP 2.6"[HFC227ea]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J92') ~~| "Global HFC emissions RCP 2.6"[HFC245ca]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J96') ~~| "Global HFC emissions RCP 2.6"[HFC4310mee]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J100') ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, \ see http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | "Global HFC emissions RCP 4.5"[HFC134a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J69') ~~| "Global HFC emissions RCP 4.5"[HFC23]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J73') ~~| "Global HFC emissions RCP 4.5"[HFC32]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J77') ~~| "Global HFC emissions RCP 4.5"[HFC125]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J81') ~~| "Global HFC emissions RCP 4.5"[HFC143a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J85') ~~| "Global HFC emissions RCP 4.5"[HFC152a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J89') ~~| "Global HFC emissions RCP 4.5"[HFC227ea]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J93') ~~| "Global HFC emissions RCP 4.5"[HFC245ca]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J97') ~~| "Global HFC emissions RCP 4.5"[HFC4310mee]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J101') ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, \ see http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | "Global HFC emissions RCP 6.0"[HFC134a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J70') ~~| "Global HFC emissions RCP 6.0"[HFC23]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J74') ~~| "Global HFC emissions RCP 6.0"[HFC32]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J78') ~~| "Global HFC emissions RCP 6.0"[HFC125]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J82') ~~| "Global HFC emissions RCP 6.0"[HFC143a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J86') ~~| "Global HFC emissions RCP 6.0"[HFC152a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J90') ~~| "Global HFC emissions RCP 6.0"[HFC227ea]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J94') ~~| "Global HFC emissions RCP 6.0"[HFC245ca]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J98') ~~| "Global HFC emissions RCP 6.0"[HFC4310mee]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J102') ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, \ see http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | PFC in Atm[scenarios]= INTEG ( Global Total PFC emissions[scenarios]-PFC uptake[scenarios], Init PFC in Atm) ~ tons [3.01279e-043,?] ~ | Initial SF6 con= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C72') ~ ppt ~ Historical data. NASA. GISS. https://data.giss.nasa.gov/modelforce/ghgases/ | PFC RF[scenarios]= (PFC atm conc[scenarios]-Preindustrial PFC conc)*PFC radiative efficiency/ppt per ppb ~ watt/(meter*meter) ~ | PFC uptake[scenarios]= PFC in Atm[scenarios]/Time Const for PFC ~ tons/Year ~ | Global PFC emissions[scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, Global PFC emissions RCP[RCP26], IF THEN ELSE(Choose RCP[scenarios]=2, Global PFC emissions RCP[RCP45], IF THEN ELSE(Choose RCP[scenarios]=3,Global PFC emissions RCP[RCP60], Global PFC emissions RCP\ [RCP85]))) ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, see \ http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) Choose RCP: 1. RCP 2.6 2. RCP 4.5 3. RCP 6.0 4. RCP 8.5 | Global PFC emissions RCP[RCP26]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J59') ~~| Global PFC emissions RCP[RCP45]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J60') ~~| Global PFC emissions RCP[RCP60]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J61') ~~| Global PFC emissions RCP[RCP85]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J62') ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, \ see http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | Global SF6 emissions[scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, Global SF6 emissions RCP[RCP26], IF THEN ELSE(Choose RCP[scenarios]=2, Global SF6 emissions RCP[RCP45], IF THEN ELSE(Choose RCP[scenarios]=3, Global SF6 emissions RCP[RCP60], Global SF6 emissions RCP\ [RCP85]))) ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, see \ http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) Choose RCP: 1. RCP 2.6 2. RCP 4.5 3. RCP 6.0 4. RCP 8.5 | Init PFC in Atm= Init PFC in Atm con/ppt PFC per Tons PFC ~ tons ~ | N2O atm conc[scenarios]= N2O in Atm[scenarios]*ppb N2O per MTonN ~ ppb ~ | N2O in Atm[scenarios]= INTEG ( Global N2O Emissions[scenarios]-N2O Uptake[scenarios], Initial N2O) ~ Mtons N [3.01279e-043,?] ~ | N2O Uptake[scenarios]= N2O in Atm[scenarios]/Time Const for N2O ~ Mton/Year ~ | HFC atm conc[HFC type,scenarios]= HFC in Atm[HFC type,scenarios]*ppt HFC per Tons HFC[HFC type] ~ ppt ~ | ton per Mton== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K13') ~ tons/Mton ~ | Natural N2O emissions= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C61') ~ MtonN/Year [0,20,0.1] ~ AR5 WG1 Chapter 6 Table 6.9 | CF4 molar mass== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C69') ~ g/mole ~ | CH4 atm conc[scenarios]= CH4 in Atm[scenarios]*ppb CH4 per Mton CH4 ~ ppb ~ | Preindustrial SF6 conc= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C74') ~ ppt ~ | Time Const for CH4[scenarios]= 1/CH4 Fractional Uptake[scenarios] ~ Years [5,15,0.1] ~ | Initial HFC[HFC type]= INITIAL( Inital HFC con[HFC type]/ppt HFC per Tons HFC[HFC type]) ~ tons ~ | Flux C from permafrost release[scenarios]= Sensitivity of Methane Emissions to Permafrost and Clathrate*Reference Sensitivity of C from Permafrost and Clathrate to Temperature *MAX(0,Temperature change[scenarios]-Temperature Threshold for Methane Emissions from Permafrost and Clathrate ) ~ GtonsC/Year ~ | Global N2O Emissions[scenarios]= Global N2O Anthro Emissions[scenarios]+Natural N2O emissions ~ Mton/Year ~ | Tropospheric CH4 path share= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C57') ~ Dmnl [0,1] ~ Calculated from AR5 WG1 Chapter 6 | Preindustrial PFC= INITIAL( Preindustrial PFC conc/ppt PFC per Tons PFC) ~ tons ~ | ppt SF6 per Tons SF6= INITIAL( ppt per mol/SF6 molar mass*g per ton) ~ ppt/ton ~ | HFC RF[HFC type,scenarios]= (HFC atm conc[HFC type,scenarios]-Preindustrial HFC conc)*HFC radiative efficiency[HFC type\ ]/ppt per ppb ~ watt/(meter*meter) ~ | Initial N2O= INITIAL( Initial N2O conc/ppb N2O per MTonN) ~ Mtons N ~ | Initial N2O conc= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C63') ~ ppb ~ Historical data. NASA. GISS. https://data.giss.nasa.gov/modelforce/ghgases/ | Global N2O Anthro Emissions[scenarios]= IF THEN ELSE(Choose RCP[scenarios]=1, Global N2O Anthro Emissions RCP[RCP26], IF THEN ELSE(Choose RCP[scenarios]=2, Global N2O Anthro Emissions RCP[RCP45], IF THEN ELSE(Choose RCP[scenarios]=3, Global N2O Anthro Emissions RCP[RCP60], Global N2O Anthro Emissions RCP\ [RCP85]))) ~ Mton N/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, see \ http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) Choose RCP: 1. RCP 2.6 2. RCP 4.5 3. RCP 6.0 4. RCP 8.5 | Global N2O Anthro Emissions RCP[RCP26]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J55') ~~| Global N2O Anthro Emissions RCP[RCP45]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J56') ~~| Global N2O Anthro Emissions RCP[RCP60]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J57') ~~| Global N2O Anthro Emissions RCP[RCP85]:= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J58') ~ Mton N/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, \ see http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | Temperature Threshold for Methane Emissions from Permafrost and Clathrate= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C54') ~ DegreesC [0,4,0.1] ~ The threshold rise in global mean surface temperature above preindustrial \ levels that triggers the release of methane from permafrost and \ clathrates. Below this threshold, emissions from these sources are assumed \ to be zero. Above the threshold, emissions are assumed to rise linearly \ with temperature. | Time Const for SF6= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C73') ~ Years ~ From AR5 WG1 Chapter 8. Table 8.A.1. Lifetimes, Radiative Efficiencies \ and Metric Values | Preindustrial PFC conc= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C68') ~ ppt ~ | Initial SF6= Initial SF6 con/ppt SF6 per Tons SF6 ~ tons ~ | Reference Sensitivity of C from Permafrost and Clathrate to Temperature= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C59') ~ GtonsC/Year/DegreeC ~ | Global Total PFC emissions[scenarios]= Global PFC emissions[scenarios]+Natural PFC emissions ~ tons/Year ~ | CH4 in Atm[scenarios]= INTEG ( CH4 Emissions from Permafrost and Clathrate[scenarios]+Global anthropogenic CH4 emissions\ [scenarios]+Natural CH4 Emissions[scenarios]-CH4 Uptake[scenarios], Initial CH4) ~ Mtons [3.01279e-043,?] ~ | Global anthropogenic CH4 emissions[scenarios]= Global CH4 anthro emissions[scenarios] ~ Mtons/Year ~ | "Global HFC emissions RCP 8.5"[HFC134a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J71') ~~| "Global HFC emissions RCP 8.5"[HFC23]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J75') ~~| "Global HFC emissions RCP 8.5"[HFC32]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J79') ~~| "Global HFC emissions RCP 8.5"[HFC125]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J83') ~~| "Global HFC emissions RCP 8.5"[HFC143a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J87') ~~| "Global HFC emissions RCP 8.5"[HFC152a]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J91') ~~| "Global HFC emissions RCP 8.5"[HFC227ea]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J95') ~~| "Global HFC emissions RCP 8.5"[HFC245ca]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J99') ~~| "Global HFC emissions RCP 8.5"[HFC4310mee]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Climate', '50', 'J103') ~ tons/Year ~ Historic data + projections "Representative Concentration Pathways" (RCPs, \ see http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=compare) | RCP Scenario: RCP26, RCP45, RCP60, RCP85 ~ ~ Representative Concentration Pathways scenarios. | HFC type: HFC134a , HFC23 , HFC32 , HFC125 , HFC143a , HFC152a , HFC227ea , HFC245ca , HFC4310mee ~ ~ Hydrofluorocarbons. | Sensitivity of pCO2 DIC to Temperature= INITIAL( Sensitivity of C Uptake to Temperature*Sensitivity of pCO2 DIC to Temperature Mean) ~ 1/DegreesC ~ Sensitivity of pCO2 of dissolved inorganic carbon in ocean to temperature. | Sensitivity of pCO2 DIC to Temperature Mean= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C10') ~ 1/DegreesC ~ Sensitivity of equilibrium concentration of dissolved inorganic carbon to \ temperature. Calibrated to be consistent with Friedlingstein et al., \ 2006. Climate-Carbon Cycle Feedback Analysis: ResuMCS from the C4MIP \ Model Intercomparison. Journal of Climate. p3337-3353. Default \ Sensitivity of C Uptake to Temperature of 1 corresponds to mean value from \ the 11 models tested. | Mean Depth of Adjacent Layers[Layer1]= INITIAL( (Mixed Depth+Layer Depth[Layer1])/2) ~~| Mean Depth of Adjacent Layers[lower]= (Layer Depth[upper]+Layer Depth[lower])/2 ~ meter ~ The mean depth of adjacent ocean layers. | Diffusion Flux[scenarios,Layer1]= (C in mixed layer per meter[scenarios]-C in deep ocean per meter[scenarios,Layer1])*\ Eddy diff coeff/Mean Depth of Adjacent Layers[Layer1] ~~| Diffusion Flux[scenarios,lower]= (C in deep ocean per meter[scenarios,upper] -C in deep ocean per meter[scenarios,lower]) *Eddy diff coeff/Mean Depth of Adjacent Layers[lower] ~ GtC/Year ~ Diffusion flux between ocean layers. | Init C in Biomass= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'G3') ~ GtC ~ Initial carbon in biomass. | Init C in Deep Ocean per meter[Layer1]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'G6') ~~| Init C in Deep Ocean per meter[Layer2]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'G7') ~~| Init C in Deep Ocean per meter[Layer3]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'G8') ~~| Init C in Deep Ocean per meter[Layer4]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'G9') ~ GtC/meter ~ Initial carbon concentration in deep ocean layers. | Init C in Humus= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'G2') ~ GtC ~ Inital carbon in humus. | Flux Atm to Biomass[scenarios]= Init NPP* (1+ Biostim coeff* LN(C in Atmosphere[scenarios]/Preindustrial C))*Effect of Warming on C flux to biomass\ [scenarios] ~ GtC/Year ~ Carbon flux from atmosphere to biosphere (from primary production) | Flux Atm to Ocean[scenarios]= ((Equil C in Mixed Layer[scenarios]-C in Mixed Layer[scenarios])/Mixing Time) ~ GtC/Year ~ Carbon flux from atmosphere to mixed ocean layer. | Flux Biomass to Atmosphere[scenarios]= C in Biomass[scenarios]/Biomass Res Time*(1-Humification Fraction) ~ GtC/Year ~ Carbon flux from biomass to atmosphere. | Flux Biomass to CH4[scenarios]= C in Biomass[scenarios]*CH4 Generation Rate from Biomass*Effect of Warming on CH4 Release from Biological Activity\ [scenarios] ~ GtC/Year ~ The natural flux of methane from C in biomass. The sum of the flux of \ methane from C in humus and the flux of methane from C in biomass yields \ the natural emissions of methane. Adjusted to account for temperature \ feedback. | Flux Biomass to Humus[scenarios]= C in Biomass[scenarios]/Biomass Res Time*Humification Fraction ~ GtC/Year ~ Carbon flux from biomass to humus. | Flux Biosphere to CH4[scenarios]= Flux Biomass to CH4[scenarios]+Flux Humus to CH4[scenarios] ~ GtC/Year ~ Carbon flux from biosphere as methane, in GtC/year, arising from anaerobic \ respiration. | Flux Humus to Atmosphere[scenarios]= C in Humus[scenarios]/Humus Res Time ~ GtC/Year ~ Carbon flux from humus to atmosphere. | CO2 ppm concentrations [scenarios]= C in Atmosphere[scenarios] / 2.13 ~ ppm ~ 1 part per million of atmospheric CO2 is equivalent to 2.13 Gigatonnes Carbon. Historical Mauna Loa CO2 Record: \ ftp://ftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt | Total C anthro emissions[scenarios]= Total CO2 emissions GTCO2[scenarios]*C per CO2 ~ GtC/Year ~ Total annual CO2 emissions converted to GtonsC/year. | Effect of Temp on DIC pCO2[scenarios]= 1-Sensitivity of pCO2 DIC to Temperature*Temperature change[scenarios] ~ Dmnl ~ The fractional reduction in the solubility of CO2 in ocean falls with \ rising temperatures. We assume a linear relationship, likely a good \ approximation over the typical range for warming by 2100. | Effect of Warming on C flux to biomass[scenarios]= 1+Strength of Temp Effect on C Flux to Land*Temperature change[scenarios] ~ Dmnl ~ The fractional reduction in the flux of C from the atmosphere to biomass \ with rising temperatures. We assume a linear relationship, likely a good \ approxim | Effect of Warming on CH4 Release from Biological Activity[scenarios]= 1+Sensitivity of Methane Emissions to Temperature*(Temperature change[scenarios])/(Reference Temperature Change for Effect of Warming on CH4 from Respiration ) ~ Dmnl ~ The fractional increase in the flux of C as CH4 from humus with rising \ temperatures. We assume a linear relationship, likely a good approximation \ over the typical range for warming by 2100. | C in mixed layer per meter[scenarios]= C in Mixed Layer[scenarios]/Mixed Depth ~ GtC/meter ~ | Biomass Res Time= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C4') ~ Year ~ Average residence time of carbon in biomass. | Biostim coeff= INITIAL( Biostim coeff index*Biostim coeff mean) ~ Dmnl ~ Coefficient for response of primary production to carbon concentration. | Mtons per Gtons= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K2') ~ MtC/GtC ~ Converts MtonsC to GtonsC. | Biostim coeff mean= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C9') ~ Dmnl [0.3,0.7] ~ Mean coefficient for response of primary production to CO2 concentration. Reflects \ the increase in NPP with doubling the CO2 level. Goudriaan and Ketner, 1984; Rotmans, 1990 | bottom: Layer4 ~ ~ | Buff C Coeff= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C11') ~ Dmnl ~ Coefficient of CO2 concentration influence on buffer factor. | Natural CH4 Emissions[scenarios]= Flux Biosphere to CH4[scenarios]*CH4 per C*Mtons per Gtons ~ Mtons/Year ~ Flux of methane from anaerobic respiration in the biosphere, in Mtons \ CH4/year. | Humification Fraction= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C3') ~ Dmnl ~ Fraction of carbon outflow from biomass that enters humus stock. | Humus Res Time= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C2') ~ Year ~ Average carbon residence time in humus. | Layer Depth[Layer1]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C17') ~~| Layer Depth[Layer2]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C18') ~~| Layer Depth[Layer3]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C19') ~~| Layer Depth[Layer4]= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C20') ~ meter ~ Deep ocean layer thicknesses. | Ref Buffer Factor= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C12') ~ Dmnl ~ Normal buffer factor. | Reference Temperature Change for Effect of Warming on CH4 from Respiration= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C24') ~ DegreesC ~ Temperature change at which the C as CH4 release from humus doubles for \ the Sensitivity of Methane Emissions to Temperature=1. | Layers: (Layer1-Layer4) ~ ~ Deep ocean layers. | C in Humus[scenarios]= INTEG (Flux Biomass to Humus[scenarios]-Flux Humus to Atmosphere\ [scenarios]-Flux Humus to CH4[scenarios], Init C in Humus) ~ GtC ~ Carbon in humus. | C in Mixed Layer[scenarios]= INTEG ( Flux Atm to Ocean[scenarios]-Diffusion Flux[scenarios,Layer1], Init C in Mixed Ocean per meter*Mixed Depth) ~ GtC ~ Carbon in mixed layer. | init C in Atmos= init CO2 in Atmos ppm*GtC per ppm ~ GtC [500,1000] ~ Initial C in atmosphere. [DICE-1994] Initial Greenhouse Gases in Atmosphere 1965 [M(t)] (tC equivalent). \ [Cowles, pg. 21] /6.77e+011 / [DICE-2013R] mat0: Initial concentration in atmosphere 2010 (GtC) /830.4 / | Strength of temp effect on land C flux mean= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C6') ~ 1/DegreesC ~ Average effect of temperature on flux of carbon to land. Calibrated to be \ consistent with Friedlingstein et al., 2006. Climate-Carbon Cycle \ Feedback Analysis: ResuMCS from the C4MIP Model Intercomparison. Journal \ of Climate. p3337-3353. Default Sensitivity of C Uptake to Temperature of \ 1 corresponds to mean value from the 11 models tested. | pre industrial value ppm= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C31') ~ ppm ~ Pre-industrial CO2 concentrations (275 ppm). | Biostim coeff index= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C8') ~ Dmnl [0.6,1.7,0.05] ~ Index of coefficient for response of primary production to carbon \ concentration, as multiplying factor of the mean value. | Init C in Mixed Ocean per meter= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'G4') ~ GtC/meter ~ Initial carbon in mixed ocean layer. | init CO2 in Atmos ppm= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C30') ~ ppm ~ Initial CO2 in atmosphere. Historical Mauna Loa CO2 Record: Average between 1st and last month of 1990 was: \ (353.74+355.12)/2=354.43 ppm Historical Mauna Loa CO2 Record: Average between 1st and last month of 1995 was: \ (359.92+360.68)/2= 360.3 ppm ftp://ftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt [DICE-1994] Initial Greenhouse Gases in Atmosphere 1965 [M(t)] (tC equivalent). \ [Cowles, pg. 21] /6.77e+011 / [DICE-2013R] mat0: Initial concentration in atmosphere 2010 (GtC) /830.4 / | Init NPP= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C5') ~ GtC/Year ~ Initial net primary production. Adapted from Goudriaan, 1984. | Buffer Factor[scenarios]= ACTIVE INITIAL ( Ref Buffer Factor*(C in Mixed Layer[scenarios]/Preind C in Mixed Layer)^Buff C Coeff , Ref Buffer Factor) ~ Dmnl ~ Buffer factor for atmosphere/mixed ocean carbon equilibration. | C in Atmosphere[scenarios]= INTEG ( C from CH4 oxidation[scenarios]+Flux Biomass to Atmosphere[scenarios]+Flux Humus to Atmosphere\ [scenarios]+Total C anthro emissions[scenarios]-Flux Atm to Biomass[scenarios]-Flux Atm to Ocean\ [scenarios]+Flux C from permafrost release[scenarios], init C in Atmos) ~ GtC ~ Carbon in atmosphere. | Mixed Depth= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C15') ~ meter ~ Mixed ocean layer depth. | Mixing Time= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C14') ~ Year [0.25,10,0.25] ~ Atmosphere - mixed ocean layer mixing time. | C in deep ocean per meter[scenarios,Layers]= C in Deep Ocean[scenarios,Layers]/Layer Depth[Layers] ~ GtC/meter ~ Concentration of carbon in ocean layers. | ELF concentrations logistic[scenarios]= 1-1/(1+EXP((CO2 ppm concentrations[scenarios]-a logistic)/b logistic)) ~ Dmnl ~ Logistic equation that estimates the share of energy losses in relation to \ TFED due to climate change impacts given the level of CO2 concentration \ levels. | upper: (Layer1-Layer3) -> lower ~ ~ | Strength of Temp Effect on C Flux to Land= INITIAL( Sensitivity of C Uptake to Temperature*Strength of temp effect on land C flux mean) ~ 1/DegreesC ~ Strength of temperature effect on C flux to the land. | CH4 Generation Rate from Humus= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C26') ~ 1/Year [0,0.00016] ~ The rate of the natural flux of methane from C in humus. The sum of the \ flux of methane from C in humus and the flux of methane from C in biomass \ yields the natural emissions of methane. | Preind C in Mixed Layer= INITIAL( Preind Ocean C per meter*Mixed Depth) ~ GtC ~ Initial carbon concentration of mixed ocean layer. | Preind Ocean C per meter= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C13') ~ GtC/meter ~ Corresponds with 767.8 GtC in a 75m layer. | Preindustrial C= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C29') ~ GtC ~ Preindustrial C content of atmosphere. | Equilibrium C per meter in Mixed Layer[scenarios]= Equil C in Mixed Layer[scenarios]/Mixed Depth ~ GtC/meter ~ The equilibrium concentration of C in the mixed layer, in GtC/meter, based \ on the total quantity of C in that layer and the average layer depth. | lower: (Layer2-Layer4) -> upper ~ ~ | Sensitivity of C Uptake to Temperature= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C7') ~ Dmnl [0,2.5,0.1] ~ Strength of the feedback effect of temperature on uptake of C by land and \ oceans. 0 means no temperature-carbon uptake feedback and default of 1 \ yields the average value found in Friedlingstein et al., 2006. \ Climate-Carbon Cycle Feedback Analysis: ResuMCS from the C4MIP Model \ Intercomparison. Journal of Climate. p3337-3353. | CH4 Generation Rate from Biomass= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C27') ~ 1/Year [0,0.00014] ~ The rate of the natural flux of methane from C in biomass. The sum of the \ flux of methane from C in humus and the flux of methane from C in biomass \ yields the natural emissions of methane. | CH4 per C== GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K3') ~ Mt/MtC ~ Molar mass ratio of CH4 to C, 16/12 | Flux Humus to CH4[scenarios]= C in Humus[scenarios]*CH4 Generation Rate from Humus*Effect of Warming on CH4 Release from Biological Activity\ [scenarios] ~ GtC/Year ~ The natural flux of methane from C in humus. The sum of the flux of \ methane from C in humus and the flux of methane from C in biomass yields \ the natural emissions of methane. Adjusted to account for temperature \ feedback. | Sensitivity of Methane Emissions to Temperature= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C25') ~ Dmnl [0,2.5,0.1] ~ Allows users to control the strength of the feedback effect of temperature \ on release of C as CH4 from humus. Default of 0 means no temperature \ feedback and 1 is mean feedback. | Eddy diff coeff index= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C21') ~ Dmnl [0.85,1.15,0.05] ~ Index of coefficient for rate at which carbon is mixed in the ocean due to \ eddy motion, where 1 is equivalent to the expected value (defaulted to \ 4400 meter*meter/year). | C in Biomass[scenarios]= INTEG ( Flux Atm to Biomass[scenarios]-Flux Biomass to Atmosphere[scenarios]-Flux Biomass to CH4\ [scenarios]-Flux Biomass to Humus[scenarios], Init C in Biomass) ~ GtC ~ Carbon in biomass. | GtC per ppm= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K5') ~ GtC/ppm ~ Conversion from ppm to GtC (1 ppm by volume of atmosphere CO2 = 2.13 Gt C (Uses atmospheric mass (Ma) = 5.137 × 10^18 kg)) CDIAC: \ http://cdiac.ornl.gov/pns/convert.html | C in Deep Ocean[scenarios,upper]= INTEG ( Diffusion Flux[scenarios,upper]-Diffusion Flux[scenarios,lower], Init C in Deep Ocean per meter[upper]*Layer Depth[upper]) ~~| C in Deep Ocean[scenarios,bottom]= INTEG ( Diffusion Flux[scenarios,bottom], Init C in Deep Ocean per meter[bottom]*Layer Depth[bottom]) ~ GtC ~ Carbon in deep ocean. | Equil C in Mixed Layer[scenarios]= Preind C in Mixed Layer*Effect of Temp on DIC pCO2[scenarios]*(C in Atmosphere[scenarios\ ]/Preindustrial C)^(1/Buffer Factor[scenarios]) ~ GtC ~ Equilibrium carbon content of mixed layer. Determined by the Revelle \ buffering factor, and by temperature. For simplicity, we assume a linear \ impact of warming on the equilibrium solubility of CO2 in the ocean. | Layer Time Constant[Layer1]= INITIAL( Layer Depth[Layer1]/(Eddy diff coeff/Mean Depth of Adjacent Layers[Layer1])) ~~| Layer Time Constant[lower]= INITIAL( Layer Depth[lower]/(Eddy diff coeff/Mean Depth of Adjacent Layers[lower])) ~ Year ~ Time constant of exchange between layers. | Eddy diff mean= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'C22') ~ meter*meter/Year [2000,8000] ~ Rate of vertical transport and mixing in the ocean due to eddy diffusion \ motion. | common rr minerals variation alt techn[materials,scenarios]= IF THEN ELSE(TimeT ini inlandT[scenarios], (P inlandT [scenarios,vehicleT]-initial percent T vehicles[vehicleT] )/(T fin inlandT[scenarios\ ]-T ini inlandT[scenarios]) , hist var inlandT[scenarios ,vehicleT]),0) ~ Dmnl ~ auxiliar variable to introduce begining and ending times of policies and \ calculate the lineal growth in time | T fin inlandT[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C175') ~~| T fin inlandT[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C175') ~~| T fin inlandT[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C175') ~~| T fin inlandT[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C175') ~~| T fin inlandT[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C175') ~~| T fin inlandT[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C175') ~ Year ~ Time of begining of inland transport policies | H elec initial growth[scenarios]= IF THEN ELSE(TimeT ini H veh[scenarios],(P H vehicle[scenarios,elec 4wheels]-percent H vehicles initial\ [elec 4wheels] )/(T fin H veh[scenarios]-T ini H veh[scenarios]), aux hist H[scenarios ,elec 4wheels]),0) ~ 1/Year ~ Growth of percent of electrical 4w without restrictions derived from \ saturation and shortage of electricity Percent relative to total number \ of vehicles 2w+4w. | T fin H veh[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C173') ~~| T fin H veh[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C173') ~~| T fin H veh[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C173') ~~| T fin H veh[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C173') ~~| T fin H veh[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C173') ~~| T fin H veh[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C173') ~ Year ~ Time when policies of change in percentages of household vehicles start | H gas initial growth[scenarios]= IF THEN ELSE(TimeT ini H veh[scenarios], (P H vehicle[scenarios,gas 4wheels]-percent H vehicles initial\ [gas 4wheels] )/(T fin H veh[scenarios]-T ini H veh[scenarios]),aux hist H[scenarios\ ,gas 4wheels ]),0) ~ 1/Year ~ Growth of percent of gas 4w without restrictions derived from saturation \ and shortage of electricity Percent relative to total number of vehicles \ 2w+4w. | T ini H veh[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C172') ~~| T ini H veh[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C172') ~~| T ini H veh[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C172') ~~| T ini H veh[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C172') ~~| T ini H veh[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C172') ~~| T ini H veh[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C172') ~ Year ~ Time when policies of change in percentages of household vehicles start | H hyb initial growth[scenarios]= IF THEN ELSE(TimeT ini H veh[scenarios],(P H vehicle[scenarios,hib 4wheels]-percent H vehicles initial\ [hib 4wheels] )/(T fin H veh[scenarios]-T ini H veh[scenarios]),aux hist H[scenarios\ ,hib 4wheels ]),0) ~ 1/Year ~ Growth of percent of hibrid 4w without restrictions derived from \ saturation and shortage of electricity Percent relative to total number \ of vehicles 2w+4w. | policy 2wheels[scenarios]= IF THEN ELSE(TimeT ini H veh[scenarios],(P share 2 wheelers [scenarios]-initial 2w percent)/(T fin H veh[scenarios]-T ini H veh[scenarios]),0),0\ ) ~ ~ Growth of percent of all types of 2wheelers relative to the total amount \ of vehicles. relative to all vehicles 2w+4w | H 2w initial growth[scenarios]= IF THEN ELSE(TimeT ini H veh[scenarios], (P H vehicle[scenarios,elec 2wheels]-percent H vehicles initial\ [elec 2wheels] )/(T fin H veh[scenarios]-T ini H veh[scenarios]),aux hist H[scenarios\ ,elec 2wheels ]),0) ~ ~ Growth of percent of electric 2w without restrictions derived from \ saturation and shortage of electricity Percent relative to total number \ of vehicles 2w+4w. | var percents H vehicles[scenarios,liq 4wheels]= IF THEN ELSE( TimeYear to finish policy change energy,0,IF THEN ELSE\ (TimeYear to finish policy change energy,1,IF THEN ELSE(Policy change energy speed[scenarios\ ,sectors,final sources]= 1,((Time-Year policy change energy[scenarios,sectors,final sources])/(Year to finish policy change energy\ -Year policy change energy[scenarios,sectors,final sources]))^(exp rapid evol change energy\ ),IF THEN ELSE(Policy change energy speed[scenarios,sectors,final sources]=2,((Time\ -Year policy change energy[scenarios,sectors,final sources])/(Year to finish policy change energy -Year policy change energy[scenarios,sectors,final sources])),IF THEN ELSE(Policy change energy speed\ [scenarios,sectors,final sources]=3,((Time-Year policy change energy[scenarios,sectors\ ,final sources])/(Year to finish policy change energy-Year policy change energy[scenarios\ ,sectors,final sources]))^exp slow evol change energy,0)))))) ~ ~ | Implementatio policy to change final energy H[scenarios,final sources]= IF THEN ELSE(Year policy change energy H[scenarios,final sources]<2015:OR:Year policy change energy H\ [scenarios,final sources]>Year to finish policy change energy H,0,IF THEN ELSE(Time\ Year to finish policy change energy H,1,IF THEN ELSE(Policy change energy speed H[scenarios\ ,final sources]= 1,((Time-Year policy change energy H[scenarios,final sources])/(Year to finish policy change energy H\ -Year policy change energy H[scenarios,final sources]))^(exp rapid evolution change energy H\ ),IF THEN ELSE(Policy change energy speed H[scenarios,final sources]=2,((Time-Year policy change energy H\ [scenarios,final sources])/(Year to finish policy change energy H -Year policy change energy H[scenarios,final sources])),IF THEN ELSE(Policy change energy speed H\ [scenarios,final sources]=3,((Time-Year policy change energy H[scenarios,final sources\ ])/(Year to finish policy change energy H-Year policy change energy H[scenarios,final sources\ ]))^exp slow evolution change energy H,0)))))) ~ ~ | Implementation policy to improve energy intensity effciency[scenarios,sectors,final sources\ ]= IF THEN ELSE(Year policy to improve efficiency[scenarios,sectors,final sources]<2015\ :OR:Year policy to improve efficiency[scenarios ,sectors,final sources]>Year to finish policy improve efficiency,0,IF THEN ELSE(Time\ Year to finish policy improve efficiency,1,IF THEN ELSE(Policy to improve efficiency speed\ [scenarios,sectors,final sources]= 1,((Time-Year policy to improve efficiency [scenarios,sectors,final sources])/(Year to finish policy improve efficiency-Year policy to improve efficiency\ [scenarios,sectors,final sources ]))^(exp rapid evolution improve efficiency),IF THEN ELSE(Policy to improve efficiency speed [scenarios,sectors,final sources]=2,((Time-Year policy to improve efficiency[scenarios\ ,sectors,final sources])/(Year to finish policy improve efficiency -Year policy to improve efficiency [scenarios,sectors,final sources])),IF THEN ELSE(Policy to improve efficiency speed[\ scenarios,sectors,final sources]=3,((Time-Year policy to improve efficiency [scenarios,sectors,final sources])/(Year to finish policy improve efficiency-Year policy to improve efficiency\ [scenarios,sectors,final sources ]))^exp slow evolution improve efficiency,0)))))) ~ ~ | P timeseries GDPpc growth rate[BAU]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'BAU', '5', 'E6') ~~| P timeseries GDPpc growth rate[SCEN1]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN1', '5', 'E6') ~~| P timeseries GDPpc growth rate[SCEN2]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN2', '5', 'E6') ~~| P timeseries GDPpc growth rate[SCEN3]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN3', '5', 'E6') ~~| P timeseries GDPpc growth rate[SCEN4]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN4', '5', 'E6') ~~| P timeseries GDPpc growth rate[User defined]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'User defined', '5', 'E6') ~ 1/Year ~ Annual GDPpc growth from timeseries. | Desired variation GDPpc[scenarios]= IF THEN ELSE(Time<2015, variation historic GDPpc, Desired GDPpc[scenarios]*Annual GDPpc growth rate\ [scenarios]) ~ $/person ~ | select GDPpc evolution input[BAU]= GET XLS CONSTANTS( 'inputs.xlsx', 'BAU', 'B4') ~~| select GDPpc evolution input[SCEN1]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN1', 'B4') ~~| select GDPpc evolution input[SCEN2]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN2', 'B4') ~~| select GDPpc evolution input[SCEN3]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN3', 'B4') ~~| select GDPpc evolution input[SCEN4]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN4', 'B4') ~~| select GDPpc evolution input[User defined]= GET XLS CONSTANTS( 'inputs.xlsx', 'User defined', 'B4') ~ Dmnl ~ 0. SSP2 1. Timeseries 2. From customized year, set annual constant variation | select Population evolution input[BAU]= GET XLS CONSTANTS( 'inputs.xlsx', 'BAU', 'B9') ~~| select Population evolution input[SCEN1]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN1', 'B9') ~~| select Population evolution input[SCEN2]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN2', 'B9') ~~| select Population evolution input[SCEN3]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN3', 'B9') ~~| select Population evolution input[SCEN4]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN4', 'B9') ~~| select Population evolution input[User defined]= GET XLS CONSTANTS( 'inputs.xlsx', 'User defined', 'B9') ~ Dmnl ~ 0. From SSPs 1. Timeseries 2. From cusotmized year, set annual constant variation | P customized year GDPpc evolution[BAU]= GET XLS CONSTANTS( 'inputs.xlsx', 'BAU', 'E7') ~~| P customized year GDPpc evolution[SCEN1]= GET XLS CONSTANTS( 'inputs.xlsx', 'BAU', 'E7') ~~| P customized year GDPpc evolution[SCEN2]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN2', 'E7') ~~| P customized year GDPpc evolution[SCEN3]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN3', 'E7') ~~| P customized year GDPpc evolution[SCEN4]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN4', 'E7') ~~| P customized year GDPpc evolution[User defined]= GET XLS CONSTANTS( 'inputs.xlsx', 'User defined', 'E7') ~ Year ~ From customized year, set annual constant variation. | pop variation[scenarios]= IF THEN ELSE(Time<2014, variation historic pop, Population[scenarios]*Annual population growth rate\ [scenarios]) ~ people/Year ~ Population growth. (Historic data from 1990-2010; projection 2011-2100) \ 2011 UST$ | Implementation policy to improve energy intensity effciency H[scenarios, final sources\ ]= IF THEN ELSE(Year policy to improve efficiency H[scenarios,final sources]<2015:OR:Year policy to improve efficiency H\ [scenarios ,final sources]>Year to finish policy improve efficiency H,0,IF THEN ELSE(TimeYear to finish policy improve efficiency H,1,IF THEN ELSE(Policy to improve efficiency speed H\ [scenarios,final sources]= 1,((Time-Year policy to improve efficiency H [scenarios,final sources])/(Year to finish policy improve efficiency H-Year policy to improve efficiency H\ [scenarios,final sources ]))^(exp rapid evolution improve efficiency H),IF THEN ELSE(Policy to improve efficiency speed H [scenarios,final sources]=2,((Time-Year policy to improve efficiency H[scenarios,final sources\ ])/(Year to finish policy improve efficiency H -Year policy to improve efficiency H [scenarios,final sources])),IF THEN ELSE(Policy to improve efficiency speed H[scenarios\ ,final sources]=3,((Time-Year policy to improve efficiency H [scenarios,final sources])/(Year to finish policy improve efficiency H-Year policy to improve efficiency H\ [scenarios,final sources ]))^exp slow evolution improve efficiency H,0)))))) ~ ~ | FE tot generation all RES elec TWh delayed 1yr[scenarios]= DELAY FIXED ( FE tot generation all RES elec TWh[scenarios], 1, 2463) ~ Tdollars/Year ~ Electricity generation from all RES technologies. delayed 1 year. | P customized cte pop variation[BAU]= GET XLS CONSTANTS( 'inputs.xlsx', 'BAU', 'G12') ~~| P customized cte pop variation[SCEN1]= GET XLS CONSTANTS( 'inputs.xlsx', 'BAU', 'G12') ~~| P customized cte pop variation[SCEN2]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN2', 'G12') ~~| P customized cte pop variation[SCEN3]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN3', 'G12') ~~| P customized cte pop variation[SCEN4]= GET XLS CONSTANTS( 'inputs.xlsx', 'SCEN4', 'G12') ~~| P customized cte pop variation[User defined]= GET XLS CONSTANTS( 'inputs.xlsx', 'User defined', 'G12') ~ Year ~ From customized year, set annual constant variation. | FES RES for heat delayed 1yr[scenarios]= DELAY FIXED ( FES RES for heat EJ[scenarios], 1, 3.488) ~ Tdollars/Year ~ Heat from renewable energy sources delayed 1 year. | exp slow evol change energy= 2 ~ ~ | Year to finish policy improve efficiency= 2050 ~ ~ | exp slow evolution improve efficiency= 2 ~ ~ | exp rapid evolution improve efficiency= 1/2 ~ ~ | exp rapid evol change energy= 1/2 ~ ~ | Year to finish policy change energy= 2050 ~ Year ~ | Year to finish policy improve efficiency H= 2050 ~ ~ | Year to finish policy change energy H= 2050 ~ Year ~ | exp rapid evolution change energy H= 1/2 ~ ~ | Pressure to improve energy intensity efficiency H[scenarios,final sources]= Energy cost pressure H[scenarios,final sources]+Implementation policy to improve energy intensity effciency H\ [scenarios ,final sources] ~ ~ This variable represents the pressure in households to improve energy \ efficiency in the technology used. This pressure may be due to (1) energy \ policies, eg incentives for energy efficiency, or (2) significant \ variations in the prices of each type of final energy. This price \ variation will be related to the absolute abundance of each energy source. | exp slow evolution change energy H= 2 ~ ~ | exp rapid evolution improve efficiency H= 1/2 ~ ~ | exp slow evolution improve efficiency H= 2 ~ ~ | Desired GDP delayed 1yr[scenarios]= DELAY FIXED ( Desired GDP[scenarios], 1, 29.16) ~ T$/Year ~ Desired GDP delayed 1 year. | diff annual GDP growth rate[scenarios]= ZIDZ( (Annual GDP growth rate[scenarios]-Desired annual GDP growth rate[scenarios]) \ , Desired annual GDP growth rate[scenarios] ) ~ Dmnl ~ Difference between the annual GDP growth rate desired and the real \ obtained. | variation historic GDPpc= IF THEN ELSE(Time<2015, Historic GDPpc(Time+1)-Historic GDPpc(Time), 0) ~ $/(person*Year) ~ Variation of historic GDP per capita. | GDPpc initial year= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'B328') ~ $/person ~ | Historic GDPpc( GET XLS LOOKUPS('inputs.xlsx', 'Economy', '324', 'B328')) ~ $/person ~ Historic GDP per capita. Data from WIOD for 1995-2009 and from World Bank \ stats for 2009-2016. | Desired GDPpc[scenarios]= INTEG ( Desired variation GDPpc[scenarios], GDPpc initial year) ~ $/person ~ | TPES intensity until 2009[scenarios]= IF THEN ELSE(Time<2009, TPES intensity EJ T$[scenarios], aux14[scenarios]) ~ Dmnl ~ TPES intensity until the year 2009. | "share-E losses CC until 2015"[scenarios]= IF THEN ELSE(Time<2015, ELF[scenarios] , aux1[scenarios]) ~ Dmnl ~ Share of energy losses in relation to TFED due to climate change impacts \ until the year 2015. | aux13[scenarios]= DELAY FIXED ( TFEC intensity until 2009 without EROI[scenarios], TIME STEP , 0) ~ Dmnl ~ Auxiliary variable to estimate the cumulative TFEC intensity change until \ 2009. | aux14[scenarios]= DELAY FIXED ( TPES intensity until 2009[scenarios], TIME STEP , 0) ~ Dmnl ~ Auxiliary variable to estimate the cumulative TPES intensity change until \ 2009. | "share E-losses CC from 2015"[scenarios]= IF THEN ELSE(Time<2015, 0, MAX(0, MIN(1,ELF[scenarios]-"share-E losses CC until 2015"\ [scenarios]))) ~ Dmnl ~ We initialize the share of energy losses in relation to TFED to the year \ 2015 ((optimistic) assumption that there have not been losses before 2015). | ELF[scenarios]= ELF concentrations logistic[scenarios] ~ Dmnl ~ | Cumulative TPES intensity change from 2009[scenarios]= IF THEN ELSE(Time<2009, 0, -1+(TPES intensity EJ T$[scenarios]/TPES intensity until 2009\ [scenarios ])) ~ Dmnl ~ Cumulative TPES intensity change from 2009. | Cumulative TFEC intensity change from 2009 without EROI[scenarios]= IF THEN ELSE(Time<2009, 0, -1+(TFES intensity EJ T$ without EROI[scenarios]/TFEC intensity until 2009 without EROI\ [scenarios])) ~ Dmnl ~ | TFEC intensity until 2009 without EROI[scenarios]= IF THEN ELSE(Time<2009, TFES intensity EJ T$ without EROI[scenarios] , aux13[scenarios\ ]) ~ Dmnl ~ TFEC intensity without EROI until the year 2009. | TFEI sectors[scenarios]= SUM(Final energy intensity by sector and fuel[scenarios,final sources!,sectors!]) ~ EJ/T$ ~ Total final energy intensity of the 35 WIOD sectors. | Annual TFES intensity growth rate without EROI[scenarios]= -1+ZIDZ( TFES intensity EJ T$ without EROI[scenarios] , TFES intensity without EROI delayed 1yr\ [scenarios] ) ~ Dmnl ~ Annual TFES intensity growth rate without EROI. | Final energy intensity by sector and fuel[scenarios,final sources,sectors]= Evol final energy intensity by sector and fuel 2[final sources,sectors,scenarios] ~ EJ/Tdollars ~ Evolution of final energy intensity by sector and fuel. (1+("Activate EROI tot FC feedback through intensities?"*EROI FC tot from \ 2015[scenarios]*1-1)): to test method of EROI feedback through the \ variation of energy intensities. "EROI FC tot from 2015[scenarios]*1", ese \ "*1" si aumento el factor a por ejemplo 2 entonces se ve el efecto de que \ se reduce el GDP progresivamente. | Energy intensity of households[scenarios,final sources]= IF THEN ELSE(Time<2009,Energy intensity of households rest[scenarios,final sources], IF THEN ELSE(Activate transport H BOTTOM UP method=0,Energy intensity of households rest\ [scenarios,final sources],Energy intensity of households transport[scenarios,final sources\ ]+Energy intensity of households rest[scenarios,final sources])) ~ EJ/Tdollar ~ | TFES intensity without EROI delayed 1yr[scenarios]= DELAY FIXED ( TFES intensity EJ T$ without EROI[scenarios], 1, 8.827) ~ Tdollars/Year ~ TFES intensity delayed 1 year. | Households total final energy demand[scenarios]= SUM(Households final energy demand[scenarios,final sources!]) ~ EJ ~ Total final energy demand of households. | required TFED sectors[scenarios]= SUM(required FED sectors by fuel[scenarios,final sources!]) ~ EJ ~ | ratio FED households vs sectors[scenarios]= ZIDZ( Households total final energy demand[scenarios] , required TFED sectors[scenarios\ ] ) ~ ~ Ratio of final energy demand of households vs 35 WIOD sectors. | TFES intensity EJ T$ without EROI[scenarios]= ZIDZ(Real TFEC[scenarios]/EROI FC system from 2015[scenarios], GDP[scenarios]) ~ EJ/T$ ~ | GHG emissions 2050 MLT2030= GET XLS CONSTANTS('inputs.xlsx', 'Result comparison', 'BK23') ~ GTCO2e/Year ~ | GHG emissions 2050 MLT2020= GET XLS CONSTANTS('inputs.xlsx', 'Result comparison', 'BK22') ~ GTCO2e/Year ~ | Start year P growth RES elec[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E32') ~~| Start year P growth RES elec[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E32') ~~| Start year P growth RES elec[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E32') ~~| Start year P growth RES elec[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E32') ~~| Start year P growth RES elec[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E32') ~~| Start year P growth RES elec[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E32') ~ Year ~ Start year of the policy growth of RES technologies for generating \ electricity. | Start year P growth RES heat[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C58') ~~| Start year P growth RES heat[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C58') ~~| Start year P growth RES heat[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C58') ~~| Start year P growth RES heat[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C58') ~~| Start year P growth RES heat[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C58') ~~| Start year P growth RES heat[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C58') ~ Year ~ Start year of the policy growth of RES technologies for generating heat. | Labour share growth[scenarios]= ((P labour share 2050[scenarios]/Initial Labour share)^(1/(Year Final Labour share-Year Initial Labour share\ )))-1 ~ Dmnl ~ Mean cummulative growth rate of labour share. | Year Initial Labour share= 2014 ~ ~ Last year with historical data to use in the mean cummulative growth rate. | Year Final Labour share= 2050 ~ ~ Year of final labour share by scenarios to use in the mean accumulative \ growth rate. | P labour share 2050[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C3') ~~| P labour share 2050[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C3') ~~| P labour share 2050[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C3') ~~| P labour share 2050[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C3') ~~| P labour share 2050[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C3') ~~| P labour share 2050[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C3') ~ Dmnl ~ Labour share targetted by 2050. | growth labour share[scenarios]= IF THEN ELSE(Time>2014,IF THEN ELSE(Time>2050,0,Labour share growth[scenarios]*"Labor share cte?"\ ),Historic labour share) ~ Dmnl ~ Real variation rate of labour share depending on activation. | Initial Labour share= 0.5621 ~ Dmnl ~ Historic 2014 Labour share | "Total GHG emissions OLT MEDEAS D3.2":INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Result comparison', '18', 'C21') ~ GTCO2e/Year ~ | "Total GHG emissions BAU-CAT MEDEAS D3.2":INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Result comparison', '18', 'C20') ~ GTCO2e/Year ~ | "Total GHG emissions MLT2030 MEDEAS D3.2":INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Result comparison', '18', 'C23') ~ GTCO2e/Year ~ | "Total GHG emissions MLT2020 MEDEAS D3.2":INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Result comparison', '18', 'C22') ~ GTCO2e/Year ~ | Low range FEC good standard of living= GET XLS CONSTANTS('inputs.xlsx', 'Result comparison', 'C5') ~ GJ/(Year*people) ~ 30 GJ/yr per capita: low range FEC good standard of living (Lamb & \ Steinberger (2017), i.e. above 70 years life expectancy, full access to \ water, sanitation, electricity and other basic infrastructures. | Threshold FEC 'high development'= GET XLS CONSTANTS('inputs.xlsx', 'Result comparison', 'C7') ~ GJ/(Year*people) ~ 75 GJ/yr per capita. Minimum final energy consumption threshold \ approximating a "high development" standard of living (Arto et al. \ (2016)), i.e. HDI>0.8. | High range FEC good standard of living= GET XLS CONSTANTS('inputs.xlsx', 'Result comparison', 'C6') ~ GJ/(Year*people) ~ 40 GJ/yr per capita: high range FEC good standard of living (Lamb & \ Steinberger (2017), i.e. above 70 years life expectancy, full access to \ water, sanitation, electricity and other basic infrastructures. | Decrease of intensity due to energy a technology change TOP DOWN[scenarios,sectors,final sources\ ]= IF THEN ELSE(Activate BOTTOM UP method[scenarios,sectors]=0,IF THEN ELSE((ZIDZ(Evol final energy intensity by sector and fuel\ [scenarios ,sectors,final sources], Global energy intensity by sector [scenarios,sectors])) >= minimum fraction[scenarios,sectors,final sources] ,Max yearly change[scenarios,sectors,final sources] *Evol final energy intensity by sector and fuel\ [scenarios,sectors, final sources ] * Pressure to change energy technology[scenarios,sectors,final sources] , 0 ),0) ~ ~ When in one economic sector, one type of energy (a) is replaced by another \ (b), the energy intensity of (b) will increase and the energy intensity of \ (a) will decrease. This flow represents the decrease of (a). | Maximun yearly aceleration of intensity improvement pct[BAU,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Mining and Quarrying,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Food Beverages and Tobacco\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Textiles and Textile Products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Leather Leather and Footwear\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Wood and Products of Woood and Cork\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Pulp Paper Printing and Publishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Chemicals and Chemical products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Rubber and Plastics,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Other Non Metalic Mineral\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Basic Metals and Fabricated Metal\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Machinery Nec,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Electrical and Optical Equipment\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Transport Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Manufacturing Nec Recycling\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Electricity Gas and Water Supply\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Construction,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Hotels and Restaurants,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Inland Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Water Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Air Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Post and Telecommunications\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Financial Intermedation,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Real Estate Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Health and Social Work,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK209') ~~| Maximun yearly aceleration of intensity improvement pct[BAU,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Mining and Quarrying,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Mining and Quarrying,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Mining and Quarrying,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Mining and Quarrying,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Mining and Quarrying\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Food Beverages and Tobacco\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Food Beverages and Tobacco\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Food Beverages and Tobacco\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Food Beverages and Tobacco\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Food Beverages and Tobacco\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Leather Leather and Footwear\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Leather Leather and Footwear\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Leather Leather and Footwear\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Leather Leather and Footwear\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Leather Leather and Footwear\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Wood and Products of Woood and Cork\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Wood and Products of Woood and Cork\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Wood and Products of Woood and Cork\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Wood and Products of Woood and Cork\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Wood and Products of Woood and Cork\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Pulp Paper Printing and Publishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Pulp Paper Printing and Publishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Pulp Paper Printing and Publishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Pulp Paper Printing and Publishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Pulp Paper Printing and Publishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Chemicals and Chemical products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Chemicals and Chemical products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Chemicals and Chemical products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Chemicals and Chemical products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Chemicals and Chemical products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Rubber and Plastics,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Rubber and Plastics,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Rubber and Plastics,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Rubber and Plastics,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Rubber and Plastics\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Other Non Metalic Mineral\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Other Non Metalic Mineral\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Other Non Metalic Mineral\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Other Non Metalic Mineral\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Other Non Metalic Mineral\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Basic Metals and Fabricated Metal\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Basic Metals and Fabricated Metal\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Basic Metals and Fabricated Metal\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Basic Metals and Fabricated Metal\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Basic Metals and Fabricated Metal\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Machinery Nec,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Machinery Nec,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Machinery Nec,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Machinery Nec,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Machinery Nec,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Electrical and Optical Equipment\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Electrical and Optical Equipment\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Electrical and Optical Equipment\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Electrical and Optical Equipment\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Electrical and Optical Equipment\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Transport Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Transport Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Transport Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Transport Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Transport Equipment\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Manufacturing Nec Recycling\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Manufacturing Nec Recycling\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Manufacturing Nec Recycling\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Manufacturing Nec Recycling\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Manufacturing Nec Recycling\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Electricity Gas and Water Supply\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Electricity Gas and Water Supply\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Electricity Gas and Water Supply\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Electricity Gas and Water Supply\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Electricity Gas and Water Supply\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Construction,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Construction,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Construction,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Construction,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Construction,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Hotels and Restaurants,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Hotels and Restaurants,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Hotels and Restaurants,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Hotels and Restaurants,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Hotels and Restaurants\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Inland Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Inland Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Inland Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Inland Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Inland Transport\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Water Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Water Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Water Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Water Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Water Transport,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Air Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Air Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Air Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Air Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Air Transport,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Post and Telecommunications\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Post and Telecommunications\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Post and Telecommunications\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Post and Telecommunications\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Post and Telecommunications\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Financial Intermedation\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Financial Intermedation\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Financial Intermedation\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Financial Intermedation\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Financial Intermedation\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Real Estate Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Real Estate Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Real Estate Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Real Estate Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Real Estate Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Education,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Education,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Education,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Education,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Education,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Health and Social Work,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Health and Social Work,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Health and Social Work,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Health and Social Work,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Health and Social Work\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN1,Textiles and Textile Products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN2,Textiles and Textile Products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN3,Textiles and Textile Products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q209') ~~| Maximun yearly aceleration of intensity improvement pct[SCEN4,Textiles and Textile Products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q209') ~~| Maximun yearly aceleration of intensity improvement pct[User defined,Textiles and Textile Products\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q209') ~ ~ | Policy change energy speed[BAU,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B212') ~~| Policy change energy speed[BAU,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G212') ~~| Policy change energy speed[BAU,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L212') ~~| Policy change energy speed[BAU,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q212') ~~| Policy change energy speed[BAU,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V212') ~~| Policy change energy speed[BAU,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA212') ~~| Policy change energy speed[BAU,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF212') ~~| Policy change energy speed[BAU,Coke Refined Petroleum and Nuclear Fuel,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK212') ~~| Policy change energy speed[BAU,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP212') ~~| Policy change energy speed[BAU,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU212') ~~| Policy change energy speed[BAU,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ212') ~~| Policy change energy speed[BAU,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE212') ~~| Policy change energy speed[BAU,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ212') ~~| Policy change energy speed[BAU,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO212') ~~| Policy change energy speed[BAU,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT212') ~~| Policy change energy speed[BAU,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY212') ~~| Policy change energy speed[BAU,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD212') ~~| Policy change energy speed[BAU,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI212') ~~| Policy change energy speed[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN212') ~~| Policy change energy speed[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS212') ~~| Policy change energy speed[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX212') ~~| Policy change energy speed[BAU,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC212') ~~| Policy change energy speed[BAU,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH212') ~~| Policy change energy speed[BAU,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM212') ~~| Policy change energy speed[BAU,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR212') ~~| Policy change energy speed[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW212') ~~| Policy change energy speed[BAU,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB212') ~~| Policy change energy speed[BAU,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG212') ~~| Policy change energy speed[BAU,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL212') ~~| Policy change energy speed[BAU,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ212') ~~| Policy change energy speed[BAU,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV212') ~~| Policy change energy speed[BAU,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA212') ~~| Policy change energy speed[BAU,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF212') ~~| Policy change energy speed[BAU,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK212') ~~| Policy change energy speed[BAU,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP212') ~~| Policy change energy speed[SCEN1,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B212') ~~| Policy change energy speed[SCEN2,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B212') ~~| Policy change energy speed[SCEN3,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B212') ~~| Policy change energy speed[SCEN4,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B212') ~~| Policy change energy speed[User defined,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B212') ~~| Policy change energy speed[SCEN1,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G212') ~~| Policy change energy speed[SCEN2,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G212') ~~| Policy change energy speed[SCEN3,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G212') ~~| Policy change energy speed[SCEN4,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G212') ~~| Policy change energy speed[User defined,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G212') ~~| Policy change energy speed[SCEN1,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L212') ~~| Policy change energy speed[SCEN2,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L212') ~~| Policy change energy speed[SCEN3,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L212') ~~| Policy change energy speed[SCEN4,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L212') ~~| Policy change energy speed[User defined,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L212') ~~| Policy change energy speed[SCEN1,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V212') ~~| Policy change energy speed[SCEN2,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V212') ~~| Policy change energy speed[SCEN3,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V212') ~~| Policy change energy speed[SCEN4,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V212') ~~| Policy change energy speed[User defined,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V212') ~~| Policy change energy speed[SCEN1,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA212') ~~| Policy change energy speed[SCEN2,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA212') ~~| Policy change energy speed[SCEN3,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA212') ~~| Policy change energy speed[SCEN4,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA212') ~~| Policy change energy speed[User defined,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA212') ~~| Policy change energy speed[SCEN1,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF212') ~~| Policy change energy speed[SCEN2,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF212') ~~| Policy change energy speed[SCEN3,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF212') ~~| Policy change energy speed[SCEN4,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF212') ~~| Policy change energy speed[User defined,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF212') ~~| Policy change energy speed[SCEN1,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK212') ~~| Policy change energy speed[SCEN2,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK212') ~~| Policy change energy speed[SCEN3,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK212') ~~| Policy change energy speed[SCEN4,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK212') ~~| Policy change energy speed[User defined,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK212') ~~| Policy change energy speed[SCEN1,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP212') ~~| Policy change energy speed[SCEN2,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP212') ~~| Policy change energy speed[SCEN3,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP212') ~~| Policy change energy speed[SCEN4,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP212') ~~| Policy change energy speed[User defined,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP212') ~~| Policy change energy speed[SCEN1,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU212') ~~| Policy change energy speed[SCEN2,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU212') ~~| Policy change energy speed[SCEN3,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU212') ~~| Policy change energy speed[SCEN4,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU212') ~~| Policy change energy speed[User defined,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU212') ~~| Policy change energy speed[SCEN1,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ212') ~~| Policy change energy speed[SCEN2,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ212') ~~| Policy change energy speed[SCEN3,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ212') ~~| Policy change energy speed[SCEN4,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ212') ~~| Policy change energy speed[User defined,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ212') ~~| Policy change energy speed[SCEN1,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE212') ~~| Policy change energy speed[SCEN2,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE212') ~~| Policy change energy speed[SCEN3,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE212') ~~| Policy change energy speed[SCEN4,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE212') ~~| Policy change energy speed[User defined,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE212') ~~| Policy change energy speed[SCEN1,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ212') ~~| Policy change energy speed[SCEN2,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ212') ~~| Policy change energy speed[SCEN3,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ212') ~~| Policy change energy speed[SCEN4,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ212') ~~| Policy change energy speed[User defined,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ212') ~~| Policy change energy speed[SCEN1,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO212') ~~| Policy change energy speed[SCEN2,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO212') ~~| Policy change energy speed[SCEN3,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO212') ~~| Policy change energy speed[SCEN4,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO212') ~~| Policy change energy speed[User defined,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO212') ~~| Policy change energy speed[SCEN1,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT212') ~~| Policy change energy speed[SCEN2,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT212') ~~| Policy change energy speed[SCEN3,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT212') ~~| Policy change energy speed[SCEN4,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT212') ~~| Policy change energy speed[User defined,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT212') ~~| Policy change energy speed[SCEN1,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY212') ~~| Policy change energy speed[SCEN2,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY212') ~~| Policy change energy speed[SCEN3,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY212') ~~| Policy change energy speed[SCEN4,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY212') ~~| Policy change energy speed[User defined,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY212') ~~| Policy change energy speed[SCEN1,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD212') ~~| Policy change energy speed[SCEN2,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD212') ~~| Policy change energy speed[SCEN3,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD212') ~~| Policy change energy speed[SCEN4,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD212') ~~| Policy change energy speed[User defined,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD212') ~~| Policy change energy speed[SCEN1,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI212') ~~| Policy change energy speed[SCEN2,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI212') ~~| Policy change energy speed[SCEN3,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI212') ~~| Policy change energy speed[SCEN4,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI212') ~~| Policy change energy speed[User defined,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI212') ~~| Policy change energy speed[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN212') ~~| Policy change energy speed[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN212') ~~| Policy change energy speed[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN212') ~~| Policy change energy speed[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN212') ~~| Policy change energy speed[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN212') ~~| Policy change energy speed[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS212') ~~| Policy change energy speed[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS212') ~~| Policy change energy speed[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS212') ~~| Policy change energy speed[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS212') ~~| Policy change energy speed[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS212') ~~| Policy change energy speed[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX212') ~~| Policy change energy speed[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX212') ~~| Policy change energy speed[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX212') ~~| Policy change energy speed[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX212') ~~| Policy change energy speed[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX212') ~~| Policy change energy speed[SCEN1,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC212') ~~| Policy change energy speed[SCEN2,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC212') ~~| Policy change energy speed[SCEN3,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC212') ~~| Policy change energy speed[SCEN4,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC212') ~~| Policy change energy speed[User defined,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC212') ~~| Policy change energy speed[SCEN1,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH212') ~~| Policy change energy speed[SCEN2,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH212') ~~| Policy change energy speed[SCEN3,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH212') ~~| Policy change energy speed[SCEN4,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH212') ~~| Policy change energy speed[User defined,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH212') ~~| Policy change energy speed[SCEN1,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM212') ~~| Policy change energy speed[SCEN2,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM212') ~~| Policy change energy speed[SCEN3,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM212') ~~| Policy change energy speed[SCEN4,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM212') ~~| Policy change energy speed[User defined,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM212') ~~| Policy change energy speed[SCEN1,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR212') ~~| Policy change energy speed[SCEN2,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR212') ~~| Policy change energy speed[SCEN3,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR212') ~~| Policy change energy speed[SCEN4,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR212') ~~| Policy change energy speed[User defined,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR212') ~~| Policy change energy speed[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW212') ~~| Policy change energy speed[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW212') ~~| Policy change energy speed[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW212') ~~| Policy change energy speed[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW212') ~~| Policy change energy speed[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW212') ~~| Policy change energy speed[SCEN1,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB212') ~~| Policy change energy speed[SCEN2,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB212') ~~| Policy change energy speed[SCEN3,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB212') ~~| Policy change energy speed[SCEN4,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB212') ~~| Policy change energy speed[User defined,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB212') ~~| Policy change energy speed[SCEN1,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG212') ~~| Policy change energy speed[SCEN2,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG212') ~~| Policy change energy speed[SCEN3,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG212') ~~| Policy change energy speed[SCEN4,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG212') ~~| Policy change energy speed[User defined,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG212') ~~| Policy change energy speed[SCEN1,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL212') ~~| Policy change energy speed[SCEN2,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL212') ~~| Policy change energy speed[SCEN3,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL212') ~~| Policy change energy speed[SCEN4,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL212') ~~| Policy change energy speed[User defined,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL212') ~~| Policy change energy speed[SCEN1,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ212') ~~| Policy change energy speed[SCEN2,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ212') ~~| Policy change energy speed[SCEN3,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ212') ~~| Policy change energy speed[SCEN4,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ212') ~~| Policy change energy speed[User defined,Renting od MEq and Other Business Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ212') ~~| Policy change energy speed[SCEN1,Public Admin and Defence Compulsory Social Security,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV212') ~~| Policy change energy speed[SCEN2,Public Admin and Defence Compulsory Social Security,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV212') ~~| Policy change energy speed[SCEN3,Public Admin and Defence Compulsory Social Security,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV212') ~~| Policy change energy speed[SCEN4,Public Admin and Defence Compulsory Social Security,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV212') ~~| Policy change energy speed[User defined,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV212') ~~| Policy change energy speed[SCEN1,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA212') ~~| Policy change energy speed[SCEN2,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA212') ~~| Policy change energy speed[SCEN3,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA212') ~~| Policy change energy speed[SCEN4,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA212') ~~| Policy change energy speed[User defined,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA212') ~~| Policy change energy speed[SCEN1,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF212') ~~| Policy change energy speed[SCEN2,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF212') ~~| Policy change energy speed[SCEN3,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF212') ~~| Policy change energy speed[SCEN4,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF212') ~~| Policy change energy speed[User defined,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF212') ~~| Policy change energy speed[SCEN1,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK212') ~~| Policy change energy speed[SCEN2,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK212') ~~| Policy change energy speed[SCEN3,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK212') ~~| Policy change energy speed[SCEN4,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK212') ~~| Policy change energy speed[User defined,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK212') ~~| Policy change energy speed[SCEN1,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP212') ~~| Policy change energy speed[SCEN2,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP212') ~~| Policy change energy speed[SCEN3,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP212') ~~| Policy change energy speed[SCEN4,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP212') ~~| Policy change energy speed[User defined,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP212') ~~| Policy change energy speed[SCEN1,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q212') ~~| Policy change energy speed[SCEN2,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q212') ~~| Policy change energy speed[SCEN3,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q212') ~~| Policy change energy speed[SCEN4,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q212') ~~| Policy change energy speed[User defined,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q212') ~ ~ | Policy to improve efficiency speed[BAU,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B208') ~~| Policy to improve efficiency speed[BAU,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G208') ~~| Policy to improve efficiency speed[BAU,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L208') ~~| Policy to improve efficiency speed[BAU,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q208') ~~| Policy to improve efficiency speed[BAU,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V208') ~~| Policy to improve efficiency speed[BAU,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA208') ~~| Policy to improve efficiency speed[BAU,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF208') ~~| Policy to improve efficiency speed[BAU,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK208') ~~| Policy to improve efficiency speed[BAU,Chemicals and Chemical products,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP208') ~~| Policy to improve efficiency speed[BAU,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU208') ~~| Policy to improve efficiency speed[BAU,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ208') ~~| Policy to improve efficiency speed[BAU,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE208') ~~| Policy to improve efficiency speed[BAU,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ208') ~~| Policy to improve efficiency speed[BAU,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO208') ~~| Policy to improve efficiency speed[BAU,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT208') ~~| Policy to improve efficiency speed[BAU,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY208') ~~| Policy to improve efficiency speed[BAU,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD208') ~~| Policy to improve efficiency speed[BAU,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI208') ~~| Policy to improve efficiency speed[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN208') ~~| Policy to improve efficiency speed[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS208') ~~| Policy to improve efficiency speed[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX208') ~~| Policy to improve efficiency speed[BAU,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC208') ~~| Policy to improve efficiency speed[BAU,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH208') ~~| Policy to improve efficiency speed[BAU,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM208') ~~| Policy to improve efficiency speed[BAU,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR208') ~~| Policy to improve efficiency speed[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW208') ~~| Policy to improve efficiency speed[BAU,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB208') ~~| Policy to improve efficiency speed[BAU,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG208') ~~| Policy to improve efficiency speed[BAU,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL208') ~~| Policy to improve efficiency speed[BAU,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ208') ~~| Policy to improve efficiency speed[BAU,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV208') ~~| Policy to improve efficiency speed[BAU,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA208') ~~| Policy to improve efficiency speed[BAU,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF208') ~~| Policy to improve efficiency speed[BAU,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK208') ~~| Policy to improve efficiency speed[BAU,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP208') ~~| Policy to improve efficiency speed[SCEN1,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B208') ~~| Policy to improve efficiency speed[SCEN2,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B208') ~~| Policy to improve efficiency speed[SCEN3,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B208') ~~| Policy to improve efficiency speed[SCEN4,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B208') ~~| Policy to improve efficiency speed[User defined,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B208') ~~| Policy to improve efficiency speed[SCEN1,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G208') ~~| Policy to improve efficiency speed[SCEN2,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G208') ~~| Policy to improve efficiency speed[SCEN3,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G208') ~~| Policy to improve efficiency speed[SCEN4,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G208') ~~| Policy to improve efficiency speed[User defined,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G208') ~~| Policy to improve efficiency speed[SCEN1,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L208') ~~| Policy to improve efficiency speed[SCEN2,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L208') ~~| Policy to improve efficiency speed[SCEN3,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L208') ~~| Policy to improve efficiency speed[SCEN4,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L208') ~~| Policy to improve efficiency speed[User defined,Food Beverages and Tobacco,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L208') ~~| Policy to improve efficiency speed[SCEN1,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V208') ~~| Policy to improve efficiency speed[SCEN2,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V208') ~~| Policy to improve efficiency speed[SCEN3,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V208') ~~| Policy to improve efficiency speed[SCEN4,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V208') ~~| Policy to improve efficiency speed[User defined,Leather Leather and Footwear,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V208') ~~| Policy to improve efficiency speed[SCEN1,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA208') ~~| Policy to improve efficiency speed[SCEN2,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA208') ~~| Policy to improve efficiency speed[SCEN3,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA208') ~~| Policy to improve efficiency speed[SCEN4,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA208') ~~| Policy to improve efficiency speed[User defined,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA208') ~~| Policy to improve efficiency speed[SCEN1,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF208') ~~| Policy to improve efficiency speed[SCEN2,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF208') ~~| Policy to improve efficiency speed[SCEN3,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF208') ~~| Policy to improve efficiency speed[SCEN4,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF208') ~~| Policy to improve efficiency speed[User defined,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF208') ~~| Policy to improve efficiency speed[SCEN1,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK208') ~~| Policy to improve efficiency speed[SCEN2,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK208') ~~| Policy to improve efficiency speed[SCEN3,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK208') ~~| Policy to improve efficiency speed[SCEN4,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK208') ~~| Policy to improve efficiency speed[User defined,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK208') ~~| Policy to improve efficiency speed[SCEN1,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP208') ~~| Policy to improve efficiency speed[SCEN2,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP208') ~~| Policy to improve efficiency speed[SCEN3,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP208') ~~| Policy to improve efficiency speed[SCEN4,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP208') ~~| Policy to improve efficiency speed[User defined,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP208') ~~| Policy to improve efficiency speed[SCEN1,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU208') ~~| Policy to improve efficiency speed[SCEN2,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU208') ~~| Policy to improve efficiency speed[SCEN3,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU208') ~~| Policy to improve efficiency speed[SCEN4,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU208') ~~| Policy to improve efficiency speed[User defined,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU208') ~~| Policy to improve efficiency speed[SCEN1,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ208') ~~| Policy to improve efficiency speed[SCEN2,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ208') ~~| Policy to improve efficiency speed[SCEN3,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ208') ~~| Policy to improve efficiency speed[SCEN4,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ208') ~~| Policy to improve efficiency speed[User defined,Other Non Metalic Mineral,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ208') ~~| Policy to improve efficiency speed[SCEN1,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE208') ~~| Policy to improve efficiency speed[SCEN2,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE208') ~~| Policy to improve efficiency speed[SCEN3,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE208') ~~| Policy to improve efficiency speed[SCEN4,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE208') ~~| Policy to improve efficiency speed[User defined,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE208') ~~| Policy to improve efficiency speed[SCEN1,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ208') ~~| Policy to improve efficiency speed[SCEN2,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ208') ~~| Policy to improve efficiency speed[SCEN3,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ208') ~~| Policy to improve efficiency speed[SCEN4,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ208') ~~| Policy to improve efficiency speed[User defined,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ208') ~~| Policy to improve efficiency speed[SCEN1,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO208') ~~| Policy to improve efficiency speed[SCEN2,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO208') ~~| Policy to improve efficiency speed[SCEN3,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO208') ~~| Policy to improve efficiency speed[SCEN4,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO208') ~~| Policy to improve efficiency speed[User defined,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO208') ~~| Policy to improve efficiency speed[SCEN1,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT208') ~~| Policy to improve efficiency speed[SCEN2,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT208') ~~| Policy to improve efficiency speed[SCEN3,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT208') ~~| Policy to improve efficiency speed[SCEN4,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT208') ~~| Policy to improve efficiency speed[User defined,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT208') ~~| Policy to improve efficiency speed[SCEN1,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY208') ~~| Policy to improve efficiency speed[SCEN2,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY208') ~~| Policy to improve efficiency speed[SCEN3,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY208') ~~| Policy to improve efficiency speed[SCEN4,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY208') ~~| Policy to improve efficiency speed[User defined,Manufacturing Nec Recycling,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY208') ~~| Policy to improve efficiency speed[SCEN1,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD208') ~~| Policy to improve efficiency speed[SCEN2,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD208') ~~| Policy to improve efficiency speed[SCEN3,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD208') ~~| Policy to improve efficiency speed[SCEN4,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD208') ~~| Policy to improve efficiency speed[User defined,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD208') ~~| Policy to improve efficiency speed[SCEN1,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI208') ~~| Policy to improve efficiency speed[SCEN2,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI208') ~~| Policy to improve efficiency speed[SCEN3,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI208') ~~| Policy to improve efficiency speed[SCEN4,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI208') ~~| Policy to improve efficiency speed[User defined,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI208') ~~| Policy to improve efficiency speed[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN208') ~~| Policy to improve efficiency speed[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN208') ~~| Policy to improve efficiency speed[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN208') ~~| Policy to improve efficiency speed[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN208') ~~| Policy to improve efficiency speed[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN208') ~~| Policy to improve efficiency speed[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS208') ~~| Policy to improve efficiency speed[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS208') ~~| Policy to improve efficiency speed[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS208') ~~| Policy to improve efficiency speed[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS208') ~~| Policy to improve efficiency speed[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS208') ~~| Policy to improve efficiency speed[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX208') ~~| Policy to improve efficiency speed[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX208') ~~| Policy to improve efficiency speed[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX208') ~~| Policy to improve efficiency speed[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX208') ~~| Policy to improve efficiency speed[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX208') ~~| Policy to improve efficiency speed[SCEN1,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC208') ~~| Policy to improve efficiency speed[SCEN2,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC208') ~~| Policy to improve efficiency speed[SCEN3,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC208') ~~| Policy to improve efficiency speed[SCEN4,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC208') ~~| Policy to improve efficiency speed[User defined,Hotels and Restaurants,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC208') ~~| Policy to improve efficiency speed[SCEN1,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH208') ~~| Policy to improve efficiency speed[SCEN2,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH208') ~~| Policy to improve efficiency speed[SCEN3,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH208') ~~| Policy to improve efficiency speed[SCEN4,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH208') ~~| Policy to improve efficiency speed[User defined,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH208') ~~| Policy to improve efficiency speed[SCEN1,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM208') ~~| Policy to improve efficiency speed[SCEN2,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM208') ~~| Policy to improve efficiency speed[SCEN3,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM208') ~~| Policy to improve efficiency speed[SCEN4,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM208') ~~| Policy to improve efficiency speed[User defined,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM208') ~~| Policy to improve efficiency speed[SCEN1,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR208') ~~| Policy to improve efficiency speed[SCEN2,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR208') ~~| Policy to improve efficiency speed[SCEN3,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR208') ~~| Policy to improve efficiency speed[SCEN4,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR208') ~~| Policy to improve efficiency speed[User defined,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR208') ~~| Policy to improve efficiency speed[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW208') ~~| Policy to improve efficiency speed[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW208') ~~| Policy to improve efficiency speed[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW208') ~~| Policy to improve efficiency speed[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW208') ~~| Policy to improve efficiency speed[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW208') ~~| Policy to improve efficiency speed[SCEN1,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB208') ~~| Policy to improve efficiency speed[SCEN2,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB208') ~~| Policy to improve efficiency speed[SCEN3,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB208') ~~| Policy to improve efficiency speed[SCEN4,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB208') ~~| Policy to improve efficiency speed[User defined,Post and Telecommunications,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB208') ~~| Policy to improve efficiency speed[SCEN1,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG208') ~~| Policy to improve efficiency speed[SCEN2,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG208') ~~| Policy to improve efficiency speed[SCEN3,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG208') ~~| Policy to improve efficiency speed[SCEN4,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG208') ~~| Policy to improve efficiency speed[User defined,Financial Intermedation,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG208') ~~| Policy to improve efficiency speed[SCEN1,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL208') ~~| Policy to improve efficiency speed[SCEN2,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL208') ~~| Policy to improve efficiency speed[SCEN3,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL208') ~~| Policy to improve efficiency speed[SCEN4,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL208') ~~| Policy to improve efficiency speed[User defined,Real Estate Activities,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL208') ~~| Policy to improve efficiency speed[SCEN1,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ208') ~~| Policy to improve efficiency speed[SCEN2,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ208') ~~| Policy to improve efficiency speed[SCEN3,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ208') ~~| Policy to improve efficiency speed[SCEN4,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ208') ~~| Policy to improve efficiency speed[User defined,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ208') ~~| Policy to improve efficiency speed[SCEN1,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV208') ~~| Policy to improve efficiency speed[SCEN2,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV208') ~~| Policy to improve efficiency speed[SCEN3,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV208') ~~| Policy to improve efficiency speed[SCEN4,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV208') ~~| Policy to improve efficiency speed[User defined,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV208') ~~| Policy to improve efficiency speed[SCEN1,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA208') ~~| Policy to improve efficiency speed[SCEN2,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA208') ~~| Policy to improve efficiency speed[SCEN3,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA208') ~~| Policy to improve efficiency speed[SCEN4,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA208') ~~| Policy to improve efficiency speed[User defined,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA208') ~~| Policy to improve efficiency speed[SCEN1,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF208') ~~| Policy to improve efficiency speed[SCEN2,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF208') ~~| Policy to improve efficiency speed[SCEN3,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF208') ~~| Policy to improve efficiency speed[SCEN4,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF208') ~~| Policy to improve efficiency speed[User defined,Health and Social Work,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF208') ~~| Policy to improve efficiency speed[SCEN1,Other Community Social and Persona Services,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK208') ~~| Policy to improve efficiency speed[SCEN2,Other Community Social and Persona Services,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK208') ~~| Policy to improve efficiency speed[SCEN3,Other Community Social and Persona Services,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK208') ~~| Policy to improve efficiency speed[SCEN4,Other Community Social and Persona Services,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK208') ~~| Policy to improve efficiency speed[User defined,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK208') ~~| Policy to improve efficiency speed[SCEN1,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP208') ~~| Policy to improve efficiency speed[SCEN2,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP208') ~~| Policy to improve efficiency speed[SCEN3,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP208') ~~| Policy to improve efficiency speed[SCEN4,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP208') ~~| Policy to improve efficiency speed[User defined,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP208') ~~| Policy to improve efficiency speed[SCEN1,Textiles and Textile Products,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q208') ~~| Policy to improve efficiency speed[SCEN2,Textiles and Textile Products,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q208') ~~| Policy to improve efficiency speed[SCEN3,Textiles and Textile Products,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q208') ~~| Policy to improve efficiency speed[SCEN4,Textiles and Textile Products,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q208') ~~| Policy to improve efficiency speed[User defined,Textiles and Textile Products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q208') ~ ~ | minimum fraction[BAU,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B213') ~~| minimum fraction[BAU,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G213') ~~| minimum fraction[BAU,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L213') ~~| minimum fraction[BAU,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q213') ~~| minimum fraction[BAU,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V213') ~~| minimum fraction[BAU,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA213') ~~| minimum fraction[BAU,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF213') ~~| minimum fraction[BAU,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK213') ~~| minimum fraction[BAU,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP213') ~~| minimum fraction[BAU,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU213') ~~| minimum fraction[BAU,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ213') ~~| minimum fraction[BAU,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE213') ~~| minimum fraction[BAU,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ213') ~~| minimum fraction[BAU,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO213') ~~| minimum fraction[BAU,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT213') ~~| minimum fraction[BAU,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY213') ~~| minimum fraction[BAU,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD213') ~~| minimum fraction[BAU,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI213') ~~| minimum fraction[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN213') ~~| minimum fraction[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS213') ~~| minimum fraction[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX213') ~~| minimum fraction[BAU,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC213') ~~| minimum fraction[BAU,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH213') ~~| minimum fraction[BAU,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM213') ~~| minimum fraction[BAU,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR213') ~~| minimum fraction[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW213') ~~| minimum fraction[BAU,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB213') ~~| minimum fraction[BAU,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG213') ~~| minimum fraction[BAU,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL213') ~~| minimum fraction[BAU,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ213') ~~| minimum fraction[BAU,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV213') ~~| minimum fraction[BAU,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA213') ~~| minimum fraction[BAU,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF213') ~~| minimum fraction[BAU,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK213') ~~| minimum fraction[BAU,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP213') ~~| minimum fraction[SCEN1,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B213') ~~| minimum fraction[SCEN2,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B213') ~~| minimum fraction[SCEN3,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B213') ~~| minimum fraction[SCEN4,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B213') ~~| minimum fraction[User defined,Agriculture Hunting Forestry and Fishing,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B213') ~~| minimum fraction[SCEN1,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G213') ~~| minimum fraction[SCEN2,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G213') ~~| minimum fraction[SCEN3,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G213') ~~| minimum fraction[SCEN4,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G213') ~~| minimum fraction[User defined,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G213') ~~| minimum fraction[SCEN1,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L213') ~~| minimum fraction[SCEN2,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L213') ~~| minimum fraction[SCEN3,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L213') ~~| minimum fraction[SCEN4,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L213') ~~| minimum fraction[User defined,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L213') ~~| minimum fraction[SCEN1,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V213') ~~| minimum fraction[SCEN2,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V213') ~~| minimum fraction[SCEN3,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V213') ~~| minimum fraction[SCEN4,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V213') ~~| minimum fraction[User defined,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V213') ~~| minimum fraction[SCEN1,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA213') ~~| minimum fraction[SCEN2,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA213') ~~| minimum fraction[SCEN3,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA213') ~~| minimum fraction[SCEN4,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA213') ~~| minimum fraction[User defined,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA213') ~~| minimum fraction[SCEN1,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF213') ~~| minimum fraction[SCEN2,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF213') ~~| minimum fraction[SCEN3,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF213') ~~| minimum fraction[SCEN4,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF213') ~~| minimum fraction[User defined,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF213') ~~| minimum fraction[SCEN1,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK213') ~~| minimum fraction[SCEN2,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK213') ~~| minimum fraction[SCEN3,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK213') ~~| minimum fraction[SCEN4,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK213') ~~| minimum fraction[User defined,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK213') ~~| minimum fraction[SCEN1,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP213') ~~| minimum fraction[SCEN2,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP213') ~~| minimum fraction[SCEN3,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP213') ~~| minimum fraction[SCEN4,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP213') ~~| minimum fraction[User defined,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP213') ~~| minimum fraction[SCEN1,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU213') ~~| minimum fraction[SCEN2,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU213') ~~| minimum fraction[SCEN3,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU213') ~~| minimum fraction[SCEN4,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU213') ~~| minimum fraction[User defined,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU213') ~~| minimum fraction[SCEN1,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ213') ~~| minimum fraction[SCEN2,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ213') ~~| minimum fraction[SCEN3,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ213') ~~| minimum fraction[SCEN4,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ213') ~~| minimum fraction[User defined,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ213') ~~| minimum fraction[SCEN1,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE213') ~~| minimum fraction[SCEN2,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE213') ~~| minimum fraction[SCEN3,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE213') ~~| minimum fraction[SCEN4,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE213') ~~| minimum fraction[User defined,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE213') ~~| minimum fraction[SCEN1,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ213') ~~| minimum fraction[SCEN2,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ213') ~~| minimum fraction[SCEN3,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ213') ~~| minimum fraction[SCEN4,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ213') ~~| minimum fraction[User defined,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ213') ~~| minimum fraction[SCEN1,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO213') ~~| minimum fraction[SCEN2,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO213') ~~| minimum fraction[SCEN3,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO213') ~~| minimum fraction[SCEN4,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO213') ~~| minimum fraction[User defined,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO213') ~~| minimum fraction[SCEN1,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT213') ~~| minimum fraction[SCEN2,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT213') ~~| minimum fraction[SCEN3,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT213') ~~| minimum fraction[SCEN4,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT213') ~~| minimum fraction[User defined,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT213') ~~| minimum fraction[SCEN1,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY213') ~~| minimum fraction[SCEN2,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY213') ~~| minimum fraction[SCEN3,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY213') ~~| minimum fraction[SCEN4,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY213') ~~| minimum fraction[User defined,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY213') ~~| minimum fraction[SCEN1,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD213') ~~| minimum fraction[SCEN2,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD213') ~~| minimum fraction[SCEN3,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD213') ~~| minimum fraction[SCEN4,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD213') ~~| minimum fraction[User defined,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD213') ~~| minimum fraction[SCEN1,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI213') ~~| minimum fraction[SCEN2,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI213') ~~| minimum fraction[SCEN3,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI213') ~~| minimum fraction[SCEN4,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI213') ~~| minimum fraction[User defined,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI213') ~~| minimum fraction[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN213') ~~| minimum fraction[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN213') ~~| minimum fraction[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN213') ~~| minimum fraction[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN213') ~~| minimum fraction[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN213') ~~| minimum fraction[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS213') ~~| minimum fraction[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS213') ~~| minimum fraction[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS213') ~~| minimum fraction[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS213') ~~| minimum fraction[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS213') ~~| minimum fraction[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX213') ~~| minimum fraction[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX213') ~~| minimum fraction[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX213') ~~| minimum fraction[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX213') ~~| minimum fraction[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX213') ~~| minimum fraction[SCEN1,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC213') ~~| minimum fraction[SCEN2,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC213') ~~| minimum fraction[SCEN3,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC213') ~~| minimum fraction[SCEN4,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC213') ~~| minimum fraction[User defined,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC213') ~~| minimum fraction[SCEN1,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH213') ~~| minimum fraction[SCEN2,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH213') ~~| minimum fraction[SCEN3,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH213') ~~| minimum fraction[SCEN4,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH213') ~~| minimum fraction[User defined,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH213') ~~| minimum fraction[SCEN1,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM213') ~~| minimum fraction[SCEN2,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM213') ~~| minimum fraction[SCEN3,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM213') ~~| minimum fraction[SCEN4,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM213') ~~| minimum fraction[User defined,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM213') ~~| minimum fraction[SCEN1,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR213') ~~| minimum fraction[SCEN2,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR213') ~~| minimum fraction[SCEN3,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR213') ~~| minimum fraction[SCEN4,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR213') ~~| minimum fraction[User defined,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR213') ~~| minimum fraction[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW213') ~~| minimum fraction[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW213') ~~| minimum fraction[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW213') ~~| minimum fraction[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW213') ~~| minimum fraction[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW213') ~~| minimum fraction[SCEN1,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB213') ~~| minimum fraction[SCEN2,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB213') ~~| minimum fraction[SCEN3,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB213') ~~| minimum fraction[SCEN4,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB213') ~~| minimum fraction[User defined,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB213') ~~| minimum fraction[SCEN1,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG213') ~~| minimum fraction[SCEN2,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG213') ~~| minimum fraction[SCEN3,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG213') ~~| minimum fraction[SCEN4,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG213') ~~| minimum fraction[User defined,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG213') ~~| minimum fraction[SCEN1,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL213') ~~| minimum fraction[SCEN2,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL213') ~~| minimum fraction[SCEN3,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL213') ~~| minimum fraction[SCEN4,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL213') ~~| minimum fraction[User defined,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL213') ~~| minimum fraction[SCEN1,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ213') ~~| minimum fraction[SCEN2,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ213') ~~| minimum fraction[SCEN3,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ213') ~~| minimum fraction[SCEN4,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ213') ~~| minimum fraction[User defined,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ213') ~~| minimum fraction[SCEN1,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV213') ~~| minimum fraction[SCEN2,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV213') ~~| minimum fraction[SCEN3,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV213') ~~| minimum fraction[SCEN4,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV213') ~~| minimum fraction[User defined,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV213') ~~| minimum fraction[SCEN1,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA213') ~~| minimum fraction[SCEN2,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA213') ~~| minimum fraction[SCEN3,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA213') ~~| minimum fraction[SCEN4,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA213') ~~| minimum fraction[User defined,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA213') ~~| minimum fraction[SCEN1,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF213') ~~| minimum fraction[SCEN2,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF213') ~~| minimum fraction[SCEN3,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF213') ~~| minimum fraction[SCEN4,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF213') ~~| minimum fraction[User defined,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF213') ~~| minimum fraction[SCEN1,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK213') ~~| minimum fraction[SCEN2,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK213') ~~| minimum fraction[SCEN3,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK213') ~~| minimum fraction[SCEN4,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK213') ~~| minimum fraction[User defined,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK213') ~~| minimum fraction[SCEN1,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP213') ~~| minimum fraction[SCEN2,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP213') ~~| minimum fraction[SCEN3,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP213') ~~| minimum fraction[SCEN4,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP213') ~~| minimum fraction[User defined,Private Households with Employed Persons,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP213') ~~| minimum fraction[SCEN1,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q213') ~~| minimum fraction[SCEN2,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q213') ~~| minimum fraction[SCEN3,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q213') ~~| minimum fraction[SCEN4,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q213') ~~| minimum fraction[User defined,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q213') ~ ~ | Increase of intensity due to energy a technology change TOP DOWN[scenarios,sectors,liquids\ ]= Decrease of intensity due to energy a technology change TOP DOWN[scenarios,sectors,solids\ ]*efficiency rate of substitution [scenarios,sectors,liquids,solids]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,gases ]*efficiency rate of substitution [scenarios,sectors,liquids,gases]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,electricity ]* efficiency rate of substitution[scenarios,sectors,liquids,electricity]+Decrease of intensity due to energy a technology change TOP DOWN [scenarios,sectors,heat]*efficiency rate of substitution[scenarios,sectors,liquids,heat\ ] ~~| Increase of intensity due to energy a technology change TOP DOWN[scenarios,sectors,gases\ ]= Decrease of intensity due to energy a technology change TOP DOWN[scenarios,sectors,solids\ ]*efficiency rate of substitution [scenarios,sectors,gases, solids]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,electricity ]* efficiency rate of substitution[scenarios,sectors,gases,electricity]+Decrease of intensity due to energy a technology change TOP DOWN [scenarios,sectors,heat]*efficiency rate of substitution[scenarios,sectors,gases,heat\ ]+Decrease of intensity due to energy a technology change TOP DOWN [scenarios,sectors,liquids]*efficiency rate of substitution[scenarios,sectors,gases,\ liquids] ~~| Increase of intensity due to energy a technology change TOP DOWN[scenarios,sectors,solids\ ]= Decrease of intensity due to energy a technology change TOP DOWN[scenarios,sectors,gases\ ]*efficiency rate of substitution [scenarios,sectors,solids,gases]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,electricity ]*efficiency rate of substitution [scenarios,sectors,solids,electricity]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors ,heat]*efficiency rate of substitution [scenarios,sectors,solids,heat]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,liquids ]*efficiency rate of substitution [scenarios,sectors,solids,liquids] ~~| Increase of intensity due to energy a technology change TOP DOWN[scenarios,sectors,electricity\ ]= Decrease of intensity due to energy a technology change TOP DOWN[scenarios,sectors,solids\ ]*efficiency rate of substitution [scenarios,sectors,electricity,solids]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors ,gases]*efficiency rate of substitution [scenarios,sectors,electricity,gases]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors ,heat]*efficiency rate of substitution [scenarios,sectors,electricity,heat]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors ,liquids]*efficiency rate of substitution [scenarios,sectors,electricity,liquids] ~~| Increase of intensity due to energy a technology change TOP DOWN[scenarios,sectors,heat\ ]= Decrease of intensity due to energy a technology change TOP DOWN[scenarios,sectors,solids\ ]*efficiency rate of substitution [scenarios,sectors,heat,solids]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,gases ]*efficiency rate of substitution [scenarios,sectors,heat,gases]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,electricity ]*efficiency rate of substitution [scenarios,sectors,heat,electricity]+Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors ,liquids]*efficiency rate of substitution [scenarios,sectors,heat,liquids] ~ ~ When in one economic sector, one type of energy (a) is replaced by another \ (b), the energy intensity of (b) will increase and the energy intensity of \ (a) will decrease. This flow represents the increase of (b). | Year policy change energy[BAU,Agriculture Hunting Forestry and Fishing,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B211') ~~| Year policy change energy[BAU,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G211') ~~| Year policy change energy[BAU,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L211') ~~| Year policy change energy[BAU,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q211') ~~| Year policy change energy[BAU,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V211') ~~| Year policy change energy[BAU,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA211') ~~| Year policy change energy[BAU,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF211') ~~| Year policy change energy[BAU,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK211') ~~| Year policy change energy[BAU,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP211') ~~| Year policy change energy[BAU,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU211') ~~| Year policy change energy[BAU,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ211') ~~| Year policy change energy[BAU,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE211') ~~| Year policy change energy[BAU,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ211') ~~| Year policy change energy[BAU,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO211') ~~| Year policy change energy[BAU,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT211') ~~| Year policy change energy[BAU,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY211') ~~| Year policy change energy[BAU,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD211') ~~| Year policy change energy[BAU,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI211') ~~| Year policy change energy[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN211') ~~| Year policy change energy[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS211') ~~| Year policy change energy[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX211') ~~| Year policy change energy[BAU,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC211') ~~| Year policy change energy[BAU,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH211') ~~| Year policy change energy[BAU,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM211') ~~| Year policy change energy[BAU,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR211') ~~| Year policy change energy[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW211') ~~| Year policy change energy[BAU,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB211') ~~| Year policy change energy[BAU,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG211') ~~| Year policy change energy[BAU,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL211') ~~| Year policy change energy[BAU,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ211') ~~| Year policy change energy[BAU,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV211') ~~| Year policy change energy[BAU,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA211') ~~| Year policy change energy[BAU,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF211') ~~| Year policy change energy[BAU,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK211') ~~| Year policy change energy[BAU,Private Households with Employed Persons,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP211') ~~| Year policy change energy[SCEN1,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B211') ~~| Year policy change energy[SCEN2,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B211') ~~| Year policy change energy[SCEN3,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B211') ~~| Year policy change energy[SCEN4,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B211') ~~| Year policy change energy[User defined,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B211') ~~| Year policy change energy[SCEN1,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G211') ~~| Year policy change energy[SCEN2,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G211') ~~| Year policy change energy[SCEN3,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G211') ~~| Year policy change energy[SCEN4,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G211') ~~| Year policy change energy[User defined,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G211') ~~| Year policy change energy[SCEN1,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L211') ~~| Year policy change energy[SCEN2,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L211') ~~| Year policy change energy[SCEN3,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L211') ~~| Year policy change energy[SCEN4,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L211') ~~| Year policy change energy[User defined,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L211') ~~| Year policy change energy[SCEN1,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V211') ~~| Year policy change energy[SCEN2,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V211') ~~| Year policy change energy[SCEN3,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V211') ~~| Year policy change energy[SCEN4,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V211') ~~| Year policy change energy[User defined,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V211') ~~| Year policy change energy[SCEN1,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA211') ~~| Year policy change energy[SCEN2,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA211') ~~| Year policy change energy[SCEN3,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA211') ~~| Year policy change energy[SCEN4,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA211') ~~| Year policy change energy[User defined,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA211') ~~| Year policy change energy[SCEN1,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF211') ~~| Year policy change energy[SCEN2,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF211') ~~| Year policy change energy[SCEN3,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF211') ~~| Year policy change energy[SCEN4,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF211') ~~| Year policy change energy[User defined,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF211') ~~| Year policy change energy[SCEN1,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK211') ~~| Year policy change energy[SCEN2,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK211') ~~| Year policy change energy[SCEN3,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK211') ~~| Year policy change energy[SCEN4,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK211') ~~| Year policy change energy[User defined,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK211') ~~| Year policy change energy[SCEN1,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP211') ~~| Year policy change energy[SCEN2,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP211') ~~| Year policy change energy[SCEN3,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP211') ~~| Year policy change energy[SCEN4,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP211') ~~| Year policy change energy[User defined,Chemicals and Chemical products,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP211') ~~| Year policy change energy[SCEN1,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU211') ~~| Year policy change energy[SCEN2,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU211') ~~| Year policy change energy[SCEN3,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU211') ~~| Year policy change energy[SCEN4,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU211') ~~| Year policy change energy[User defined,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU211') ~~| Year policy change energy[SCEN1,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ211') ~~| Year policy change energy[SCEN2,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ211') ~~| Year policy change energy[SCEN3,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ211') ~~| Year policy change energy[SCEN4,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ211') ~~| Year policy change energy[User defined,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ211') ~~| Year policy change energy[SCEN1,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE211') ~~| Year policy change energy[SCEN2,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE211') ~~| Year policy change energy[SCEN3,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE211') ~~| Year policy change energy[SCEN4,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE211') ~~| Year policy change energy[User defined,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE211') ~~| Year policy change energy[SCEN1,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ211') ~~| Year policy change energy[SCEN2,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ211') ~~| Year policy change energy[SCEN3,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ211') ~~| Year policy change energy[SCEN4,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ211') ~~| Year policy change energy[User defined,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ211') ~~| Year policy change energy[SCEN1,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO211') ~~| Year policy change energy[SCEN2,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO211') ~~| Year policy change energy[SCEN3,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO211') ~~| Year policy change energy[SCEN4,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO211') ~~| Year policy change energy[User defined,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO211') ~~| Year policy change energy[SCEN1,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT211') ~~| Year policy change energy[SCEN2,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT211') ~~| Year policy change energy[SCEN3,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT211') ~~| Year policy change energy[SCEN4,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT211') ~~| Year policy change energy[User defined,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT211') ~~| Year policy change energy[SCEN1,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY211') ~~| Year policy change energy[SCEN2,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY211') ~~| Year policy change energy[SCEN3,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY211') ~~| Year policy change energy[SCEN4,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY211') ~~| Year policy change energy[User defined,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY211') ~~| Year policy change energy[SCEN1,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD211') ~~| Year policy change energy[SCEN2,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD211') ~~| Year policy change energy[SCEN3,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD211') ~~| Year policy change energy[SCEN4,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD211') ~~| Year policy change energy[User defined,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD211') ~~| Year policy change energy[SCEN1,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI211') ~~| Year policy change energy[SCEN2,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI211') ~~| Year policy change energy[SCEN3,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI211') ~~| Year policy change energy[SCEN4,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI211') ~~| Year policy change energy[User defined,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI211') ~~| Year policy change energy[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN211') ~~| Year policy change energy[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN211') ~~| Year policy change energy[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN211') ~~| Year policy change energy[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN211') ~~| Year policy change energy[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN211') ~~| Year policy change energy[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS211') ~~| Year policy change energy[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS211') ~~| Year policy change energy[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS211') ~~| Year policy change energy[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS211') ~~| Year policy change energy[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS211') ~~| Year policy change energy[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX211') ~~| Year policy change energy[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX211') ~~| Year policy change energy[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX211') ~~| Year policy change energy[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX211') ~~| Year policy change energy[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX211') ~~| Year policy change energy[SCEN1,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC211') ~~| Year policy change energy[SCEN2,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC211') ~~| Year policy change energy[SCEN3,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC211') ~~| Year policy change energy[SCEN4,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC211') ~~| Year policy change energy[User defined,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC211') ~~| Year policy change energy[SCEN1,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH211') ~~| Year policy change energy[SCEN2,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH211') ~~| Year policy change energy[SCEN3,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH211') ~~| Year policy change energy[SCEN4,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH211') ~~| Year policy change energy[User defined,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH211') ~~| Year policy change energy[SCEN1,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM211') ~~| Year policy change energy[SCEN2,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM211') ~~| Year policy change energy[SCEN3,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM211') ~~| Year policy change energy[SCEN4,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM211') ~~| Year policy change energy[User defined,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM211') ~~| Year policy change energy[SCEN1,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR211') ~~| Year policy change energy[SCEN2,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR211') ~~| Year policy change energy[SCEN3,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR211') ~~| Year policy change energy[SCEN4,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR211') ~~| Year policy change energy[User defined,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR211') ~~| Year policy change energy[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW211') ~~| Year policy change energy[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW211') ~~| Year policy change energy[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW211') ~~| Year policy change energy[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW211') ~~| Year policy change energy[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW211') ~~| Year policy change energy[SCEN1,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB211') ~~| Year policy change energy[SCEN2,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB211') ~~| Year policy change energy[SCEN3,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB211') ~~| Year policy change energy[SCEN4,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB211') ~~| Year policy change energy[User defined,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB211') ~~| Year policy change energy[SCEN1,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG211') ~~| Year policy change energy[SCEN2,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG211') ~~| Year policy change energy[SCEN3,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG211') ~~| Year policy change energy[SCEN4,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG211') ~~| Year policy change energy[User defined,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG211') ~~| Year policy change energy[SCEN1,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL211') ~~| Year policy change energy[SCEN2,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL211') ~~| Year policy change energy[SCEN3,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL211') ~~| Year policy change energy[SCEN4,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL211') ~~| Year policy change energy[User defined,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL211') ~~| Year policy change energy[SCEN1,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ211') ~~| Year policy change energy[SCEN2,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ211') ~~| Year policy change energy[SCEN3,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ211') ~~| Year policy change energy[SCEN4,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ211') ~~| Year policy change energy[User defined,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ211') ~~| Year policy change energy[SCEN1,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV211') ~~| Year policy change energy[SCEN2,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV211') ~~| Year policy change energy[SCEN3,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV211') ~~| Year policy change energy[SCEN4,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV211') ~~| Year policy change energy[User defined,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV211') ~~| Year policy change energy[SCEN1,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA211') ~~| Year policy change energy[SCEN2,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA211') ~~| Year policy change energy[SCEN3,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA211') ~~| Year policy change energy[SCEN4,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA211') ~~| Year policy change energy[User defined,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA211') ~~| Year policy change energy[SCEN1,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF211') ~~| Year policy change energy[SCEN2,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF211') ~~| Year policy change energy[SCEN3,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF211') ~~| Year policy change energy[SCEN4,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF211') ~~| Year policy change energy[User defined,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF211') ~~| Year policy change energy[SCEN1,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK211') ~~| Year policy change energy[SCEN2,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK211') ~~| Year policy change energy[SCEN3,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK211') ~~| Year policy change energy[SCEN4,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK211') ~~| Year policy change energy[User defined,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK211') ~~| Year policy change energy[SCEN1,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP211') ~~| Year policy change energy[SCEN2,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP211') ~~| Year policy change energy[SCEN3,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP211') ~~| Year policy change energy[SCEN4,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP211') ~~| Year policy change energy[User defined,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP211') ~~| Year policy change energy[SCEN1,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q211') ~~| Year policy change energy[SCEN2,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q211') ~~| Year policy change energy[SCEN3,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q211') ~~| Year policy change energy[SCEN4,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q211') ~~| Year policy change energy[User defined,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q211') ~ ~ | Max yearly change[BAU,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B214') ~~| Max yearly change[BAU,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G214') ~~| Max yearly change[BAU,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L214') ~~| Max yearly change[BAU,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q214') ~~| Max yearly change[BAU,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V214') ~~| Max yearly change[BAU,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA214') ~~| Max yearly change[BAU,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF214') ~~| Max yearly change[BAU,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK214') ~~| Max yearly change[BAU,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP214') ~~| Max yearly change[BAU,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU214') ~~| Max yearly change[BAU,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ214') ~~| Max yearly change[BAU,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE214') ~~| Max yearly change[BAU,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ214') ~~| Max yearly change[BAU,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO214') ~~| Max yearly change[BAU,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT214') ~~| Max yearly change[BAU,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY214') ~~| Max yearly change[BAU,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD214') ~~| Max yearly change[BAU,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI214') ~~| Max yearly change[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN214') ~~| Max yearly change[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS214') ~~| Max yearly change[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX214') ~~| Max yearly change[BAU,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC214') ~~| Max yearly change[BAU,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH214') ~~| Max yearly change[BAU,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM214') ~~| Max yearly change[BAU,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR214') ~~| Max yearly change[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW214') ~~| Max yearly change[BAU,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB214') ~~| Max yearly change[BAU,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG214') ~~| Max yearly change[BAU,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL214') ~~| Max yearly change[BAU,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ214') ~~| Max yearly change[BAU,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV214') ~~| Max yearly change[BAU,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA214') ~~| Max yearly change[BAU,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF214') ~~| Max yearly change[BAU,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK214') ~~| Max yearly change[BAU,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP214') ~~| Max yearly change[SCEN1,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B214') ~~| Max yearly change[SCEN2,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B214') ~~| Max yearly change[SCEN3,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B214') ~~| Max yearly change[SCEN4,Agriculture Hunting Forestry and Fishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B214') ~~| Max yearly change[User defined,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B214') ~~| Max yearly change[SCEN1,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G214') ~~| Max yearly change[SCEN2,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G214') ~~| Max yearly change[SCEN3,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G214') ~~| Max yearly change[SCEN4,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G214') ~~| Max yearly change[User defined,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G214') ~~| Max yearly change[SCEN1,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L214') ~~| Max yearly change[SCEN2,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L214') ~~| Max yearly change[SCEN3,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L214') ~~| Max yearly change[SCEN4,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L214') ~~| Max yearly change[User defined,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L214') ~~| Max yearly change[SCEN1,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V214') ~~| Max yearly change[SCEN2,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V214') ~~| Max yearly change[SCEN3,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V214') ~~| Max yearly change[SCEN4,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V214') ~~| Max yearly change[User defined,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V214') ~~| Max yearly change[SCEN1,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA214') ~~| Max yearly change[SCEN2,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA214') ~~| Max yearly change[SCEN3,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA214') ~~| Max yearly change[SCEN4,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA214') ~~| Max yearly change[User defined,Wood and Products of Woood and Cork,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA214') ~~| Max yearly change[SCEN1,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF214') ~~| Max yearly change[SCEN2,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF214') ~~| Max yearly change[SCEN3,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF214') ~~| Max yearly change[SCEN4,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF214') ~~| Max yearly change[User defined,Pulp Paper Printing and Publishing,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF214') ~~| Max yearly change[SCEN1,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK214') ~~| Max yearly change[SCEN2,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK214') ~~| Max yearly change[SCEN3,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK214') ~~| Max yearly change[SCEN4,Coke Refined Petroleum and Nuclear Fuel,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK214') ~~| Max yearly change[User defined,Coke Refined Petroleum and Nuclear Fuel,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK214') ~~| Max yearly change[SCEN1,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP214') ~~| Max yearly change[SCEN2,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP214') ~~| Max yearly change[SCEN3,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP214') ~~| Max yearly change[SCEN4,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP214') ~~| Max yearly change[User defined,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP214') ~~| Max yearly change[SCEN1,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU214') ~~| Max yearly change[SCEN2,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU214') ~~| Max yearly change[SCEN3,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU214') ~~| Max yearly change[SCEN4,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU214') ~~| Max yearly change[User defined,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU214') ~~| Max yearly change[SCEN1,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ214') ~~| Max yearly change[SCEN2,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ214') ~~| Max yearly change[SCEN3,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ214') ~~| Max yearly change[SCEN4,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ214') ~~| Max yearly change[User defined,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ214') ~~| Max yearly change[SCEN1,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE214') ~~| Max yearly change[SCEN2,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE214') ~~| Max yearly change[SCEN3,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE214') ~~| Max yearly change[SCEN4,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE214') ~~| Max yearly change[User defined,Basic Metals and Fabricated Metal,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE214') ~~| Max yearly change[SCEN1,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ214') ~~| Max yearly change[SCEN2,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ214') ~~| Max yearly change[SCEN3,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ214') ~~| Max yearly change[SCEN4,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ214') ~~| Max yearly change[User defined,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ214') ~~| Max yearly change[SCEN1,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO214') ~~| Max yearly change[SCEN2,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO214') ~~| Max yearly change[SCEN3,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO214') ~~| Max yearly change[SCEN4,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO214') ~~| Max yearly change[User defined,Electrical and Optical Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO214') ~~| Max yearly change[SCEN1,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT214') ~~| Max yearly change[SCEN2,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT214') ~~| Max yearly change[SCEN3,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT214') ~~| Max yearly change[SCEN4,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT214') ~~| Max yearly change[User defined,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT214') ~~| Max yearly change[SCEN1,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY214') ~~| Max yearly change[SCEN2,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY214') ~~| Max yearly change[SCEN3,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY214') ~~| Max yearly change[SCEN4,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY214') ~~| Max yearly change[User defined,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY214') ~~| Max yearly change[SCEN1,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD214') ~~| Max yearly change[SCEN2,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD214') ~~| Max yearly change[SCEN3,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD214') ~~| Max yearly change[SCEN4,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD214') ~~| Max yearly change[User defined,Electricity Gas and Water Supply,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD214') ~~| Max yearly change[SCEN1,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI214') ~~| Max yearly change[SCEN2,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI214') ~~| Max yearly change[SCEN3,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI214') ~~| Max yearly change[SCEN4,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI214') ~~| Max yearly change[User defined,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI214') ~~| Max yearly change[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN214') ~~| Max yearly change[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN214') ~~| Max yearly change[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN214') ~~| Max yearly change[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN214') ~~| Max yearly change[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN214') ~~| Max yearly change[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS214') ~~| Max yearly change[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS214') ~~| Max yearly change[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS214') ~~| Max yearly change[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS214') ~~| Max yearly change[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS214') ~~| Max yearly change[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX214') ~~| Max yearly change[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX214') ~~| Max yearly change[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX214') ~~| Max yearly change[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX214') ~~| Max yearly change[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX214') ~~| Max yearly change[SCEN1,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC214') ~~| Max yearly change[SCEN2,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC214') ~~| Max yearly change[SCEN3,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC214') ~~| Max yearly change[SCEN4,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC214') ~~| Max yearly change[User defined,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC214') ~~| Max yearly change[SCEN1,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH214') ~~| Max yearly change[SCEN2,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH214') ~~| Max yearly change[SCEN3,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH214') ~~| Max yearly change[SCEN4,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH214') ~~| Max yearly change[User defined,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH214') ~~| Max yearly change[SCEN1,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM214') ~~| Max yearly change[SCEN2,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM214') ~~| Max yearly change[SCEN3,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM214') ~~| Max yearly change[SCEN4,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM214') ~~| Max yearly change[User defined,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM214') ~~| Max yearly change[SCEN1,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR214') ~~| Max yearly change[SCEN2,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR214') ~~| Max yearly change[SCEN3,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR214') ~~| Max yearly change[SCEN4,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR214') ~~| Max yearly change[User defined,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR214') ~~| Max yearly change[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW214') ~~| Max yearly change[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW214') ~~| Max yearly change[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW214') ~~| Max yearly change[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW214') ~~| Max yearly change[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW214') ~~| Max yearly change[SCEN1,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB214') ~~| Max yearly change[SCEN2,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB214') ~~| Max yearly change[SCEN3,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB214') ~~| Max yearly change[SCEN4,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB214') ~~| Max yearly change[User defined,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB214') ~~| Max yearly change[SCEN1,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG214') ~~| Max yearly change[SCEN2,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG214') ~~| Max yearly change[SCEN3,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG214') ~~| Max yearly change[SCEN4,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG214') ~~| Max yearly change[User defined,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG214') ~~| Max yearly change[SCEN1,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL214') ~~| Max yearly change[SCEN2,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL214') ~~| Max yearly change[SCEN3,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL214') ~~| Max yearly change[SCEN4,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL214') ~~| Max yearly change[User defined,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL214') ~~| Max yearly change[SCEN1,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ214') ~~| Max yearly change[SCEN2,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ214') ~~| Max yearly change[SCEN3,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ214') ~~| Max yearly change[SCEN4,Renting od MEq and Other Business Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ214') ~~| Max yearly change[User defined,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ214') ~~| Max yearly change[SCEN1,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV214') ~~| Max yearly change[SCEN2,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV214') ~~| Max yearly change[SCEN3,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV214') ~~| Max yearly change[SCEN4,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV214') ~~| Max yearly change[User defined,Public Admin and Defence Compulsory Social Security,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV214') ~~| Max yearly change[SCEN1,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA214') ~~| Max yearly change[SCEN2,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA214') ~~| Max yearly change[SCEN3,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA214') ~~| Max yearly change[SCEN4,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA214') ~~| Max yearly change[User defined,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA214') ~~| Max yearly change[SCEN1,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF214') ~~| Max yearly change[SCEN2,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF214') ~~| Max yearly change[SCEN3,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF214') ~~| Max yearly change[SCEN4,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF214') ~~| Max yearly change[User defined,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF214') ~~| Max yearly change[SCEN1,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK214') ~~| Max yearly change[SCEN2,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK214') ~~| Max yearly change[SCEN3,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK214') ~~| Max yearly change[SCEN4,Other Community Social and Persona Services,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK214') ~~| Max yearly change[User defined,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK214') ~~| Max yearly change[SCEN1,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP214') ~~| Max yearly change[SCEN2,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP214') ~~| Max yearly change[SCEN3,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP214') ~~| Max yearly change[SCEN4,Private Households with Employed Persons,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP214') ~~| Max yearly change[User defined,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP214') ~~| Max yearly change[SCEN1,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q214') ~~| Max yearly change[SCEN2,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q214') ~~| Max yearly change[SCEN3,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q214') ~~| Max yearly change[SCEN4,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q214') ~~| Max yearly change[User defined,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q214') ~ ~ | efficiency rate of substitution[BAU,Agriculture Hunting Forestry and Fishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B216') ~~| efficiency rate of substitution[BAU,Mining and Quarrying,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G216') ~~| efficiency rate of substitution[BAU,Food Beverages and Tobacco,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L216') ~~| efficiency rate of substitution[BAU,Textiles and Textile Products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q216') ~~| efficiency rate of substitution[BAU,Leather Leather and Footwear,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V216') ~~| efficiency rate of substitution[BAU,Wood and Products of Woood and Cork,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA216') ~~| efficiency rate of substitution[BAU,Pulp Paper Printing and Publishing,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF216') ~~| efficiency rate of substitution[BAU,Coke Refined Petroleum and Nuclear Fuel,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK216') ~~| efficiency rate of substitution[BAU,Chemicals and Chemical products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP216') ~~| efficiency rate of substitution[BAU,Rubber and Plastics,final sources,final sources1]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU216') ~~| efficiency rate of substitution[BAU,Other Non Metalic Mineral,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ216') ~~| efficiency rate of substitution[BAU,Basic Metals and Fabricated Metal,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE216') ~~| efficiency rate of substitution[BAU,Machinery Nec,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ216') ~~| efficiency rate of substitution[BAU,Electrical and Optical Equipment,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO216') ~~| efficiency rate of substitution[BAU,Transport Equipment,final sources,final sources1]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT216') ~~| efficiency rate of substitution[BAU,Manufacturing Nec Recycling,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY216') ~~| efficiency rate of substitution[BAU,Electricity Gas and Water Supply,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD216') ~~| efficiency rate of substitution[BAU,Construction,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI216') ~~| efficiency rate of substitution[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN216') ~~| efficiency rate of substitution[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS216') ~~| efficiency rate of substitution[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX216') ~~| efficiency rate of substitution[BAU,Hotels and Restaurants,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC216') ~~| efficiency rate of substitution[BAU,Inland Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH216') ~~| efficiency rate of substitution[BAU,Water Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM216') ~~| efficiency rate of substitution[BAU,Air Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR216') ~~| efficiency rate of substitution[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW216') ~~| efficiency rate of substitution[BAU,Post and Telecommunications,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB216') ~~| efficiency rate of substitution[BAU,Financial Intermedation,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG216') ~~| efficiency rate of substitution[BAU,Real Estate Activities,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL216') ~~| efficiency rate of substitution[BAU,Renting od MEq and Other Business Activities,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ216') ~~| efficiency rate of substitution[BAU,Public Admin and Defence Compulsory Social Security\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV216') ~~| efficiency rate of substitution[BAU,Education,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA216') ~~| efficiency rate of substitution[BAU,Health and Social Work,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF216') ~~| efficiency rate of substitution[BAU,Other Community Social and Persona Services,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK216') ~~| efficiency rate of substitution[BAU,Private Households with Employed Persons,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP216') ~~| efficiency rate of substitution[SCEN1,Agriculture Hunting Forestry and Fishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B216') ~~| efficiency rate of substitution[SCEN2,Agriculture Hunting Forestry and Fishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B216') ~~| efficiency rate of substitution[SCEN3,Agriculture Hunting Forestry and Fishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B216') ~~| efficiency rate of substitution[SCEN4,Agriculture Hunting Forestry and Fishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B216') ~~| efficiency rate of substitution[User defined,Agriculture Hunting Forestry and Fishing\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B216') ~~| efficiency rate of substitution[SCEN1,Mining and Quarrying,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G216') ~~| efficiency rate of substitution[SCEN2,Mining and Quarrying,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G216') ~~| efficiency rate of substitution[SCEN3,Mining and Quarrying,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G216') ~~| efficiency rate of substitution[SCEN4,Mining and Quarrying,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G216') ~~| efficiency rate of substitution[User defined,Mining and Quarrying,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G216') ~~| efficiency rate of substitution[SCEN1,Food Beverages and Tobacco,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L216') ~~| efficiency rate of substitution[SCEN2,Food Beverages and Tobacco,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L216') ~~| efficiency rate of substitution[SCEN3,Food Beverages and Tobacco,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L216') ~~| efficiency rate of substitution[SCEN4,Food Beverages and Tobacco,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L216') ~~| efficiency rate of substitution[User defined,Food Beverages and Tobacco,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L216') ~~| efficiency rate of substitution[SCEN1,Leather Leather and Footwear,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V216') ~~| efficiency rate of substitution[SCEN2,Leather Leather and Footwear,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V216') ~~| efficiency rate of substitution[SCEN3,Leather Leather and Footwear,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V216') ~~| efficiency rate of substitution[SCEN4,Leather Leather and Footwear,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V216') ~~| efficiency rate of substitution[User defined,Leather Leather and Footwear,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V216') ~~| efficiency rate of substitution[SCEN1,Wood and Products of Woood and Cork,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA216') ~~| efficiency rate of substitution[SCEN2,Wood and Products of Woood and Cork,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA216') ~~| efficiency rate of substitution[SCEN3,Wood and Products of Woood and Cork,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA216') ~~| efficiency rate of substitution[SCEN4,Wood and Products of Woood and Cork,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA216') ~~| efficiency rate of substitution[User defined,Wood and Products of Woood and Cork,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA216') ~~| efficiency rate of substitution[SCEN1,Pulp Paper Printing and Publishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF216') ~~| efficiency rate of substitution[SCEN2,Pulp Paper Printing and Publishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF216') ~~| efficiency rate of substitution[SCEN3,Pulp Paper Printing and Publishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF216') ~~| efficiency rate of substitution[SCEN4,Pulp Paper Printing and Publishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF216') ~~| efficiency rate of substitution[User defined,Pulp Paper Printing and Publishing,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF216') ~~| efficiency rate of substitution[SCEN1,Coke Refined Petroleum and Nuclear Fuel,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK216') ~~| efficiency rate of substitution[SCEN2,Coke Refined Petroleum and Nuclear Fuel,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK216') ~~| efficiency rate of substitution[SCEN3,Coke Refined Petroleum and Nuclear Fuel,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK216') ~~| efficiency rate of substitution[SCEN4,Coke Refined Petroleum and Nuclear Fuel,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK216') ~~| efficiency rate of substitution[User defined,Coke Refined Petroleum and Nuclear Fuel,\ final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK216') ~~| efficiency rate of substitution[SCEN1,Chemicals and Chemical products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP216') ~~| efficiency rate of substitution[SCEN2,Chemicals and Chemical products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP216') ~~| efficiency rate of substitution[SCEN3,Chemicals and Chemical products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP216') ~~| efficiency rate of substitution[SCEN4,Chemicals and Chemical products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP216') ~~| efficiency rate of substitution[User defined,Chemicals and Chemical products,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP216') ~~| efficiency rate of substitution[SCEN1,Rubber and Plastics,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU216') ~~| efficiency rate of substitution[SCEN2,Rubber and Plastics,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU216') ~~| efficiency rate of substitution[SCEN3,Rubber and Plastics,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU216') ~~| efficiency rate of substitution[SCEN4,Rubber and Plastics,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU216') ~~| efficiency rate of substitution[User defined,Rubber and Plastics,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU216') ~~| efficiency rate of substitution[SCEN1,Other Non Metalic Mineral,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ216') ~~| efficiency rate of substitution[SCEN2,Other Non Metalic Mineral,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ216') ~~| efficiency rate of substitution[SCEN3,Other Non Metalic Mineral,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ216') ~~| efficiency rate of substitution[SCEN4,Other Non Metalic Mineral,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ216') ~~| efficiency rate of substitution[User defined,Other Non Metalic Mineral,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ216') ~~| efficiency rate of substitution[SCEN1,Basic Metals and Fabricated Metal,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE216') ~~| efficiency rate of substitution[SCEN2,Basic Metals and Fabricated Metal,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE216') ~~| efficiency rate of substitution[SCEN3,Basic Metals and Fabricated Metal,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE216') ~~| efficiency rate of substitution[SCEN4,Basic Metals and Fabricated Metal,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE216') ~~| efficiency rate of substitution[User defined,Basic Metals and Fabricated Metal,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE216') ~~| efficiency rate of substitution[SCEN1,Machinery Nec,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ216') ~~| efficiency rate of substitution[SCEN2,Machinery Nec,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ216') ~~| efficiency rate of substitution[SCEN3,Machinery Nec,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ216') ~~| efficiency rate of substitution[SCEN4,Machinery Nec,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ216') ~~| efficiency rate of substitution[User defined,Machinery Nec,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ216') ~~| efficiency rate of substitution[SCEN1,Electrical and Optical Equipment,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO216') ~~| efficiency rate of substitution[SCEN2,Electrical and Optical Equipment,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO216') ~~| efficiency rate of substitution[SCEN3,Electrical and Optical Equipment,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO216') ~~| efficiency rate of substitution[SCEN4,Electrical and Optical Equipment,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO216') ~~| efficiency rate of substitution[User defined,Electrical and Optical Equipment,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO216') ~~| efficiency rate of substitution[SCEN1,Transport Equipment,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT216') ~~| efficiency rate of substitution[SCEN2,Transport Equipment,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT216') ~~| efficiency rate of substitution[SCEN3,Transport Equipment,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT216') ~~| efficiency rate of substitution[SCEN4,Transport Equipment,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT216') ~~| efficiency rate of substitution[User defined,Transport Equipment,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT216') ~~| efficiency rate of substitution[SCEN1,Manufacturing Nec Recycling,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY216') ~~| efficiency rate of substitution[SCEN2,Manufacturing Nec Recycling,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY216') ~~| efficiency rate of substitution[SCEN3,Manufacturing Nec Recycling,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY216') ~~| efficiency rate of substitution[SCEN4,Manufacturing Nec Recycling,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY216') ~~| efficiency rate of substitution[User defined,Manufacturing Nec Recycling,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY216') ~~| efficiency rate of substitution[SCEN1,Electricity Gas and Water Supply,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD216') ~~| efficiency rate of substitution[SCEN2,Electricity Gas and Water Supply,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD216') ~~| efficiency rate of substitution[SCEN3,Electricity Gas and Water Supply,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD216') ~~| efficiency rate of substitution[SCEN4,Electricity Gas and Water Supply,final sources,\ final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD216') ~~| efficiency rate of substitution[User defined,Electricity Gas and Water Supply,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD216') ~~| efficiency rate of substitution[SCEN1,Construction,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI216') ~~| efficiency rate of substitution[SCEN2,Construction,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI216') ~~| efficiency rate of substitution[SCEN3,Construction,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI216') ~~| efficiency rate of substitution[SCEN4,Construction,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI216') ~~| efficiency rate of substitution[User defined,Construction,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI216') ~~| efficiency rate of substitution[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN216') ~~| efficiency rate of substitution[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN216') ~~| efficiency rate of substitution[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN216') ~~| efficiency rate of substitution[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN216') ~~| efficiency rate of substitution[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN216') ~~| efficiency rate of substitution[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS216') ~~| efficiency rate of substitution[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS216') ~~| efficiency rate of substitution[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS216') ~~| efficiency rate of substitution[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS216') ~~| efficiency rate of substitution[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS216') ~~| efficiency rate of substitution[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX216') ~~| efficiency rate of substitution[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX216') ~~| efficiency rate of substitution[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX216') ~~| efficiency rate of substitution[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX216') ~~| efficiency rate of substitution[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX216') ~~| efficiency rate of substitution[SCEN1,Hotels and Restaurants,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC216') ~~| efficiency rate of substitution[SCEN2,Hotels and Restaurants,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC216') ~~| efficiency rate of substitution[SCEN3,Hotels and Restaurants,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC216') ~~| efficiency rate of substitution[SCEN4,Hotels and Restaurants,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC216') ~~| efficiency rate of substitution[User defined,Hotels and Restaurants,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC216') ~~| efficiency rate of substitution[SCEN1,Inland Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH216') ~~| efficiency rate of substitution[SCEN2,Inland Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH216') ~~| efficiency rate of substitution[SCEN3,Inland Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH216') ~~| efficiency rate of substitution[SCEN4,Inland Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH216') ~~| efficiency rate of substitution[User defined,Inland Transport,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH216') ~~| efficiency rate of substitution[SCEN1,Water Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM216') ~~| efficiency rate of substitution[SCEN2,Water Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM216') ~~| efficiency rate of substitution[SCEN3,Water Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM216') ~~| efficiency rate of substitution[SCEN4,Water Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM216') ~~| efficiency rate of substitution[User defined,Water Transport,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM216') ~~| efficiency rate of substitution[SCEN1,Air Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR216') ~~| efficiency rate of substitution[SCEN2,Air Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR216') ~~| efficiency rate of substitution[SCEN3,Air Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR216') ~~| efficiency rate of substitution[SCEN4,Air Transport,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR216') ~~| efficiency rate of substitution[User defined,Air Transport,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR216') ~~| efficiency rate of substitution[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW216') ~~| efficiency rate of substitution[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW216') ~~| efficiency rate of substitution[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW216') ~~| efficiency rate of substitution[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW216') ~~| efficiency rate of substitution[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW216') ~~| efficiency rate of substitution[SCEN1,Post and Telecommunications,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB216') ~~| efficiency rate of substitution[SCEN2,Post and Telecommunications,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB216') ~~| efficiency rate of substitution[SCEN3,Post and Telecommunications,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB216') ~~| efficiency rate of substitution[SCEN4,Post and Telecommunications,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB216') ~~| efficiency rate of substitution[User defined,Post and Telecommunications,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB216') ~~| efficiency rate of substitution[SCEN1,Financial Intermedation,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG216') ~~| efficiency rate of substitution[SCEN2,Financial Intermedation,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG216') ~~| efficiency rate of substitution[SCEN3,Financial Intermedation,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG216') ~~| efficiency rate of substitution[SCEN4,Financial Intermedation,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG216') ~~| efficiency rate of substitution[User defined,Financial Intermedation,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG216') ~~| efficiency rate of substitution[SCEN1,Real Estate Activities,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL216') ~~| efficiency rate of substitution[SCEN2,Real Estate Activities,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL216') ~~| efficiency rate of substitution[SCEN3,Real Estate Activities,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL216') ~~| efficiency rate of substitution[SCEN4,Real Estate Activities,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL216') ~~| efficiency rate of substitution[User defined,Real Estate Activities,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL216') ~~| efficiency rate of substitution[SCEN1,Renting od MEq and Other Business Activities,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ216') ~~| efficiency rate of substitution[SCEN2,Renting od MEq and Other Business Activities,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ216') ~~| efficiency rate of substitution[SCEN3,Renting od MEq and Other Business Activities,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ216') ~~| efficiency rate of substitution[SCEN4,Renting od MEq and Other Business Activities,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ216') ~~| efficiency rate of substitution[User defined,Renting od MEq and Other Business Activities\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ216') ~~| efficiency rate of substitution[SCEN1,Public Admin and Defence Compulsory Social Security\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV216') ~~| efficiency rate of substitution[SCEN2,Public Admin and Defence Compulsory Social Security\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV216') ~~| efficiency rate of substitution[SCEN3,Public Admin and Defence Compulsory Social Security\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV216') ~~| efficiency rate of substitution[SCEN4,Public Admin and Defence Compulsory Social Security\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV216') ~~| efficiency rate of substitution[User defined,Public Admin and Defence Compulsory Social Security\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV216') ~~| efficiency rate of substitution[SCEN1,Education,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA216') ~~| efficiency rate of substitution[SCEN2,Education,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA216') ~~| efficiency rate of substitution[SCEN3,Education,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA216') ~~| efficiency rate of substitution[SCEN4,Education,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA216') ~~| efficiency rate of substitution[User defined,Education,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA216') ~~| efficiency rate of substitution[SCEN1,Health and Social Work,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF216') ~~| efficiency rate of substitution[SCEN2,Health and Social Work,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF216') ~~| efficiency rate of substitution[SCEN3,Health and Social Work,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF216') ~~| efficiency rate of substitution[SCEN4,Health and Social Work,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF216') ~~| efficiency rate of substitution[User defined,Health and Social Work,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF216') ~~| efficiency rate of substitution[SCEN1,Other Community Social and Persona Services,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK216') ~~| efficiency rate of substitution[SCEN2,Other Community Social and Persona Services,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK216') ~~| efficiency rate of substitution[SCEN3,Other Community Social and Persona Services,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK216') ~~| efficiency rate of substitution[SCEN4,Other Community Social and Persona Services,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK216') ~~| efficiency rate of substitution[User defined,Other Community Social and Persona Services\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK216') ~~| efficiency rate of substitution[SCEN1,Private Households with Employed Persons,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP216') ~~| efficiency rate of substitution[SCEN2,Private Households with Employed Persons,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP216') ~~| efficiency rate of substitution[SCEN3,Private Households with Employed Persons,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP216') ~~| efficiency rate of substitution[SCEN4,Private Households with Employed Persons,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP216') ~~| efficiency rate of substitution[User defined,Private Households with Employed Persons\ ,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP216') ~~| efficiency rate of substitution[SCEN1,Textiles and Textile Products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q216') ~~| efficiency rate of substitution[SCEN2,Textiles and Textile Products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q216') ~~| efficiency rate of substitution[SCEN3,Textiles and Textile Products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q216') ~~| efficiency rate of substitution[SCEN4,Textiles and Textile Products,final sources,final sources1\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q216') ~~| efficiency rate of substitution[User defined,Textiles and Textile Products,final sources\ ,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q216') ~ ~ | Activate BOTTOM UP method[scenarios,Agriculture Hunting Forestry and Fishing]= 0 ~~| Activate BOTTOM UP method[scenarios,Mining and Quarrying]= 0 ~~| Activate BOTTOM UP method[scenarios,Food Beverages and Tobacco]= 0 ~~| Activate BOTTOM UP method[scenarios,Textiles and Textile Products]= 0 ~~| Activate BOTTOM UP method[scenarios,Leather Leather and Footwear]= 0 ~~| Activate BOTTOM UP method[scenarios,Wood and Products of Woood and Cork]= 0 ~~| Activate BOTTOM UP method[scenarios,Pulp Paper Printing and Publishing]= 0 ~~| Activate BOTTOM UP method[scenarios,Coke Refined Petroleum and Nuclear Fuel]= 0 ~~| Activate BOTTOM UP method[scenarios,Chemicals and Chemical products]= 0 ~~| Activate BOTTOM UP method[scenarios,Rubber and Plastics]= 0 ~~| Activate BOTTOM UP method[scenarios,Other Non Metalic Mineral]= 0 ~~| Activate BOTTOM UP method[scenarios,Basic Metals and Fabricated Metal]= 0 ~~| Activate BOTTOM UP method[scenarios,Machinery Nec]= 0 ~~| Activate BOTTOM UP method[scenarios,Electrical and Optical Equipment]= 0 ~~| Activate BOTTOM UP method[scenarios,Transport Equipment]= 0 ~~| Activate BOTTOM UP method[scenarios,Manufacturing Nec Recycling]= 0 ~~| Activate BOTTOM UP method[scenarios,Electricity Gas and Water Supply]= 0 ~~| Activate BOTTOM UP method[scenarios,Construction]= 0 ~~| Activate BOTTOM UP method[scenarios,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ]= 0 ~~| Activate BOTTOM UP method[scenarios,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ]= 0 ~~| Activate BOTTOM UP method[scenarios,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ]= 0 ~~| Activate BOTTOM UP method[scenarios,Hotels and Restaurants]= 0 ~~| Activate BOTTOM UP method[BAU,Inland Transport]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DL204') ~~| Activate BOTTOM UP method[scenarios,Water Transport]= 0 ~~| Activate BOTTOM UP method[scenarios,Air Transport]= 0 ~~| Activate BOTTOM UP method[scenarios,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ]= 0 ~~| Activate BOTTOM UP method[scenarios,Post and Telecommunications]= 0 ~~| Activate BOTTOM UP method[scenarios,Financial Intermedation]= 0 ~~| Activate BOTTOM UP method[scenarios,Real Estate Activities]= 0 ~~| Activate BOTTOM UP method[scenarios,Renting od MEq and Other Business Activities]= 0 ~~| Activate BOTTOM UP method[scenarios,Public Admin and Defence Compulsory Social Security\ ]= 0 ~~| Activate BOTTOM UP method[scenarios,Education]= 0 ~~| Activate BOTTOM UP method[scenarios,Health and Social Work]= 0 ~~| Activate BOTTOM UP method[scenarios,Other Community Social and Persona Services]= 0 ~~| Activate BOTTOM UP method[scenarios,Private Households with Employed Persons]= 0 ~~| Activate BOTTOM UP method[SCEN1,Inland Transport]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DL204') ~~| Activate BOTTOM UP method[SCEN2,Inland Transport]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DL204') ~~| Activate BOTTOM UP method[SCEN3,Inland Transport]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DL204') ~~| Activate BOTTOM UP method[SCEN4,Inland Transport]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DL204') ~~| Activate BOTTOM UP method[User defined,Inland Transport]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DL204') ~ Dmnl ~ 0. Bottom-up NOT activated 1. Bottom-up activated | Year policy to improve efficiency[BAU,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B207') ~~| Year policy to improve efficiency[BAU,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G207') ~~| Year policy to improve efficiency[BAU,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'L207') ~~| Year policy to improve efficiency[BAU,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'Q207') ~~| Year policy to improve efficiency[BAU,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'V207') ~~| Year policy to improve efficiency[BAU,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AA207') ~~| Year policy to improve efficiency[BAU,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AF207') ~~| Year policy to improve efficiency[BAU,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AK207') ~~| Year policy to improve efficiency[BAU,Chemicals and Chemical products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AP207') ~~| Year policy to improve efficiency[BAU,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AU207') ~~| Year policy to improve efficiency[BAU,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'AZ207') ~~| Year policy to improve efficiency[BAU,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BE207') ~~| Year policy to improve efficiency[BAU,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BJ207') ~~| Year policy to improve efficiency[BAU,Electrical and Optical Equipment,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BO207') ~~| Year policy to improve efficiency[BAU,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BT207') ~~| Year policy to improve efficiency[BAU,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'BY207') ~~| Year policy to improve efficiency[BAU,Electricity Gas and Water Supply,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CD207') ~~| Year policy to improve efficiency[BAU,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CI207') ~~| Year policy to improve efficiency[BAU,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CN207') ~~| Year policy to improve efficiency[BAU,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CS207') ~~| Year policy to improve efficiency[BAU,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'CX207') ~~| Year policy to improve efficiency[BAU,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DC207') ~~| Year policy to improve efficiency[BAU,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DH207') ~~| Year policy to improve efficiency[BAU,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DM207') ~~| Year policy to improve efficiency[BAU,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DR207') ~~| Year policy to improve efficiency[BAU,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'DW207') ~~| Year policy to improve efficiency[BAU,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EB207') ~~| Year policy to improve efficiency[BAU,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EG207') ~~| Year policy to improve efficiency[BAU,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EL207') ~~| Year policy to improve efficiency[BAU,Renting od MEq and Other Business Activities,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EQ207') ~~| Year policy to improve efficiency[BAU,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'EV207') ~~| Year policy to improve efficiency[BAU,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FA207') ~~| Year policy to improve efficiency[BAU,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FF207') ~~| Year policy to improve efficiency[BAU,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FK207') ~~| Year policy to improve efficiency[BAU,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FP207') ~~| Year policy to improve efficiency[SCEN1,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B207') ~~| Year policy to improve efficiency[SCEN2,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B207') ~~| Year policy to improve efficiency[SCEN3,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B207') ~~| Year policy to improve efficiency[SCEN4,Agriculture Hunting Forestry and Fishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B207') ~~| Year policy to improve efficiency[User defined,Agriculture Hunting Forestry and Fishing\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B207') ~~| Year policy to improve efficiency[SCEN1,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G207') ~~| Year policy to improve efficiency[SCEN2,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G207') ~~| Year policy to improve efficiency[SCEN3,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G207') ~~| Year policy to improve efficiency[SCEN4,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G207') ~~| Year policy to improve efficiency[User defined,Mining and Quarrying,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G207') ~~| Year policy to improve efficiency[SCEN1,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'L207') ~~| Year policy to improve efficiency[SCEN2,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'L207') ~~| Year policy to improve efficiency[SCEN3,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'L207') ~~| Year policy to improve efficiency[SCEN4,Food Beverages and Tobacco,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'L207') ~~| Year policy to improve efficiency[User defined,Food Beverages and Tobacco,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'L207') ~~| Year policy to improve efficiency[SCEN1,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'V207') ~~| Year policy to improve efficiency[SCEN2,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'V207') ~~| Year policy to improve efficiency[SCEN3,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'V207') ~~| Year policy to improve efficiency[SCEN4,Leather Leather and Footwear,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'V207') ~~| Year policy to improve efficiency[User defined,Leather Leather and Footwear,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'V207') ~~| Year policy to improve efficiency[SCEN1,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AA207') ~~| Year policy to improve efficiency[SCEN2,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AA207') ~~| Year policy to improve efficiency[SCEN3,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AA207') ~~| Year policy to improve efficiency[SCEN4,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AA207') ~~| Year policy to improve efficiency[User defined,Wood and Products of Woood and Cork,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AA207') ~~| Year policy to improve efficiency[SCEN1,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AF207') ~~| Year policy to improve efficiency[SCEN2,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AF207') ~~| Year policy to improve efficiency[SCEN3,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AF207') ~~| Year policy to improve efficiency[SCEN4,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AF207') ~~| Year policy to improve efficiency[User defined,Pulp Paper Printing and Publishing,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AF207') ~~| Year policy to improve efficiency[SCEN1,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AK207') ~~| Year policy to improve efficiency[SCEN2,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AK207') ~~| Year policy to improve efficiency[SCEN3,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AK207') ~~| Year policy to improve efficiency[SCEN4,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AK207') ~~| Year policy to improve efficiency[User defined,Coke Refined Petroleum and Nuclear Fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AK207') ~~| Year policy to improve efficiency[SCEN1,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AP207') ~~| Year policy to improve efficiency[SCEN2,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AP207') ~~| Year policy to improve efficiency[SCEN3,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AP207') ~~| Year policy to improve efficiency[SCEN4,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AP207') ~~| Year policy to improve efficiency[User defined,Chemicals and Chemical products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AP207') ~~| Year policy to improve efficiency[SCEN1,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AU207') ~~| Year policy to improve efficiency[SCEN2,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AU207') ~~| Year policy to improve efficiency[SCEN3,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AU207') ~~| Year policy to improve efficiency[SCEN4,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AU207') ~~| Year policy to improve efficiency[User defined,Rubber and Plastics,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AU207') ~~| Year policy to improve efficiency[SCEN1,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'AZ207') ~~| Year policy to improve efficiency[SCEN2,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'AZ207') ~~| Year policy to improve efficiency[SCEN3,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'AZ207') ~~| Year policy to improve efficiency[SCEN4,Other Non Metalic Mineral,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'AZ207') ~~| Year policy to improve efficiency[User defined,Other Non Metalic Mineral,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'AZ207') ~~| Year policy to improve efficiency[SCEN1,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BE207') ~~| Year policy to improve efficiency[SCEN2,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BE207') ~~| Year policy to improve efficiency[SCEN3,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BE207') ~~| Year policy to improve efficiency[SCEN4,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BE207') ~~| Year policy to improve efficiency[User defined,Basic Metals and Fabricated Metal,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BE207') ~~| Year policy to improve efficiency[SCEN1,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BJ207') ~~| Year policy to improve efficiency[SCEN2,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BJ207') ~~| Year policy to improve efficiency[SCEN3,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BJ207') ~~| Year policy to improve efficiency[SCEN4,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BJ207') ~~| Year policy to improve efficiency[User defined,Machinery Nec,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BJ207') ~~| Year policy to improve efficiency[SCEN1,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BO207') ~~| Year policy to improve efficiency[SCEN2,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BO207') ~~| Year policy to improve efficiency[SCEN3,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BO207') ~~| Year policy to improve efficiency[SCEN4,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BO207') ~~| Year policy to improve efficiency[User defined,Electrical and Optical Equipment,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BO207') ~~| Year policy to improve efficiency[SCEN1,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BT207') ~~| Year policy to improve efficiency[SCEN2,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BT207') ~~| Year policy to improve efficiency[SCEN3,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BT207') ~~| Year policy to improve efficiency[SCEN4,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BT207') ~~| Year policy to improve efficiency[User defined,Transport Equipment,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BT207') ~~| Year policy to improve efficiency[SCEN1,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'BY207') ~~| Year policy to improve efficiency[SCEN2,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'BY207') ~~| Year policy to improve efficiency[SCEN3,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'BY207') ~~| Year policy to improve efficiency[SCEN4,Manufacturing Nec Recycling,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'BY207') ~~| Year policy to improve efficiency[User defined,Manufacturing Nec Recycling,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'BY207') ~~| Year policy to improve efficiency[SCEN1,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CD207') ~~| Year policy to improve efficiency[SCEN2,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CD207') ~~| Year policy to improve efficiency[SCEN3,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CD207') ~~| Year policy to improve efficiency[SCEN4,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CD207') ~~| Year policy to improve efficiency[User defined,Electricity Gas and Water Supply,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CD207') ~~| Year policy to improve efficiency[SCEN1,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CI207') ~~| Year policy to improve efficiency[SCEN2,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CI207') ~~| Year policy to improve efficiency[SCEN3,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CI207') ~~| Year policy to improve efficiency[SCEN4,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CI207') ~~| Year policy to improve efficiency[User defined,Construction,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CI207') ~~| Year policy to improve efficiency[SCEN1,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CN207') ~~| Year policy to improve efficiency[SCEN2,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CN207') ~~| Year policy to improve efficiency[SCEN3,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CN207') ~~| Year policy to improve efficiency[SCEN4,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CN207') ~~| Year policy to improve efficiency[User defined,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CN207') ~~| Year policy to improve efficiency[SCEN1,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CS207') ~~| Year policy to improve efficiency[SCEN2,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CS207') ~~| Year policy to improve efficiency[SCEN3,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CS207') ~~| Year policy to improve efficiency[SCEN4,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CS207') ~~| Year policy to improve efficiency[User defined,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CS207') ~~| Year policy to improve efficiency[SCEN1,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'CX207') ~~| Year policy to improve efficiency[SCEN2,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'CX207') ~~| Year policy to improve efficiency[SCEN3,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'CX207') ~~| Year policy to improve efficiency[SCEN4,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'CX207') ~~| Year policy to improve efficiency[User defined,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'CX207') ~~| Year policy to improve efficiency[SCEN1,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DC207') ~~| Year policy to improve efficiency[SCEN2,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DC207') ~~| Year policy to improve efficiency[SCEN3,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DC207') ~~| Year policy to improve efficiency[SCEN4,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DC207') ~~| Year policy to improve efficiency[User defined,Hotels and Restaurants,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DC207') ~~| Year policy to improve efficiency[SCEN1,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DH207') ~~| Year policy to improve efficiency[SCEN2,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DH207') ~~| Year policy to improve efficiency[SCEN3,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DH207') ~~| Year policy to improve efficiency[SCEN4,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DH207') ~~| Year policy to improve efficiency[User defined,Inland Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DH207') ~~| Year policy to improve efficiency[SCEN1,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DM207') ~~| Year policy to improve efficiency[SCEN2,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DM207') ~~| Year policy to improve efficiency[SCEN3,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DM207') ~~| Year policy to improve efficiency[SCEN4,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DM207') ~~| Year policy to improve efficiency[User defined,Water Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DM207') ~~| Year policy to improve efficiency[SCEN1,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DR207') ~~| Year policy to improve efficiency[SCEN2,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DR207') ~~| Year policy to improve efficiency[SCEN3,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DR207') ~~| Year policy to improve efficiency[SCEN4,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DR207') ~~| Year policy to improve efficiency[User defined,Air Transport,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DR207') ~~| Year policy to improve efficiency[SCEN1,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'DW207') ~~| Year policy to improve efficiency[SCEN2,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'DW207') ~~| Year policy to improve efficiency[SCEN3,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'DW207') ~~| Year policy to improve efficiency[SCEN4,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'DW207') ~~| Year policy to improve efficiency[User defined,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'DW207') ~~| Year policy to improve efficiency[SCEN1,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EB207') ~~| Year policy to improve efficiency[SCEN2,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EB207') ~~| Year policy to improve efficiency[SCEN3,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EB207') ~~| Year policy to improve efficiency[SCEN4,Post and Telecommunications,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EB207') ~~| Year policy to improve efficiency[User defined,Post and Telecommunications,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EB207') ~~| Year policy to improve efficiency[SCEN1,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EG207') ~~| Year policy to improve efficiency[SCEN2,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EG207') ~~| Year policy to improve efficiency[SCEN3,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EG207') ~~| Year policy to improve efficiency[SCEN4,Financial Intermedation,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EG207') ~~| Year policy to improve efficiency[User defined,Financial Intermedation,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EG207') ~~| Year policy to improve efficiency[SCEN1,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EL207') ~~| Year policy to improve efficiency[SCEN2,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EL207') ~~| Year policy to improve efficiency[SCEN3,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EL207') ~~| Year policy to improve efficiency[SCEN4,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EL207') ~~| Year policy to improve efficiency[User defined,Real Estate Activities,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EL207') ~~| Year policy to improve efficiency[SCEN1,Renting od MEq and Other Business Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EQ207') ~~| Year policy to improve efficiency[SCEN2,Renting od MEq and Other Business Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EQ207') ~~| Year policy to improve efficiency[SCEN3,Renting od MEq and Other Business Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EQ207') ~~| Year policy to improve efficiency[SCEN4,Renting od MEq and Other Business Activities,\ final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EQ207') ~~| Year policy to improve efficiency[User defined,Renting od MEq and Other Business Activities\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EQ207') ~~| Year policy to improve efficiency[SCEN1,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'EV207') ~~| Year policy to improve efficiency[SCEN2,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'EV207') ~~| Year policy to improve efficiency[SCEN3,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'EV207') ~~| Year policy to improve efficiency[SCEN4,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'EV207') ~~| Year policy to improve efficiency[User defined,Public Admin and Defence Compulsory Social Security\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'EV207') ~~| Year policy to improve efficiency[SCEN1,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FA207') ~~| Year policy to improve efficiency[SCEN2,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FA207') ~~| Year policy to improve efficiency[SCEN3,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FA207') ~~| Year policy to improve efficiency[SCEN4,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FA207') ~~| Year policy to improve efficiency[User defined,Education,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FA207') ~~| Year policy to improve efficiency[SCEN1,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FF207') ~~| Year policy to improve efficiency[SCEN2,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FF207') ~~| Year policy to improve efficiency[SCEN3,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FF207') ~~| Year policy to improve efficiency[SCEN4,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FF207') ~~| Year policy to improve efficiency[User defined,Health and Social Work,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FF207') ~~| Year policy to improve efficiency[SCEN1,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FK207') ~~| Year policy to improve efficiency[SCEN2,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FK207') ~~| Year policy to improve efficiency[SCEN3,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FK207') ~~| Year policy to improve efficiency[SCEN4,Other Community Social and Persona Services,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FK207') ~~| Year policy to improve efficiency[User defined,Other Community Social and Persona Services\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FK207') ~~| Year policy to improve efficiency[SCEN1,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FP207') ~~| Year policy to improve efficiency[SCEN2,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FP207') ~~| Year policy to improve efficiency[SCEN3,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FP207') ~~| Year policy to improve efficiency[SCEN4,Private Households with Employed Persons,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FP207') ~~| Year policy to improve efficiency[User defined,Private Households with Employed Persons\ ,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FP207') ~~| Year policy to improve efficiency[SCEN1,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'Q207') ~~| Year policy to improve efficiency[SCEN2,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'Q207') ~~| Year policy to improve efficiency[SCEN3,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'Q207') ~~| Year policy to improve efficiency[SCEN4,Textiles and Textile Products,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'Q207') ~~| Year policy to improve efficiency[User defined,Textiles and Textile Products,final sources\ ]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'Q207') ~ ~ | Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,final sources\ ]= IF THEN ELSE((ZIDZ(Evol final energy intensity H[scenarios,final sources], Global energy intensity H\ [scenarios])) >= minimum fraction H[scenarios,final sources] ,Max yearly change H[scenarios,final sources] *Evol final energy intensity H[scenarios\ ,final sources] * Pressure to change energy technology H [scenarios,final sources] , 0 ) ~ EJ/Tdollars ~ When in households, one type of energy (a) is replaced by another (b), the \ energy intensity of (b) will increase and the energy intensity of (a) will \ decrease. This flow represents the decrease of (a). | Increase of intensity due to energy a technology change H TOP DOWN[scenarios,liquids]\ = Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,solids]\ *efficiency rate of substitution H[scenarios,liquids,solids]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,gases]*efficiency rate of substitution H[scenarios,liquids,gases]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,electricity]*efficiency rate of substitution H[scenarios,liquids,electricity\ ]+Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,heat\ ]*efficiency rate of substitution H[scenarios,liquids,heat] ~~| Increase of intensity due to energy a technology change H TOP DOWN[scenarios,gases]= Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,solids]\ *efficiency rate of substitution H[scenarios,gases,solids]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,electricity]*efficiency rate of substitution H[scenarios,gases,electricity\ ]+Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,heat\ ]*efficiency rate of substitution H[scenarios,gases,heat]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,liquids]*efficiency rate of substitution H[scenarios,gases,liquids] ~~| Increase of intensity due to energy a technology change H TOP DOWN[scenarios,solids]= Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,gases]*\ efficiency rate of substitution H[scenarios,solids,gases]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,electricity]*efficiency rate of substitution H[scenarios,solids,electricity\ ]+Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,heat\ ]*efficiency rate of substitution H[scenarios,solids,heat]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,liquids]*efficiency rate of substitution H[scenarios,solids,liquids] ~~| Increase of intensity due to energy a technology change H TOP DOWN[scenarios,electricity\ ]= Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,solids]\ *efficiency rate of substitution H[scenarios,electricity,solids]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,gases]*efficiency rate of substitution H[scenarios,electricity,gases]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,heat]*efficiency rate of substitution H[scenarios,electricity,heat]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,liquids]*efficiency rate of substitution H[scenarios,electricity,liquids\ ] ~~| Increase of intensity due to energy a technology change H TOP DOWN[scenarios,heat]= Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,solids]\ *efficiency rate of substitution H[scenarios,heat,solids]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,gases]*efficiency rate of substitution H[scenarios,heat,gases]+Decrease of intensity due to energy a technology change H TOP DOWN\ [scenarios,electricity]*efficiency rate of substitution H[scenarios,heat,electricity\ ]+Decrease of intensity due to energy a technology change H TOP DOWN[scenarios,liquids\ ]*efficiency rate of substitution H[scenarios,heat,liquids] ~ EJ/Tdollars ~ When in households, one type of energy (a) is replaced by another (b), the \ energy intensity of (b) will increase and the energy intensity of (a) will \ decrease. This flow represents the increase of (b). | "Total CO2e [GWP=100 years]"[scenarios]= Total CH4 emissions fossil fuels[scenarios]*GWP 100 years CH4/1000+Total CO2 emissions GTCO2\ [scenarios] ~ GTCO2e/Year ~ | Net TFEC per capita[scenarios]= ZIDZ( Real TFEC[scenarios]*GJ per EJ/EROI FC system from 2015[scenarios] , Population\ [scenarios] ) ~ GJ/person ~ | GWP 100 years CH4= 34 ~ ~ | "Activate energy scarcity feedback?"= 1 ~ Dmnl ~ 0- NOT activated 1- ACTIVATED | max potential PHS TWh[scenarios]= max capacity potential PHS[scenarios]*Cp PHS/TWe per TWh ~ TWh ~ | replacement rate PHS[scenarios]= IF THEN ELSE(real FE elec stored PHS TWh[scenarios]threshold remaining potential new capacity\ ,1,remaining potential PHS[scenarios]*(1/threshold remaining potential new capacity\ )) ~ Dmnl ~ | new required PHS capacity[scenarios]= IF THEN ELSE(Time<(2014-"total time plan+constr RES elec"[hydro]), Historic new required capacity PHS\ , installed capacity PHS TW [scenarios]*adapt growth PHS[scenarios]*remaining potential constraint on new PHS capacity\ [scenarios]) ~ TW ~ IF THEN ELSE(Time<(2014-"total time plan+constr RES elec"[RES elec]), Historic new \ required capacity RES elec[RES elec],installed capacity RES elec TW[RES \ elec, scenarios]*adapt growth RES elec after allocation[RES \ elec,scenarios]*remaining potential constraint on new RES elec \ capacity[RES elec,scenarios]*abundance RES elec2[scenarios]) 0.9*installed capacity PHS TW[scenarios]*(1-(installed capacity PHS \ TW[scenarios]/demand storage capacity[scenarios])) | share dyn FEI for RES vs TFEC[scenarios]= Total dyn FEI RES[scenarios]/Real TFEC[scenarios] ~ Dmnl ~ Share of dynamic final energy investments for RES technologies vs TFES. | FEI EV batteries[scenarios]= ZIDZ( output EV bateries for storage over lifetime[scenarios] , ESOI EV batteries[scenarios\ ] ) ~ EJ ~ Final energy invested (equivalent to the denominator of the EROI (=CED*g). | output PHS over lifetime[scenarios]= Cp PHS*PHS capacity under construction[scenarios]*(1/TWe per TWh)*lifetime RES elec[\ hydro]*EJ per TWh ~ EJ ~ Total electricity output generated over the full operation of the \ infrastructure of the new capacity installed. | ESOI static PHS[scenarios]= a lineal regr[scenarios]*installed capacity PHS TW[scenarios]+b lineal regr[scenarios\ ] ~ Dmnl ~ ESOI of the PHS without accounting for endogenous dynamic variations. | Total dyn FEI RES[scenarios]= Total final energy invested RES elec var[scenarios]+FEI EV batteries[scenarios]+Total FEI over lifetime RES elec dispatch\ [scenarios]+Final energy invested PHS[scenarios] ~ EJ ~ Total (dynamic) final energy investment for RES. | adapt growth RES elec after allocation[RES elec, scenarios]= IF THEN ELSE(activate EROI allocation rule=0, adapt growth RES elec[RES elec,scenarios\ ], adapt growth RES elec[RES elec ,scenarios]*EROI allocation rule per RES elec[RES elec,scenarios])*constraint elec storage availability\ [scenarios,RES elec] ~ Dmnl ~ Annual growth per RES elec technology after accounting for the allocation \ rule. | ESOI PHS[scenarios]= ZIDZ( output PHS over lifetime[scenarios] , CEDtot over lifetime PHS[scenarios]*quality of electricity [scenarios ] ) ~ Dmnl ~ ESOI of pumped hydro storage. *lifetime RES elec[hydro] | P PHS growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G36') ~~| P PHS growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G36') ~~| P PHS growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G36') ~~| P PHS growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G36') ~~| P PHS growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G36') ~~| P PHS growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G36') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | constraint elec storage availability[scenarios, RES elec]= IF THEN ELSE("RES elec variables?"[RES elec]=0,1, IF THEN ELSE(demand storage capacity[scenarios] <= Total capacity elec storage TW[scenarios\ ], 1, MAX(0, 1-(demand storage capacity[scenarios]-Total capacity elec storage TW[scenarios\ ])/Total capacity elec storage TW[scenarios]))) ~ Dmnl ~ Remaining potential available as a fraction of unity. This feedback \ ensures that the electricity storage levels required by the penetration of \ the RES variables for the generation of electricity are respected. | EROIst system[scenarios]= MAX(0, (Real TFEC[scenarios]-"Total real non-energy use consumption EJ"[scenarios])/\ ((("energy own-use constant 830 Mtoe in 2013"/MToe per EJ)/375.5)*(Real TFEC[scenarios\ ]-"Total real non-energy use consumption EJ"[scenarios])+Total dyn FEI RES[scenarios\ ])) ~ Dmnl ~ EROI standard of the system. | initial instal cap PHS= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H182') ~ TW ~ Installed capacity of PHS in the initial year 1995. | CEDtot over lifetime PHS[scenarios]= PHS capacity under construction[scenarios]*CED per TW over lifetime PHS[scenarios] ~ EJ ~ | installed capacity PHS TW[scenarios]= INTEG ( PHS capacity under construction[scenarios]-wear PHS[scenarios], initial instal cap PHS) ~ TW ~ | PHS capacity under construction[scenarios]= PHS planned capacity[scenarios]/time construction RES elec[hydro] ~ TW ~ | past PHS capacity growth= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C84') ~ 1/Year ~ Current growth levels. | new PHS capacity under planning[scenarios]= required capacity PHS[scenarios]/time planification RES elec[hydro] ~ TW ~ | wear PHS[scenarios]= IF THEN ELSE(Time<2015, 0, installed capacity PHS TW[scenarios]/lifetime RES elec[hydro\ ]) ~ TW ~ | replacement capacity PHS[scenarios]= IF THEN ELSE(Time<2015,0,replacement rate PHS[scenarios]*wear PHS[scenarios]) ~ TW ~ IF THEN ELSE(Time<2015,0,replacement rate PHS*wear PHS[scenarios]*(1-RES \ elec tot overcapacity[scenarios]))*remaining potential elec storage by RES \ techn2[scenarios,RES elec] | real FE elec stored PHS TWh[scenarios]= installed capacity PHS TW[scenarios]*Cp PHS/TWe per TWh ~ TWh ~ Electricity stored in pumped hydro storage plants. It does not add up to \ the electricity generation of other sources since this electricity has \ already been accounted for! (stored). | PHS planned capacity[scenarios]= INTEG ( new PHS capacity under planning[scenarios]+replacement capacity PHS[scenarios]-PHS capacity under construction\ [scenarios], initial capacity in construction PHS) ~ TW ~ | Final energy invested PHS[scenarios]= real FE elec stored PHS TWh[scenarios]*EJ per TWh/ESOI PHS[scenarios] ~ EJ ~ Final energy invested is equivalent to the denominator of the EROI \ (=CED*g). | remaining potential PHS[scenarios]= IF THEN ELSE(max capacity potential PHS[scenarios] > installed capacity PHS TW[scenarios\ ], (max capacity potential PHS[scenarios]-installed capacity PHS TW[scenarios])/max capacity potential PHS\ [scenarios], 0) ~ Dmnl ~ | Historic new required capacity PHS= table hist capacity PHS(Time+"total time plan+constr RES elec"[hydro]+1)-table hist capacity PHS\ (Time+"total time plan+constr RES elec"[hydro]) ~ TW ~ (Assuming 100% of planned was planned and constructed). | table hist capacity PHS( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '172', 'H182')) ~ TW/Year ~ | initial capacity in construction PHS= initial required capacity PHS ~ TW ~ Initial capacity of PHS in construction (year 1995). We assume that it is \ the same than the additional installed capacity between 1995 and 1996. | required capacity PHS[scenarios]= INTEG ( new required PHS capacity[scenarios]-new PHS capacity under planning[scenarios], initial required capacity PHS) ~ TW ~ | initial required capacity PHS= table hist capacity PHS(1996)-table hist capacity PHS(1995) ~ TW ~ Initial required capacity of PHS (year 1995). We assume that it is the \ same than the additional installed capacity between 1995 and 1996. | Total FEI over lifetime RES elec dispatch[scenarios]= SUM(FEI over lifetime RES elec dispatch[RES elec!,scenarios]) ~ EJ ~ | min lifetime EV batteries= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G45') ~ Years ~ User-selection of the minimum lifetime of the batteries for electric \ vehicles given the issues arising from ain increased Cp for electric \ storage, i.e. a reduced lifetime of the battery (lower availability for \ the user, replace more often the battery, worsening of EROI of the system, \ etc.). It would be more interesting that Governments invest in electric \ batteries for storage if the performance of the electric vehicles would be \ significantly negatively affected. | Total final energy invested RES elec var[scenarios]= SUM(FEI RES elec var[RES elec!,scenarios]) ~ EJ ~ Final energy invested is equivalent to the denominator of the EROI \ (=CED*g). | materials required for EV batteries Mt[materials, scenarios]= "new+replaced batteries TW"[scenarios]*"materials per new capacity installed - EV batteries"\ [materials]*M per T/kg per Mt ~ Mt ~ Annual materials required for the fabrication of EV batteries. | "new+replaced batteries TW"[scenarios]= (new batteries[scenarios]+replacement batteries[scenarios])*kW per battery EV/kWh per TWh ~ batteries/Year ~ New and replaced electric batteries. | "Energy intensity construction EV batteries MJ/MW"[scenarios]= ZIDZ( Total energy required for total material consumption for EV batteries[scenarios\ ]*MJ per EJ , "new+replaced batteries TW"[scenarios]*M per T ) ~ MJ/MW ~ Energy intensity of the construction of EV batteries. Dynamic variable \ affected by recycling policies. | new batteries[scenarios]= 5*"batteries EV+hib+2wE"[scenarios]*(1-(MIN(1,"batteries EV+hib+2wE"[scenarios]/required number standard batteries\ [scenarios]))) ~ batteries/Year ~ New standard electric batteries. The number of batteries converges to the \ desired number via a logistic funcion. Number 10 is an arbitrary \ parameter, the bigger the faster the convergence to the desired number of \ batteries. | "batteries EV+hib+2wE"[scenarios]= INTEG ( new batteries[scenarios]+replacement batteries[scenarios]-discarded batteries[scenarios\ ], 1) ~ batteries ~ Number of batteries required for electric and hybrid mobility espreseed in \ termos of "standard" electric batteries of 21,3KWh | kW per MW= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'G18') ~ Dmnl ~ 1000 kW = 1 MW. | Net stored energy EV battery over lifetime= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G48') ~ MJ ~ Net stored energy EV battery in whole lifetime. | Grid correction factor EV batteries= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F64') ~ Dmnl ~ | Share energy requirements for decom EV batteries= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F122') ~ Dmnl ~ | Working hours per year= Working hours per day*days per year ~ Hour*person/Year ~ | days per year= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'G5') ~ days/Year ~ Constant: 365 days in a year. | Total energy required for material consumption for RES elec[scenarios]= SUM(Energy required for material consumption per RES elec[RES elec!,materials!,scenarios\ ]) ~ EJ ~ Total energy required for material consumption for RES elec. | Total energy required for material consumption per RES elec[RES elec, scenarios]= SUM(Energy required for material consumption per RES elec[RES elec,materials!,scenarios\ ]) ~ EJ ~ Total energy required for material consumption per RES elec | MW in 1 year to MJ= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'G19') ~ Dmnl ~ Conversion factor MW in 1 year to MJ. | Working hours per day= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G35') ~ Hour*people ~ Working hours per day. | Annual work hours for RES[scenarios]= Total jobs RES[scenarios]*Working hours per year ~ Hours/Year ~ | Hours work per GJ RES delivered[scenarios]= ZIDZ( Annual work hours for RES[scenarios] , (TFEC RES EJ[scenarios]*GJ per EJ) ) ~ Hours/GJ ~ Hours of work per GJ of RES delivered (final energy). | Total energy required for total material consumption for EV batteries[scenarios]= SUM(Energy required for material consumption for EV batteries[materials!,scenarios]) ~ EJ ~ Total energy required for total material consumption for EV batteries. | TFE required for total material consumption for alt techn[scenarios]= Total energy required for material consumption for RES elec[scenarios]+Total energy required for total material consumption for EV batteries\ [scenarios] ~ EJ/Year ~ Total final energy required for total material consumption for alternative \ technologies (RES elec & EV Batteries). | Energy required for material consumption per RES elec[RES elec,materials,scenarios]= "Energy required for material consumption for O&M RES elec"[RES elec,materials,scenarios\ ]+Energy required for material consumption for new RES elec[RES elec, materials,scenarios\ ] ~ EJ/Year ~ Energy required for material consumption per material per RES elec \ technologies. | Total energy required per material for alt techn[materials, scenarios]= SUM(Energy required for material consumption per RES elec[RES elec!,materials,scenarios\ ])+Energy required for material consumption for EV batteries[materials,scenarios] ~ EJ/Year ~ Total energy required for total material consumption per material for \ alternative technologies (RES elec & EV Batteries). | Total jobs RES elec[scenarios]= SUM("Total D+I jobs RES elec per techn"[RES elec!,scenarios]) ~ people ~ Total jobs RES elec. | total jobs biofuels[scenarios]= Employment factor biofuels*FES total biofuels production EJ[scenarios] ~ people ~ Total (direct+indirect) jobs biofuels. | Total jobs RES[scenarios]= Total jobs RES elec[scenarios]+Total jobs RES heat[scenarios]+D jobs fuel supply solids bioE\ [scenarios]+total jobs biofuels[scenarios] ~ people ~ Total jobs RES. | "Total D+I jobs RES heat per techn"[RES heat,scenarios]= Total D jobs RES heat per techn[RES heat,scenarios]*Ratio total vs D jobs RES heat[RES heat\ ] ~ people ~ Total (direct+indirect) jobs RES heat per technology. | Total jobs RES heat[scenarios]= SUM("Total D+I jobs RES heat per techn"[RES heat!,scenarios]) ~ people ~ Total jobs RES heat. | "Total D+I jobs RES elec per techn"[RES elec,scenarios]= Total D jobs RES elec per techn[RES elec,scenarios]*Ratio total vs D jobs RES elec[RES elec\ ] ~ people ~ Total (direct+indirect) jobs RES elec per technology. | Ratio total vs D jobs RES heat["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB17') ~~| Ratio total vs D jobs RES heat["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB18') ~~| Ratio total vs D jobs RES heat["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB19') ~ people*Year/MW ~ Ratio total (direct+indirect) vs direct jobs RES heat. | Ratio total vs D jobs RES elec[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB13') ~~| Ratio total vs D jobs RES elec["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB7') ~~| Ratio total vs D jobs RES elec["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB8') ~~| Ratio total vs D jobs RES elec[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB9') ~~| Ratio total vs D jobs RES elec[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB10') ~~| Ratio total vs D jobs RES elec[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB12') ~~| Ratio total vs D jobs RES elec[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB11') ~~| Ratio total vs D jobs RES elec[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AB16') ~ people*Year/MW ~ Ratio total (direct+indirect) vs direct jobs RES elec. | Employment factor biofuels= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y21') ~ people/EJ ~ Employment factor (direct+indirect) biofuels. | installed capacity RES elec delayed 1yr[RES elec, scenarios]= DELAY FIXED ( installed capacity RES elec TW[RES elec,scenarios], 1, 0) ~ TW ~ Annual installed capacity of RES elec technologies for electricity \ generation delayed 1 year. | "Jobs O&M RES heat per techn"[RES heat,scenarios]= ("installed capacity RES heat-com TW"[RES heat,scenarios]+"installed capacity RES heat-nc TW"\ [RES heat,scenarios])*"Employment factors O&M RES heat"[RES heat]*M per T ~ people ~ Annual jobs operation&maintenance of RES heat per technology. | D jobs new installed RES heat per techn[RES heat, scenarios]= ("new RES capacity for heat-com TW"[RES heat,scenarios]+"replacement RES for heat-com TW"\ [RES heat,scenarios]+"new RES capacity for heat-nc TW"[RES heat,scenarios]+"replacement RES for heat-nc TW"\ [RES heat,scenarios])*Employment factors new RES heat[RES heat]*M per T ~ people ~ Annual direct jobs new installed RES heat per technology. | D jobs fuel supply solids bioE[scenarios]= PES solids bioE EJ[scenarios]*Employment factor fuel supply solids bioE*1000 ~ people ~ Direct jobs in fuel supply of solids bioenergy. | new capacity installed growth rate RES elec[RES elec, scenarios]= -1+ZIDZ( installed capacity RES elec TW[RES elec,scenarios] , installed capacity RES elec delayed 1yr\ [RES elec,scenarios] ) ~ Dmnl ~ Annual RES elec capacity installed growth rate. | Employment factor fuel supply solids bioE= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'AA8') ~ people/EJ ~ Employment factor of the direct jobs in fuel supply of solids bioE. | Exogenous growth GTL[scenarios]= IF THEN ELSE(Time<2015, Hist growth GTL, IF THEN ELSE("Crash programme GTL?"[scenarios]=0,P GTL[scenarios], IF THEN ELSE("Crash programme GTL?"[scenarios]=1 :AND: abundance liquids[scenarios]>=\ 1, Hist growth GTL, P GTL[scenarios]))) ~ 1/Year ~ If there is not scarcity of liquids, GTL production increases at \ historical past rates. | replacement GTL[scenarios]= IF THEN ELSE(Time<2015,0, IF THEN ELSE("Crash programme GTL?"[scenarios]=0,0, IF THEN ELSE(check liquids[scenarios]<0, "constrain liquids exogenous growth?"[scenarios\ ]*wear GTL[scenarios], wear GTL[scenarios])))*scarcity conv oil[scenarios] ~ EJ/Year ~ Replacement of GTL. | "Crash programme GTL?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D112') ~~| "Crash programme GTL?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D112') ~~| "Crash programme GTL?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D112') ~~| "Crash programme GTL?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D112') ~~| "Crash programme GTL?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D112') ~~| "Crash programme GTL?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D112') ~ Dmnl ~ 0- Crash programme GTL NOT activated 1- Crash programme GTL activated | Exogenous growth CTL[scenarios]= IF THEN ELSE(Time<2015, Hist growth CTL, IF THEN ELSE("Crash programme CTL?"[scenarios]=0,P CTL[scenarios], IF THEN ELSE("Crash programme CTL?"[scenarios]=1 :AND: abundance liquids[scenarios]>=\ 1, Hist growth CTL, P CTL[scenarios]))) ~ 1/Year ~ If there is not scarcity of liquids, CTL production increases at \ historical past rates. | replacement CTL[scenarios]= IF THEN ELSE(Time<2015,0, IF THEN ELSE("Crash programme CTL?"[scenarios]=0,0, IF THEN ELSE(check liquids[scenarios]<0, "constrain liquids exogenous growth?"[scenarios\ ]*wear CTL[scenarios], wear CTL[scenarios])))*scarcity conv oil[scenarios] ~ EJ/Year ~ Replacement of CTL. | table max extraction ASPO oil EJ 0 1 0[scenarios]( [(0,0)-(13200,200)],(0,0),(600,29.9783),(1200,46.7403),(1800,59.4953),(2400,71.3603)\ ,(3000,84.9357),(3600,96.0997),(4200,107.465),(4800,118.46),(5400,127.537),(6000,137.018\ ),(6600,145.888),(7200,152.005),(7800,156.288),(8400,162.47),(9000,166.659),(9600,171.044\ ),(10200,171.044),(10800,171.044),(11400,171.044),(12000,171.044),(12600,171.044),(\ 13200,171.044)) ~ EJ/Year ~ Curva ASPO de extracción de oil hasta 2050. Unidades: EJ. Para los puntos a partir \ del 2050 se ha realizado una exponencial negativa hasta anular las \ reservas en 2100. /*Considera crude y unconvencional oil, así que una vez separado no vale \ esta tabla*/ | aux12[scenarios]= DELAY FIXED ( RURR coal start year PLG[scenarios], TIME STEP, 0) ~ Dmnl ~ | coal to leave underground[scenarios]= IF THEN ELSE(Time0, MIN(1, FE tot generation all RES elec TWh\ [scenarios]/Total FE Elec demand TWh [scenarios]),0.5) ~ Dmnl ~ Share of the electricity demand covered by RES. Condition to avoid error \ when the denominator is zero (0.5 is an arbitrary value). | RURR conv gas[scenarios]= INTEG ( -extraction conv gas EJ[scenarios]-Flow conv gas left in ground[scenarios], URR conv gas[scenarios]-cumulated conv gas extraction to 1995*"separate conv and unconv gas?"\ [scenarios]) ~ EJ ~ RURR conventional gas. | RURR unconv gas[scenarios]= INTEG ( -extraction unconv gas EJ[scenarios]-Flow unconv gas left in ground[scenarios], URR unconv gas[scenarios]-cumulated unconv gas extraction to 1995*"separate conv and unconv gas?"\ [scenarios]) ~ EJ ~ RURR unconventional gas. | RURR conv oil[scenarios]= INTEG ( -extraction conv oil EJ[scenarios]-Flow conv oil left in ground[scenarios], URR conv oil[scenarios]-cumulated conv oil extraction to 1995*"separate conv and unconv oil?"\ [scenarios]) ~ EJ ~ RURR conventional oil. | "variation share transm&distr losses elec"[scenarios]= "share transm&distr elec losses initial"*(0.0115*EXP(4.2297*share RES electricity generation\ [scenarios])-0.00251) ~ Dmnl ~ Relationship between transmission and distribution losses of electricity \ and the penetration of RES in the electricity mix. Source: NREL (2012). | Share demand solids in transport[scenarios]= Share demand by fuel in transport[scenarios,solids] ~ Dmnl ~ Share demand solids in transport | Share demand gas in transport[scenarios]= Share demand by fuel in transport[scenarios,gases] ~ Dmnl ~ Share of gas in transport | Share demand by fuel in transport[scenarios,final sources]= Total transport FED by fuel[scenarios,final sources]/Transport TFED[scenarios] ~ Dmnl ~ Share demand by fuel in transport | Share demand electricity in transport[scenarios]= Share demand by fuel in transport[scenarios,electricity] ~ Dmnl ~ Share of electricity in transport | Share demand heat in transport[scenarios]= Share demand by fuel in transport[scenarios,heat] ~ Dmnl ~ Share demand heat in transport | Share demand liquids in transport[scenarios]= Share demand by fuel in transport[scenarios,liquids] ~ Dmnl ~ Share of liquids in transport | CO2 emissions per value added[scenarios]= ZIDZ( Total CO2 emissions GTCO2[scenarios] , GDP[scenarios] ) ~ GtCO2/(Year*T$) ~ CO2 emissions per value added (GDP). | liquids per X bus= Energy initial inland transport[bus liq]*adjust energy for transport to inland transport\ /initial Xt inland ~ EJ/T$ ~ EJ/T$economic activity Average consumption of vehicles from historical data= energy \ used in that kind of transport/ economic activity of the sector data 'International Energy Agency (2016), Energy Technology Perspectives 2016, \ OECD/IEA,data data 'International Energy Agency (2016), Energy Technology \ Perspectives 2016, OECD/IEA, for energy number of buses from \ http://www.theicct.org/global-transportation-roadmap-model | liquids per X HV= Energy initial inland transport[HV liq]*adjust energy for transport to inland transport\ /initial Xt inland ~ EJ/T$ ~ EJ/T$economic activity Average consumption of vehicles from historical data= energy \ used in that kind of transport/ economic activity of the sector data 'International Energy Agency (2016), Energy Technology Perspectives \ 2016, OECD/IEA, | liquids per X LV= Energy initial inland transport[LV liq]*adjust energy for transport to inland transport\ /initial Xt inland ~ EJ/T$ ~ EJ/T$economic activity Average consumption of vehicles from historical data= energy \ used in that kind of transport/ economic activity of the sector data 'International Energy Agency (2016), Energy Technology Perspectives \ 2016, OECD/IEA,data | energy per X train[scenarios]= Energy initial inland transport[train liq]*adjust energy for transport to inland transport\ /initial Xt inland ~ EJ/T$ ~ EJ/T$economic activity Average consumption of vehicles from historical data= energy \ used in that kind of transport/ economic activity of the sector In the case of trains the number of vehicles is set to 1 since there are \ no data of the number of trains | adjust energy for transport to inland transport= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G72') ~ Dmnl ~ 'International Energy Agency (2016), Energy Technology Perspectives 2016, \ OECD/IEA, considers in 2015 about 34 EJ of liquids for commercial \ transport. However WIOD database considers to inland transport sector \ about 12 EJ. Provisionally, we adjust OECD/IEA data to WIOD. We consider \ OECD/IEA data in relative terms | "effects shortage elec on EV/hib"[scenarios]= IF THEN ELSE(Abundance electricity[scenarios]>0.8, ((Abundance electricity[scenarios\ ]-0.8)*5)^2, 0) ~ Dmnl ~ The eventual scarcity of electricity would likely constrain the \ development of EVs. The proposed relationship avoids an abrupt limitation \ by introducing a range (1;0.8) in the electricity abundance that \ constrains the development of EVs. | hist var percent H[scenarios,liq 4wheels]= 0 ~~| hist var percent H[scenarios,hib 4wheels]= IF THEN ELSE( Time>2005, (percent H vehicles initial[hib 4wheels]-0)/(T hist H transp\ [scenarios]-2005),0) ~~| hist var percent H[scenarios,elec 4wheels]= IF THEN ELSE( Time<2005,0, (percent H vehicles initial[elec 4wheels]-0)/(T hist H transp\ [scenarios]-2005)) ~~| hist var percent H[scenarios,gas 4wheels]= IF THEN ELSE( Time<2005,0, (percent H vehicles initial[gas 4wheels]-0)/(T hist H transp\ [scenarios]-2005)) ~~| hist var percent H[scenarios,liq 2wheels]= 0 ~~| hist var percent H[scenarios,elec 2wheels]= IF THEN ELSE( Time<2005,0, (percent H vehicles initial[elec 2wheels]-0)/(T hist H transp\ [scenarios]-2005)) ~ 1/yr ~ historical evolution of percent of vehicles based on the linear \ interpolation between 2005 and T hist H transp(default 2015). Before 2005 \ all vehicle s are liquid based. Percents relative to 2w+4w | required number standard batteries[scenarios]= bat number 2w[scenarios]+bat number EV[scenarios]+bat number hib[scenarios]+1 ~ batteries ~ Required number of electric batteries taking as a stantad a 21,3KWh \ battery (average size of purely electric vehicle). The batteries of other \ vehicles are described in terms of this standard one using the batteries \ ratio coefficient, (relative to the size and amount of minerals). . | Transport TFED energy intensity[scenarios]= ZIDZ( Transport TFED[scenarios] , GDP[scenarios] ) ~ EJ/Tdollars ~ | total number light vehicles[scenarios]= Number vehicles H[scenarios,liq 4wheels]+Number vehicles H[scenarios,hib 4wheels]+Number vehicles H\ [scenarios,elec 4wheels]+Number vehicles H[scenarios,gas 4wheels]+vehicles inlandT[\ scenarios,LV liq]+vehicles inlandT[scenarios,LV elec]+vehicles inlandT[scenarios,LV hib\ ]+vehicles inlandT[scenarios,LV gas] ~ Mvehicles ~ Total number of ligth duty vehicles (cargo+households) | Transport TFED[scenarios]= SUM(Total transport FED by fuel[scenarios,final sources!]) ~ EJ/Year ~ Total Final Energy demand in transport | Transport households final energy demand[scenarios,final sources]= Energy intensity of households transport[scenarios,final sources]*Household demand total\ [scenarios]/1e+006 ~ EJ ~ Final energy in transport households | real FE consumption liquids EJ[scenarios]= (PES Liquids EJ[scenarios]-Other liquids required EJ[scenarios])*share liquids for final energy\ [scenarios] ~ EJ ~ Real final energy consumption by liquids after accounting for energy \ availability. | CO2 emissions unconv gas[scenarios]= real extraction unconv gas emissions relevant EJ[scenarios]*gCO2 per MJ unconv gas*MJ per EJ\ /g per Gt ~ GtCO2/Year ~ CO2 emissions from unconventional gas. | "phase-out oil for electricity?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C167') ~~| "phase-out oil for electricity?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C167') ~~| "phase-out oil for electricity?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C167') ~~| "phase-out oil for electricity?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C167') ~~| "phase-out oil for electricity?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C167') ~~| "phase-out oil for electricity?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C167') ~ Dmnl ~ Activation of a policies to reduce oil contribution in electricity linearly: If=1: ACTIVATED, If=0: DEACTIVATED. | max solar on land Mha[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C30') ~~| max solar on land Mha[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C30') ~~| max solar on land Mha[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C30') ~~| max solar on land Mha[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C30') ~~| max solar on land Mha[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C30') ~~| max solar on land Mha[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C30') ~ MHa ~ Assumed land availability for solar power plants on land (PV and CSP). | max solar PV on land MHa[scenarios]= max solar on land Mha[scenarios]-surface CSP Mha[scenarios] ~ MHa ~ Available land for solar PV taking into account the total land \ availability for solar and the actual occupation from CSP. | max solar PV on land TWe[scenarios]= max solar PV on land MHa[scenarios]*power density solar PV ~ TWe ~ Techno-ecological potential of solar PV on land. This potential depends on \ the assumed land availability for solar PV power plants ("max solar PV on \ land MHa") and its power density (1 TWe = 8760 TWh in one year). | Total CH4 emissions fossil fuels[scenarios]= CH4 emissions conv gas without GTL[scenarios]+CH4 emissions unconv gas[scenarios]+CH4 emissions coal without CTL\ [scenarios ]+CH4 emissions oil[scenarios]+CH4 emissions CTL[scenarios]+CH4 emissions GTL[scenarios\ ] ~ MtCH4 ~ Total CH4 emissions from fossil fuels. | max CSP on land MHa[scenarios]= max solar on land Mha[scenarios]-surface solar PV Mha[scenarios] ~ MHa ~ Available land for solar CSP taking into account the total land \ availability for solar and the actual occupation from solar PV on land. | max CSP TWe[scenarios]= max CSP on land MHa[scenarios]*power density CSP ~ TWe ~ Techno-ecological potential of solar CSP. This potential depends on the \ assumed land availability for solar CSP power plants ("max solar PV on \ land MHa") and its power density (1 TWe = 8760 TWh in one year). | gCH4 per MJ GTL= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G98') ~ GtCO2/MToe ~ CH4 emission factor of GTL. | CH4 emissions GTL[scenarios]= "PED nat. gas for GTL EJ"[scenarios]*gCH4 per MJ GTL*MJ per EJ/g per Mt ~ MtCH4 ~ CH4 emissions GTL. | CH4 emissions CTL[scenarios]= extraction coal for CTL EJ[scenarios]*gCH4 per MJ CTL*MJ per EJ/g per Mt ~ MtCH4 ~ CH4 emissions CTL. | "phase-out oil for heat-com?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C168') ~~| "phase-out oil for heat-com?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C168') ~~| "phase-out oil for heat-com?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C168') ~~| "phase-out oil for heat-com?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C168') ~~| "phase-out oil for heat-com?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C168') ~~| "phase-out oil for heat-com?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C168') ~ Dmnl ~ Activation of a policies to reduce oil contribution in heat commercial linearly: If=1: ACTIVATED, If=0: DEACTIVATED. | gCH4 per MJ CTL= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G97') ~ GtCO2/MToe ~ CH4 emission factor of CTL. | g per Gt= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'K23') ~ Dmnl ~ Unit conversion. | BioE CO2 emissions[scenarios]= gCO2 per MJ conv gas*(Oil liquids saved by biofuels EJ[scenarios]+solid biofuels emissions relevant EJ\ [scenarios]+"PES tot biogas for heat-com"[scenarios])*MJ per EJ/g per Gt ~ GtCO2/Year ~ CO2 emissions from biomass. We assume that biofuels have an emission \ intensity similar to natural gas (due to ILUCs, see Technical Report), and \ for the rest (traditional biomass, biomass for electricity and biomass for \ heat) we asssume that the carbon balance is null. | maximum 2w= P share 2 wheelers[BAU] ~ Dmnl ~ Maximum percent of 2wheel transport vehicles | P H vehicle[scenarios,liq 4wheels]= (1-P share 2 wheelers[scenarios])*(-P elec[scenarios]-P gas[scenarios]-P hyb[scenarios\ ]) ~~| P H vehicle[scenarios,elec 4wheels]= P elec[scenarios]*(1-P share 2 wheelers[scenarios]) ~~| P H vehicle[scenarios,hib 4wheels]= P hyb[scenarios]*(1-P share 2 wheelers[scenarios]) ~~| P H vehicle[scenarios,gas 4wheels]= P gas[scenarios]*(1-P share 2 wheelers[scenarios]) ~~| P H vehicle[scenarios,liq 2wheels]= P share 2 wheelers[scenarios]*(1-P 2wE[scenarios]) ~~| P H vehicle[scenarios,elec 2wheels]= P share 2 wheelers[scenarios]*P 2wE[scenarios] ~ Dmnl ~ desired percent of vehicles from each type in T fin. These are percentages \ relatives TO THE TOTAL AMOUNT OF VEHICLES ( 2 wheelers + 4 wheelers). | solid biofuels emissions relevant EJ[scenarios]= PE bioE for Elec generation EJ[scenarios]+"PES RES for heat-com by techn"["solid bioE-heat"\ ,scenarios]+"PES RES for heat-nc by techn"["solid bioE-heat",scenarios] ~ EJ ~ Solids biofuels primary energy supply for estimating the CO2 emissions (we \ assume the XO2 emissions from traditional biomass are already included in \ land-use change emissions). | "EROIst(1995)"= 10.57 ~ Dmnl ~ EROIst of the system in the year 1995. | EROIst system until 2015[scenarios]= IF THEN ELSE(Time<2015, EROIst system delayed[scenarios] , aux4[scenarios]) ~ Dmnl ~ EROIst of the energy system until the year 2015. | remaining potential elec storage by RES techn[scenarios, RES elec]= IF THEN ELSE(max capacity elec storage[scenarios] >= demand storage capacity[scenarios\ ], (max capacity elec storage[scenarios]-demand storage capacity[scenarios])/max capacity elec storage\ [scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | Cp hydro 2015= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'I13') ~ Dmnl ~ Cp conventional hydro in 2015. | ESOI PHS full potential= "EROI-ini RES elec dispatch"[hydro]*(Cp PHS/Cp hydro 2015) ~ Dmnl ~ ESOI of PHS when the full potential is available. | max capacity elec storage[scenarios]= max capacity potential PHS[scenarios]+Used EV batteries for elec storage[scenarios] ~ TW ~ Maximum capacity potential of electricity storage (PHS and electric \ bateries). | CC impacts feedback shortage coeff[scenarios]= (1-"share E-losses CC"[scenarios]) ~ Dmnl ~ This coefficient adapts the real final energy by fuel to be used by \ economic sectors taking into account climate change impacts. | "EOL-RR minerals alt techn RES vs. total economy"= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G57') ~ Dnml ~ Recycling rate of minerals used in variable RES technologies in relation \ to the total economy. Since these technologies are novel and often include \ materials which are used in small quantities in complex products, the \ recycling rates of the used minerals are lower than for the whole economy. | "Crash programme CTL?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D110') ~~| "Crash programme CTL?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D110') ~~| "Crash programme CTL?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D110') ~~| "Crash programme CTL?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D110') ~~| "Crash programme CTL?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D110') ~~| "Crash programme CTL?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D110') ~ Dmnl ~ 0- Crash programme CTL NOT activated 1- Crash programme CTL activated | recycling rates minerals Rest[materials,scenarios]= INTEG ( improvement recycling rates minerals Rest[materials,scenarios], current recycling rates minerals[materials]*"All minerals virgin?") ~ Dmnl ~ Recycling rates minerals for the rest of the economy. | P elec[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C177') ~~| P elec[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C177') ~~| P elec[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C177') ~~| P elec[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C177') ~~| P elec[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C177') ~~| P elec[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C177') ~ Dmnl ~ Desired percent of electrical vehicles (4 wheelers) in T fin our of TOTAL \ 4 WHEEL vehicles | percents H vehicles[scenarios,liq 4wheels]= INTEG ( var percents H vehicles[scenarios,liq 4wheels], 1-initial 2w percent) ~~| percents H vehicles[scenarios,elec 4wheels]= INTEG ( var percents H vehicles[scenarios,elec 4wheels], 0) ~~| percents H vehicles[scenarios,hib 4wheels]= INTEG ( var percents H vehicles[scenarios,hib 4wheels], 0) ~~| percents H vehicles[scenarios,gas 4wheels]= INTEG ( var percents H vehicles[scenarios,gas 4wheels], 0) ~~| percents H vehicles[scenarios,liq 2wheels]= INTEG ( var percents H vehicles[scenarios,liq 2wheels], initial 2w percent) ~~| percents H vehicles[scenarios,elec 2wheels]= INTEG ( var percents H vehicles[scenarios,elec 2wheels], 0) ~ Dmnl ~ Percent relative to total number of vehicles 2w+4w. Initial percentages in 1995 of alternative vehicles are considered cero, \ This is done that way in order to allow a lineal growth that matches \ historical vehaviour from 2005 to 2015. Percents relative to total 4w+2w. | T hist H transp[BAU]= 2015 ~~| T hist H transp[SCEN1]= 2015 ~~| T hist H transp[SCEN2]= 2015 ~~| T hist H transp[SCEN3]= 2015 ~~| T hist H transp[SCEN4]= 2015 ~~| T hist H transp[User defined]= 2015 ~ Year ~ Year used to calibrate the historical growth of vehicles, 2015 | bat number 2w[scenarios]= Number vehicles H[scenarios,elec 2wheels]*bateries ratio 2w E ~ batteries ~ Required number of electric batteries for 2w vehicles expressed in terms \ of a stantad a 21,3KWh battery, but taking into account the smaller size \ of 2 wheeler's batteries | bateries ratio 2w E= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B114') ~ ~ Ratio between the size of the electric 2 wheeler batteries and the \ standard 21,3KWh batteries, per vehicle | bat number EV[scenarios]= Number vehicles H[scenarios,elec 4wheels]+vehicles inlandT[scenarios,LV elec]+vehicles inlandT\ [scenarios,bus elec]*bateries ratio bus E ~ batteries ~ Required number of electric batteries for hybrid vehicles expressed in \ terms of a stantad a 21,3KWh battery, | bat number hib[scenarios]= vehicles inlandT[scenarios,LV hib]*bateries ratio hib LV+vehicles inlandT[scenarios,\ HV hib]*bateries ratio hib HV+vehicles inlandT [scenarios,bus hib]*bateries ratio hib bus+Number vehicles H[scenarios,hib 4wheels]*\ bateries ratio hib LV ~ batteries ~ Required number of electric batteries for hybrid vehicles expressed in \ terms of a stantad a 21,3KWh battery, but taking into account the greater \ size of heavy vehicle's batteries and the smaller one of hybrid ligh \ vehicles | bateries ratio bus E= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B112') ~ Dmnl ~ Ratio between the size of the electric bus batteries and the standard \ 21,3KWh batteries, per vehicle | bateries ratio hib bus= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B113') ~ Dmnl ~ Ratio between the size of the hybrid bus batteries and the standard \ 21,3KWh batteries, per vehicle | bateries ratio hib HV= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B111') ~ Dmnl ~ Ratio between the size of the hybrid HV batteries and the standard 21,3KWh \ batteries, per vehicle | bateries ratio hib LV= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B110') ~ ~ Ratio between the size of the electric LV hybrid batteries and the \ standard 21,3KWh batteries, per vehicle | total number hybrid light vehicles[scenarios]= Number vehicles H[scenarios,hib 4wheels]+vehicles inlandT[scenarios,LV hib] ~ vehicle ~ Total number of light hybrid vehicles, households+cargo | total number elec light vehicles[scenarios]= Number vehicles H[scenarios,elec 4wheels]+vehicles inlandT[scenarios,LV elec] ~ vehicle ~ Total number of light electric vehicles, households+cargo (battery \ based+plug in hybrid) | total number gas light vehicles[scenarios]= Number vehicles H[scenarios,gas 4wheels]+vehicles inlandT[scenarios,LV gas] ~ vehicle ~ Total number of light gas vehicles, households+cargo | EV batteries TW[scenarios]= "batteries EV+hib+2wE"[scenarios]*kW per battery EV/kWh per TWh ~ TW ~ Electric batteries from electric vehicles, expresed in terms of power \ available (TW) | var percent T vehicles[scenarios,HV liq]= -adapt var inlandT[scenarios,HV hib]-adapt var inlandT[scenarios,HV gas] ~~| var percent T vehicles[scenarios,HV hib]= adapt var inlandT[scenarios,HV hib] ~~| var percent T vehicles[scenarios,HV gas]= adapt var inlandT[scenarios,HV gas] ~~| var percent T vehicles[scenarios,LV liq]= -adapt var inlandT[scenarios,LV hib]-adapt var inlandT[scenarios,LV elec]-adapt var inlandT\ [scenarios,LV gas] ~~| var percent T vehicles[scenarios,LV elec]= adapt var inlandT[scenarios,LV elec] ~~| var percent T vehicles[scenarios,LV hib]= adapt var inlandT[scenarios,LV hib] ~~| var percent T vehicles[scenarios,LV gas]= adapt var inlandT[scenarios,LV gas] ~~| var percent T vehicles[scenarios,bus liq]= -adapt var inlandT[scenarios,bus elec]-adapt var inlandT[scenarios,bus hib]-adapt var inlandT\ [scenarios,bus gas] ~~| var percent T vehicles[scenarios,bus hib]= adapt var inlandT[scenarios,bus hib] ~~| var percent T vehicles[scenarios,bus gas]= adapt var inlandT[scenarios,bus gas] ~~| var percent T vehicles[scenarios,train liq]= -adapt var inlandT[scenarios,train elec] ~~| var percent T vehicles[scenarios,train elec]= adapt var inlandT[scenarios,train elec] ~~| var percent T vehicles[scenarios,bus elec]= adapt var inlandT[scenarios,bus elec] ~ Dmnl ~ growth of percents of inland transport vehicles, each type relative to its own: \ heavy vehicles (%liq+%hib+%gas) add 1, light vehicles \ (%liq+%elec+%gas+%hib) add 1, bus (%liq+%elec+%gas+%hib) add 1 and trains \ ((%liq+%elec) add 1. The growth of liquids allways adapts to the one of the rest, we assume \ that the policies are passing from liquids to other fuels | P train elec[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C191') ~~| P train elec[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C191') ~~| P train elec[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C191') ~~| P train elec[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C191') ~~| P train elec[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C191') ~~| P train elec[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C191') ~ Dmnl ~ Policy of change of trains. Desired percent of train electric in T fin \ relative to the total of trains | P HV gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C184') ~~| P HV gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C184') ~~| P HV gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C184') ~~| P HV gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C184') ~~| P HV gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C184') ~~| P HV gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C184') ~ Dmnl ~ Policy of change of heavy vehicles. Desired percent of HV gas in T fin \ relative to total Heavy Vehicles | T ini inlandT[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C174') ~~| T ini inlandT[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C174') ~~| T ini inlandT[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C174') ~~| T ini inlandT[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C174') ~~| T ini inlandT[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C174') ~~| T ini inlandT[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C174') ~ Year ~ By this time the policy objectives defined in policies must be obtained | P inlandT[scenarios,HV liq]= -P HV gas[scenarios]-P HV hyb[scenarios] ~~| P inlandT[scenarios,HV hib]= P HV hyb[scenarios] ~~| P inlandT[scenarios,HV gas]= P HV gas[scenarios] ~~| P inlandT[scenarios,LV liq]= -P LV elec[scenarios]-P LV hyb[scenarios]-P LV gas[scenarios] ~~| P inlandT[scenarios,LV elec]= P LV elec[scenarios] ~~| P inlandT[scenarios,LV gas]= P LV gas[scenarios] ~~| P inlandT[scenarios,bus liq]= -P bus hyb[scenarios]-P bus gas[scenarios]-P bus elec[scenarios] ~~| P inlandT[scenarios,bus elec]= P bus elec[scenarios] ~~| P inlandT[scenarios,bus hib]= P bus hyb[scenarios] ~~| P inlandT[scenarios,bus gas]= P bus gas[scenarios] ~~| P inlandT[scenarios,train liq]= -P train elec[scenarios] ~~| P inlandT[scenarios,train elec]= P train elec[scenarios] ~~| P inlandT[scenarios,LV hib]= P LV hyb[scenarios] ~ Dmnl ~ Desired percent each type of inland transport vehicle in T fin, Liquids \ policies are obtained by substracting the rest of vehicles, the sum of all \ policies must be 1 for each type of vehicle (HV, LV, bus, train). | Activate policy inlandT[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C171') ~~| Activate policy inlandT[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C171') ~~| Activate policy inlandT[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C171') ~~| Activate policy inlandT[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C171') ~~| Activate policy inlandT[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C171') ~~| Activate policy inlandT[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C171') ~ Dmnl ~ 1 to set growth of alternative inland transportation, starting in T ini \ and ending in T fin with the desired share defined in policies, linear \ growth | P LV elec[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C185') ~~| P LV elec[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C185') ~~| P LV elec[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C185') ~~| P LV elec[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C185') ~~| P LV elec[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C185') ~~| P LV elec[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C185') ~ Dmnl ~ Policy of change of light cargo vehicles. Percent of LV electric in T fin \ relative to the total of Light Vehicles | P LV hyb[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C186') ~~| P LV hyb[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C186') ~~| P LV hyb[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C186') ~~| P LV hyb[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C186') ~~| P LV hyb[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C186') ~~| P LV hyb[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C186') ~ Dmnl ~ Policy of change of light cargo vehicles. Desired percent of LV hibrid in \ T fin relative to the total Light Vehicles | P bus elec[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C188') ~~| P bus elec[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C188') ~~| P bus elec[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C188') ~~| P bus elec[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C188') ~~| P bus elec[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C188') ~~| P bus elec[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C188') ~ Dmnl ~ Policy of change of bus. Desired percent of bus electric in T fin relative \ to the total bus | P bus gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C190') ~~| P bus gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C190') ~~| P bus gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C190') ~~| P bus gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C190') ~~| P bus gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C190') ~~| P bus gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C190') ~ Dmnl ~ Policy of change of bus. Desired percent of bus gas in T fin relative to \ the total bus | P bus hyb[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C189') ~~| P bus hyb[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C189') ~~| P bus hyb[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C189') ~~| P bus hyb[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C189') ~~| P bus hyb[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C189') ~~| P bus hyb[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C189') ~ Dmnl ~ Policy of change of bus. Desired percent of bus hibrid in T fin relative \ to the total of bus | percents bus[scenarios,HV liq]= 0 ~~| percents bus[scenarios,HV hib]= 0 ~~| percents bus[scenarios,HV gas]= 0 ~~| percents bus[scenarios,LV liq]= 0 ~~| percents bus[scenarios,LV elec]= 0 ~~| percents bus[scenarios,LV gas]= 0 ~~| percents bus[scenarios,bus liq]= percent T vehicles[scenarios,bus liq] ~~| percents bus[scenarios,bus elec]= percent T vehicles[scenarios,bus elec] ~~| percents bus[scenarios,bus hib]= percent T vehicles[scenarios,bus hib] ~~| percents bus[scenarios,bus gas]= percent T vehicles[scenarios,bus gas] ~~| percents bus[scenarios,train liq]= 0 ~~| percents bus[scenarios,train elec]= 0 ~~| percents bus[scenarios,LV hib]= percent T vehicles[scenarios,LV hib] ~ Dmnl ~ percents of bus of inland transport sector realtive to all buses | percents train[scenarios,HV liq]= 0 ~~| percents train[scenarios,HV hib]= 0 ~~| percents train[scenarios,HV gas]= 0 ~~| percents train[scenarios,LV liq]= 0 ~~| percents train[scenarios,LV elec]= 0 ~~| percents train[scenarios,LV gas]= 0 ~~| percents train[scenarios,bus liq]= 0 ~~| percents train[scenarios,bus elec]= 0 ~~| percents train[scenarios,bus hib]= 0 ~~| percents train[scenarios,bus gas]= 0 ~~| percents train[scenarios,train liq]= percent T vehicles[scenarios,train liq] ~~| percents train[scenarios,train elec]= percent T vehicles[scenarios,train elec] ~~| percents train[scenarios,LV hib]= percent T vehicles[scenarios,LV hib] ~ Dmnl ~ percents of trains of inland transport sector realtive to all trains | P HV hyb[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C183') ~~| P HV hyb[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C183') ~~| P HV hyb[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C183') ~~| P HV hyb[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C183') ~~| P HV hyb[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C183') ~~| P HV hyb[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C183') ~ Dmnl ~ Policy of change of heavy vehicles. Desired percent of HV hibrid in T fin \ relative to total Heavy Vehicles | adapt var inlandT[scenarios,vehicleT]= aux P inland transp[scenarios,vehicleT]*Efects shortage inlandT[scenarios,vehicleT] ~ Dmnl ~ Growth of percent of vehicles adapted to saturation and shorgate of energy | percents LV[scenarios,HV liq]= 0 ~~| percents LV[scenarios,HV hib]= 0 ~~| percents LV[scenarios,HV gas]= 0 ~~| percents LV[scenarios,LV liq]= percent T vehicles[scenarios,LV liq] ~~| percents LV[scenarios,LV elec]= percent T vehicles[scenarios,LV elec] ~~| percents LV[scenarios,LV gas]= percent T vehicles[scenarios,LV gas] ~~| percents LV[scenarios,bus liq]= 0 ~~| percents LV[scenarios,bus elec]= 0 ~~| percents LV[scenarios,bus hib]= 0 ~~| percents LV[scenarios,bus gas]= 0 ~~| percents LV[scenarios,train liq]= 0 ~~| percents LV[scenarios,train elec]= 0 ~~| percents LV[scenarios,LV hib]= percent T vehicles[scenarios,LV hib] ~ Dmnl ~ percents of light cargo vehicles of inland transport sector realtive to \ all LV | var I inland Elec[scenarios]= energy per X t[scenarios,LV elec]*var percent T vehicles[scenarios,LV elec]+energy per X t\ [scenarios,train elec]*var percent T vehicles[scenarios,train elec]+energy per X t[\ scenarios,bus elec]*var percent T vehicles[scenarios,bus elec] ~ EJ/T$/yr ~ Variation of the energy intensity of inland transport relative to \ electricity and due to the variations of electricity based vehicles | var I inlandT Gas[scenarios]= energy per X t[scenarios,HV gas]*var percent T vehicles[scenarios,HV gas]+energy per X t\ [scenarios,bus gas]*var percent T vehicles[scenarios,bus gas]+energy per X t[scenarios\ ,LV gas]*var percent T vehicles[scenarios,LV gas] ~ EJ/T$/yr ~ Variation of the energy intensity of inland transport relative to gas and \ due to the variations of gas based vehicles | var I inlandT liq[scenarios]= energy per X t[scenarios,HV liq]*var percent T vehicles[scenarios,HV liq]+energy per X t\ [scenarios,LV liq]*var percent T vehicles[scenarios,LV liq]+energy per X t[scenarios\ ,bus liq]*var percent T vehicles[scenarios,bus liq]+energy per X t[scenarios,HV liq\ ]*var percent T vehicles[scenarios,HV hib]+energy per X t[scenarios,LV liq]*var percent T vehicles\ [scenarios,LV hib]+energy per X t[scenarios,bus liq]*var percent T vehicles[scenarios\ ,bus hib]+ energy per X t[scenarios,train liq]*var percent T vehicles[scenarios,train liq] ~ EJ/T$/yr ~ Variation of the energy intensity of inland transport relative to liquids \ and due to the variations of liquids based vehicles | shares available T[scenarios,HV liq]= 1-(percent T vehicles[scenarios,HV hib]+percent T vehicles[scenarios,HV gas]) ~~| shares available T[scenarios,HV hib]= 1-(percent T vehicles[scenarios,HV hib]+percent T vehicles[scenarios,HV gas]) ~~| shares available T[scenarios,HV gas]= 1-(percent T vehicles[scenarios,HV hib]+percent T vehicles[scenarios,HV gas]) ~~| shares available T[scenarios,LV liq]= 1-(percent T vehicles[scenarios,LV elec]+percent T vehicles[scenarios,LV hib]+percent T vehicles\ [scenarios,LV gas]) ~~| shares available T[scenarios,LV elec]= 1-(percent T vehicles[scenarios,LV elec]+percent T vehicles[scenarios,LV hib]+percent T vehicles\ [scenarios,LV gas]) ~~| shares available T[scenarios,LV gas]= 1-(percent T vehicles[scenarios,LV elec]+percent T vehicles[scenarios,LV hib]+percent T vehicles\ [scenarios,LV gas]) ~~| shares available T[scenarios,LV hib]= 1-(percent T vehicles[scenarios,LV elec]+percent T vehicles[scenarios,LV hib]+percent T vehicles\ [scenarios,LV gas]) ~~| shares available T[scenarios,bus liq]= 1-(percent T vehicles[scenarios,bus elec]+percent T vehicles[scenarios,bus hib]+percent T vehicles\ [scenarios,bus gas]) ~~| shares available T[scenarios,bus elec]= 1-(percent T vehicles[scenarios,bus elec]+percent T vehicles[scenarios,bus hib]+percent T vehicles\ [scenarios,bus gas]) ~~| shares available T[scenarios,bus hib]= 1-(percent T vehicles[scenarios,bus elec]+percent T vehicles[scenarios,bus hib]+percent T vehicles\ [scenarios,bus gas]) ~~| shares available T[scenarios,bus gas]= 1-(percent T vehicles[scenarios,bus elec]+percent T vehicles[scenarios,bus hib]+percent T vehicles\ [scenarios,bus gas]) ~~| shares available T[scenarios,train liq]= 1-percent T vehicles[scenarios,train elec] ~~| shares available T[scenarios,train elec]= 1-percent T vehicles[scenarios,train elec] ~ Dmnl ~ Share of the total percent of each type of vehicle available for growth, \ is the same for each type of vehicle. When it approaches zero the growth \ of all of them stops | vehicles inlandT[scenarios,vehicleT]= percent T vehicles[scenarios,vehicleT]*Real total output inland transport[scenarios]\ *NX0 vehicles per Xinland T[vehicleT] ~ vehicles ~ Estimation of the number of vehicles of inland transport sector by types, \ based on a constant ratio number ob vehicles per economic activity of the \ inland transport sector | percent T vehicles[scenarios,vehicleT]= INTEG ( var percent T vehicles[scenarios,vehicleT], initial percent T vehicles[vehicleT]) ~ Dmnl ~ Percents of inland transport vehicles, each type relative to its own: \ heavy vehicles (%liq+%hib+%gas) add 1, light vehicles \ (%liq+%elec+%gas+%hib) add 1, bus (%liq+%elec+%gas+%hib) add 1 and trains \ ((%liq+%elec) add 1. | Efects shortage inlandT[scenarios,HV liq]= 1 ~~| Efects shortage inlandT[scenarios,HV hib]= 1 ~~| Efects shortage inlandT[scenarios,HV gas]= effects shortage gas[scenarios] ~~| Efects shortage inlandT[scenarios,LV liq]= 1 ~~| Efects shortage inlandT[scenarios,LV elec]= effects shortage elec on EV[scenarios] ~~| Efects shortage inlandT[scenarios,LV gas]= effects shortage gas[scenarios] ~~| Efects shortage inlandT[scenarios,bus liq]= 1 ~~| Efects shortage inlandT[scenarios,bus elec]= effects shortage elec on EV[scenarios] ~~| Efects shortage inlandT[scenarios,bus hib]= 1 ~~| Efects shortage inlandT[scenarios,bus gas]= effects shortage gas[scenarios] ~~| Efects shortage inlandT[scenarios,train liq]= 1 ~~| Efects shortage inlandT[scenarios,train elec]= effects shortage elec on EV[scenarios] ~~| Efects shortage inlandT[scenarios,LV hib]= 1 ~ Dmnl ~ Efects of shortage of alternative fuels | P LV gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C187') ~~| P LV gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C187') ~~| P LV gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C187') ~~| P LV gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C187') ~~| P LV gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C187') ~~| P LV gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C187') ~ Dmnl ~ Policy of change of light cargo vehicles. Desired percent of LV gas in T \ fin relative to the total Light Vehicles | percents HV[scenarios,HV liq]= percent T vehicles[scenarios,HV liq] ~~| percents HV[scenarios,HV hib]= percent T vehicles[scenarios,HV hib] ~~| percents HV[scenarios,HV gas]= percent T vehicles[scenarios,HV gas] ~~| percents HV[scenarios,LV liq]= 0 ~~| percents HV[scenarios,LV elec]= 0 ~~| percents HV[scenarios,LV gas]= 0 ~~| percents HV[scenarios,bus liq]= 0 ~~| percents HV[scenarios,bus elec]= 0 ~~| percents HV[scenarios,bus hib]= 0 ~~| percents HV[scenarios,bus gas]= 0 ~~| percents HV[scenarios,train liq]= 0 ~~| percents HV[scenarios,train elec]= 0 ~~| percents HV[scenarios,LV hib]= 0 ~ Dmnl ~ percents of heavy vehicles realtive to all HV. | initial Xt inland= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B79') ~ T$ ~ Economic activity of inland transport sector in the year of start of \ policies (2015 default) T$ | NX bus inlandT= (N vehicles inland t 0[bus liq]+N vehicles inland t 0[bus hib]+N vehicles inland t 0\ [bus gas]+N vehicles inland t 0[bus elec])/initial Xt inland ~ Mvehicles/Mdollar ~ number of vehicles per unit of economic activity (e6 dollars) initial \ values in the year of initial policy (default 2015) | NX HV inland T= (N vehicles inland t 0[HV liq]+N vehicles inland t 0[HV hib]+N vehicles inland t 0[HV gas\ ])/initial Xt inland ~ vehicles/T$ ~ number of vehicles per unit of economic activity (e12 dollars) initial \ values in the year of initial policy (default 2015) | NX LV inland T= (N vehicles inland t 0[LV liq]+N vehicles inland t 0[LV elec]+N vehicles inland t 0[\ LV hib]+N vehicles inland t 0[LV gas])/initial Xt inland ~ vehicles/Tdollar ~ number of vehicles per unit of economic activity (Tdollars) initial values \ in the year of initial policy (default 2015) | N vehicles inland t 0[HV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B12') ~~| N vehicles inland t 0[HV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B13') ~~| N vehicles inland t 0[HV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B14') ~~| N vehicles inland t 0[LV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B15') ~~| N vehicles inland t 0[LV elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B16') ~~| N vehicles inland t 0[LV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B17') ~~| N vehicles inland t 0[LV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B18') ~~| N vehicles inland t 0[bus liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B19') ~~| N vehicles inland t 0[bus elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B21') ~~| N vehicles inland t 0[bus hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B22') ~~| N vehicles inland t 0[bus gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B20') ~~| N vehicles inland t 0[train liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B23') ~~| N vehicles inland t 0[train elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B23') ~ vehicle ~ Initial number of vehicles in time TpolicyT, 2015 by default, vehicles 'International Energy Agency (2016), Energy Technology Perspectives 2016, OECD/IEA, \ Paris' No data for train vehicles | Energy initial inland transport[HV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B62') ~~| Energy initial inland transport[HV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B63') ~~| Energy initial inland transport[HV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B64') ~~| Energy initial inland transport[LV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B65') ~~| Energy initial inland transport[LV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B67') ~~| Energy initial inland transport[LV elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'C66') ~~| Energy initial inland transport[LV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B68') ~~| Energy initial inland transport[bus liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B69') ~~| Energy initial inland transport[bus elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'C71') ~~| Energy initial inland transport[bus hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B70') ~~| Energy initial inland transport[bus gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B72') ~~| Energy initial inland transport[train liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B74') ~~| Energy initial inland transport[train elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'C75') ~ EJ ~ Initial energy consumed by the inland transport sector, before politics, TpolicyT \ (default 2015) data 'International Energy Agency (2016), Energy Technology Perspectives \ 2016, OECD/IEA, | energy per X t[scenarios,HV liq]= liquids per X HV*saving ratios V[HV liq] ~~| energy per X t[scenarios,HV hib]= liquids per X HV*saving ratios V[HV hib] ~~| energy per X t[scenarios,HV gas]= liquids per X HV*saving ratios V[HV gas] ~~| energy per X t[scenarios,LV liq]= liquids per X LV*saving ratios V[LV liq] ~~| energy per X t[scenarios,LV elec]= liquids per X LV*saving ratios V[LV elec] ~~| energy per X t[scenarios,LV hib]= liquids per X LV*saving ratios V[LV hib] ~~| energy per X t[scenarios,LV gas]= liquids per X LV*saving ratios V[LV gas] ~~| energy per X t[scenarios,bus liq]= liquids per X bus*saving ratios V[bus liq] ~~| energy per X t[scenarios,bus hib]= liquids per X bus*saving ratios V[bus hib] ~~| energy per X t[scenarios,bus gas]= liquids per X bus*saving ratios V[bus gas] ~~| energy per X t[scenarios,train liq]= energy per X train[scenarios]*0.8 ~~| energy per X t[scenarios,train elec]= energy per X train[scenarios]*0.2 ~~| energy per X t[scenarios,bus elec]= liquids per X bus*saving ratios V[bus elec] ~ EJ/T$ ~ Energy per T$ of economic activity of inland transport sector. | NX train inland T= 1/initial Xt inland ~ vehicles/Tdollar ~ no number of trains found in data, assume the number of trains is 1 | A2 coef tH= Electricity 2wE/(Demand H*percent H vehicles initial[elec 2wheels]*saving ratio 2wE) ~ EJ/T$ ~ Coeficients for the calculation of variations of trasnport intensities A2 = EH 2w(0) / ( DH(0) %HE2w ·srE2w )= | H gas adapt growth[scenarios]= H gas initial growth[scenarios]*effects shortage gas H veh[scenarios] ~ 1/Year ~ Percent relative to total number of vehicles 2w+4w. growth of the \ percentage of gas vehicles is linear at first but adapted to the shortage \ of gas and slows down when the maximum is reached. | H hyb adapt growth[scenarios]= H hyb initial growth[scenarios] ~ 1/Year ~ Percent relative to total number of vehicles 2w+4w.growth of the \ percentage of hibrid vehicles is linear at first but slows down when the \ maximum is reached | Activate policy H transp[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C170') ~~| Activate policy H transp[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C170') ~~| Activate policy H transp[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C170') ~~| Activate policy H transp[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C170') ~~| Activate policy H transp[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C170') ~~| Activate policy H transp[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C170') ~ Dmnl ~ 1 to set growth of alternative households transportation based on desired \ share in 2050, 0 for BAU linear growth | Initial energy intensity of households transport 2009[liquids]= 1.245 ~~| Initial energy intensity of households transport 2009[solids]= 0 ~~| Initial energy intensity of households transport 2009[gases]= 0.01711 ~~| Initial energy intensity of households transport 2009[electricity]= 0.00472 ~~| Initial energy intensity of households transport 2009[heat]= 0 ~ EJ/T$ ~ Initial values of household trasnport intensity. Starting year = 2009, \ before that year alternative vehicles are neglictible | H EV adapt growth[scenarios]= H elec initial growth[scenarios]*effects shortage elec on EV[scenarios] ~ 1/Year ~ Percent relative to total number of vehicles 2w+4w.growth of the \ percentage of EV vehicles is linear at first but adapted to the shortage \ of electricity and slows down when the maximum is reached | var IH E2[scenarios]= A1 coef tH*var percents H vehicles[scenarios,elec 4wheels]*saving ratios V[LV elec]+\ A2 coef tH*var percents H vehicles[scenarios,elec 2wheels]*saving ratio 2wE ~ EJ/T$/yr ~ variation of the intensity of households transportation due of the change \ to electricity | var IH gas2[scenarios]= A1 coef tH*var percents H vehicles[scenarios,gas 4wheels]*saving ratios V[LV gas] ~ EJ/T$/yr ~ variation of the intensity of households transportation due of the change \ to gas | A1 coef tH= ((Liq 4w/Demand H)-(A2 coef tH*percent 2w liq))/percent 4w liq ~ EJ/T$ ~ Coeficients for the calculation of variations of trasnport intensities A1= ( LH t(0) / DH(0) - A2%Hliq2w )/ %Hliq | var IH liq2[scenarios]= A1 coef tH*var percents H vehicles[scenarios,liq 4wheels]+A1 coef tH*var percents H vehicles\ [scenarios,hib 4wheels]+A2 coef tH*var percents H vehicles[scenarios,liq 2wheels] ~ EJ/T$/yr ~ variation of the intensity of households transportation due of the change \ in liquids | percent H vehicles initial[liq 4wheels]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B26') ~~| percent H vehicles initial[elec 4wheels]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B27') ~~| percent H vehicles initial[hib 4wheels]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B28') ~~| percent H vehicles initial[gas 4wheels]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B29') ~~| percent H vehicles initial[liq 2wheels]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B30') ~~| percent H vehicles initial[elec 2wheels]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B31') ~ Dmnl ~ percents in the year of calibration (2015 ) of vehciles relative to total \ 4w+2w: | Energy intensity of households transport[scenarios,final sources]= INTEG ( variation energy intensity of households transport[scenarios,final sources], Initial energy intensity of households transport 2009[final sources]) ~ EJ/T$ ~ | H 2wE adapt growth[scenarios]= H 2w initial growth[scenarios] ~ 1/Year ~ Percent relative to total number of vehicles 2w+4w. growth of the \ percentage of electric 2 wheelers vehicles is linear at first but slows \ down when the maximum is reached. No efects on the electricity shortage \ are noticed for these vehicles since their consumption is so low compared \ to others. | Liq 4w= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B55') ~ EJ ~ liquids userd in households 4 wheelers in the initial year of policy (2015 default) 45.9341 | percent 2w liq= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B30') ~ ~ Percent of 2wheelers of liquids in the initial year of policy (2015 \ default). percents relative to total number 4w+2w DEFAULT: 0.2712 | percent 4w liq= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B26') ~ Dmnl ~ Percent of 4wheelers of liquids in the initial year of policy (2015 \ default). percents relative to total number 4w+2w 0.658 | Electricity 2wE= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'C60') ~ EJ ~ Initial electricity used by 2 wheelers in the year of start of policies \ (2015 default) 0.3415 | N vehicles H= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B10') ~ vehicles ~ Initial number of household vehicles in time 2015 vehicles 2w+4w 2476 | Demand H= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B81') ~ T$ ~ Initial households economic demand in T dollars, in the year of start of \ alternative households vehicle policy (default 2015) 30.3 T$ | ratio N veh Demand H= N vehicles H/Demand H ~ vehicles/T$ ~ Ration of number of vehicles by unit of household conomic demand, we \ assume that it is kept constant and variations are due to the change in \ the number of vehicles from one type to another | percents 2w H vehicles[scenarios,liq 2wheels]= percents H vehicles[scenarios,liq 2wheels]/(percents H vehicles[scenarios,elec 2wheels\ ]+percents H vehicles[scenarios,liq 2wheels]) ~~| percents 2w H vehicles[scenarios,elec 2wheels]= percents H vehicles[scenarios,elec 2wheels]/(percents H vehicles[scenarios,elec 2wheels\ ]+percents H vehicles[scenarios,liq 2wheels]) ~~| percents 2w H vehicles[scenarios,liq 4wheels]= 0 ~~| percents 2w H vehicles[scenarios,elec 4wheels]= 0 ~~| percents 2w H vehicles[scenarios,gas 4wheels]= 0 ~~| percents 2w H vehicles[scenarios,hib 4wheels]= 0 ~ Dmnl ~ Percent of electrical 2 wheeler as a percent of ONLY TWO WHEELERS | percents 4w H vehicles[scenarios,liq 4wheels]= percents H vehicles[scenarios,liq 4wheels]/(percents H vehicles[scenarios,elec 4wheels\ ]+percents H vehicles[scenarios,hib 4wheels]+percents H vehicles[scenarios,gas 4wheels\ ]+percents H vehicles[scenarios,liq 4wheels]) ~~| percents 4w H vehicles[scenarios,elec 4wheels]= percents H vehicles[scenarios,elec 4wheels]/(percents H vehicles[scenarios,elec 4wheels\ ]+percents H vehicles[scenarios,hib 4wheels]+percents H vehicles[scenarios,gas 4wheels\ ]+percents H vehicles[scenarios,liq 4wheels]) ~~| percents 4w H vehicles[scenarios,hib 4wheels]= percents H vehicles[scenarios,hib 4wheels]/(percents H vehicles[scenarios,elec 4wheels\ ]+percents H vehicles[scenarios,hib 4wheels]+percents H vehicles[scenarios,gas 4wheels\ ]+percents H vehicles[scenarios,liq 4wheels]) ~~| percents 4w H vehicles[scenarios,gas 4wheels]= percents H vehicles[scenarios,gas 4wheels]/(percents H vehicles[scenarios,elec 4wheels\ ]+percents H vehicles[scenarios,hib 4wheels]+percents H vehicles[scenarios,gas 4wheels\ ]+percents H vehicles[scenarios,liq 4wheels]) ~~| percents 4w H vehicles[scenarios,liq 2wheels]= 0 ~~| percents 4w H vehicles[scenarios,elec 2wheels]= 0 ~ Dmnl ~ Percent of alternative 4 wheelers as a percent of ONLY 4 WHEELERS | P 2wE[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C180') ~~| P 2wE[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C180') ~~| P 2wE[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C180') ~~| P 2wE[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C180') ~~| P 2wE[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C180') ~~| P 2wE[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C180') ~ Dmnl ~ Desired percent of electrical 2 wheelers in T fin our of TOTAL 2 WHEEL \ vehicles | max percent 2 wheels[scenarios]= INTEG ( rate 4w to 2w[scenarios], initial 2w percent) ~ Dmnl ~ maximum share of 2wheel vehicles (in terms of number of vehicles) \ policies or shortage can make people move form 4wheel vehicles to two \ wheelers | max percent 4 wheels[scenarios]= INTEG ( -rate 4w to 2w[scenarios], 1-initial 2w percent) ~ Dmnl ~ max percent of 4 wheelers relative to total amount 2w+4w | aux hist H[scenarios,liq 4wheels]= -hist var percent H[scenarios,hib 4wheels]-hist var percent H[scenarios,elec 4wheels\ ]-hist var percent H[scenarios,gas 4wheels] ~~| aux hist H[scenarios,hib 4wheels]= hist var percent H[scenarios,hib 4wheels] ~~| aux hist H[scenarios,elec 4wheels]= hist var percent H[scenarios,elec 4wheels] ~~| aux hist H[scenarios,liq 2wheels]= -hist var percent H[scenarios,elec 2wheels] ~~| aux hist H[scenarios,elec 2wheels]= hist var percent H[scenarios,elec 2wheels] ~~| aux hist H[scenarios,gas 4wheels]= hist var percent H[scenarios,gas 4wheels] ~ 1/yr ~ auxiliar variable to set the variation of liquid vehicles | P gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C179') ~~| P gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C179') ~~| P gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C179') ~~| P gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C179') ~~| P gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C179') ~~| P gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C179') ~ Dmnl ~ Desired percent of gas vehicles (4 wheelers) in Tfin our of TOTAL 4 WHEEL \ vehicles | P share 2 wheelers[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C181') ~~| P share 2 wheelers[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C181') ~~| P share 2 wheelers[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C181') ~~| P share 2 wheelers[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C181') ~~| P share 2 wheelers[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C181') ~~| P share 2 wheelers[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C181') ~ Dmnl ~ desired percent of all 2 WHEELS vehicles in T fin relative to total 2w+4w, \ initial value in 2015 is 0.34 | P hyb[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C178') ~~| P hyb[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C178') ~~| P hyb[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C178') ~~| P hyb[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C178') ~~| P hyb[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C178') ~~| P hyb[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C178') ~ Dmnl ~ Desired percent of hibrid vehicles (4 wheelers) in T fin our of TOTAL 4 \ WHEEL vehicles | initial 2w percent= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B33') ~ Dmnl ~ 2015 percent of 2 wheelers 0,332 | share available 2w[scenarios]= (max percent 2 wheels[scenarios]-percents H vehicles[scenarios,elec 2wheels])/max percent 2 wheels\ [scenarios] ~ Dmnl ~ Difference between the share of 2w and the maximum. It's used to saturate \ the growth when limits are close. share of 2w relative to total amount \ 2w+4w | rate 4w to 2w[scenarios]= policy 2wheels[scenarios] ~ 1/Year ~ change from 4 wheelers based mobility to 2 wheelers, linear change until \ the limit aproaches | share FEH over FED by final fuel[electricity,scenarios]= 0 ~~| share FEH over FED by final fuel[heat,scenarios]= 0 ~~| share FEH over FED by final fuel[liquids,scenarios]= share FEH over FED oil ~~| share FEH over FED by final fuel[gases,scenarios]= "share FEH over FED nat. gas" ~~| share FEH over FED by final fuel[solids,scenarios]= (share FEH over FED coal+share FEH over FED solid bioE) ~ Dmnl ~ Share FEH over FED by final fuel. | share FEH over FED oil= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K38') ~ Dmnl ~ Estimated share of FEH over FED for liquids (IEA, 2014 and own calculations). GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K38') FEH oil delayed[scenarios]/Required FED by fuel before heat \ correction[scenarios,liquids] | share FEH over FED coal= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K40') ~ Dmnl ~ Estimated share of FEH over FED for coal solids (IEA, 2014 and own calculations). GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K40') FEH coal delayed[scenarios]/Required FED by fuel before heat \ correction[scenarios,solids] | "share FEH over FED nat. gas"= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K39') ~ Dmnl ~ Estimated share of FEH over FED for gases (IEA, 2014 and own calculations). GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K39') FEH gas delayed[scenarios]/Required FED by fuel before heat \ correction[scenarios,gases] | "FED coal for heat-nc"[scenarios]= Required FED by fuel before heat correction[scenarios,solids]*(share FEH over FED by final fuel\ [solids,scenarios]-share FEH over FED solid bioE)*efficiency coal for heat plants /(1+Share heat distribution losses) ~ EJ ~ Final energy demand (excluding distribution and generation losses) of \ non-commercial heat from coal. | PES oil EJ delayed[scenarios]= DELAY FIXED ( PES oil EJ[scenarios], 0.1, 139.5) ~ EJ/Year ~ PES total oil extraction delayed. | Energy required for material consumption for EV batteries[materials,scenarios]= materials required for EV batteries Mt[materials,scenarios]*Energy cons per unit of material cons for RES elec [materials,scenarios]*kg per Mt/MJ per EJ ~ EJ ~ Energy required for material consumption for EV batteries. | Households final energy demand[scenarios,final sources]= Household demand total[scenarios]*Energy intensity of households[scenarios,final sources\ ]/1e+006 ~ EJ ~ Final energy demand of households | change total intensity to rest[scenarios,liquids]= 1-STEP(0.78, 2009) ~~| change total intensity to rest[scenarios,gases]= 1-STEP(0.025, 2009) ~~| change total intensity to rest[scenarios,electricity]= 1-STEP(0.007, 2009) ~ EJ/Tdollar ~ Adjust to separate in 2009 among transport households and the rest in households. We \ assume that in 2009, 78% of the households liquids are from transport. \ This data is from WIOD (Diesel & gasoline from households is for \ transport) 1,245=0.78*1.596 For other sources, we asume 0% of the energy is for transport | Activate transport H BOTTOM UP method= 1 ~ Dmnl ~ 0. Bottom-up NOT activated 1. Bottom-up activated | variation energy intensity of households transport[scenarios, liquids]= IF THEN ELSE(Time<2009,0,var IH liq2[scenarios]) ~~| variation energy intensity of households transport[scenarios, solids]= 0 ~~| variation energy intensity of households transport[scenarios, gases]= IF THEN ELSE(Time>2009,var IH gas2[scenarios],0) ~~| variation energy intensity of households transport[scenarios, electricity]= IF THEN ELSE(Time>2009,var IH E2[scenarios],0) ~~| variation energy intensity of households transport[scenarios, heat]= 0 ~ EJ/T$/yr ~ Variation of intensity of households due to change of vehicles | Number vehicles H[scenarios,Households vehicles]= ratio N veh Demand H*Household demand total[scenarios]*1e-006*percents H vehicles[scenarios\ ,Households vehicles] ~ vehicles ~ Estimated number of households vehicles asuming constant ratios of \ vehicles per households demand | effects shortage elec on EV[scenarios]= IF THEN ELSE(Abundance electricity[scenarios]>0.8, ((Abundance electricity[scenarios\ ]-0.8)*5)^2, 0) ~ Dmnl ~ The eventual scarcity of electricity would likely constrain the \ development of EVs. The proposed relationship avoids an abrupt limitation \ by introducing a range (1;0.8) in the electricity abundance that \ constrains the development of EVs. | effects shortage gas H veh[scenarios]= IF THEN ELSE(abundance gases[scenarios]>0.8, ((abundance gases[scenarios]-0.8)*5)^2,\ 0) ~ Dmnl ~ The eventual scarcity of gas would likely constrain the development of \ NGVs/GTLs. The proposed relationship avoids an abrupt limitation by \ introducing a range (1;0.8) in the gas abundance that constrains the \ development of NGVs/GTLs. | "'a' extraction projection minerals"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA5') ~~| "'a' extraction projection minerals"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA6') ~~| "'a' extraction projection minerals"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA7') ~~| "'a' extraction projection minerals"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA8') ~~| "'a' extraction projection minerals"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA9') ~~| "'a' extraction projection minerals"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA10') ~~| "'a' extraction projection minerals"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA11') ~~| "'a' extraction projection minerals"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA12') ~~| "'a' extraction projection minerals"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA13') ~~| "'a' extraction projection minerals"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA14') ~~| "'a' extraction projection minerals"["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA15') ~~| "'a' extraction projection minerals"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA16') ~~| "'a' extraction projection minerals"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA17') ~~| "'a' extraction projection minerals"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA18') ~~| "'a' extraction projection minerals"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA19') ~~| "'a' extraction projection minerals"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA20') ~~| "'a' extraction projection minerals"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA21') ~~| "'a' extraction projection minerals"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA22') ~~| "'a' extraction projection minerals"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA23') ~~| "'a' extraction projection minerals"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA24') ~~| "'a' extraction projection minerals"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA25') ~~| "'a' extraction projection minerals"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA26') ~~| "'a' extraction projection minerals"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA27') ~~| "'a' extraction projection minerals"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA28') ~~| "'a' extraction projection minerals"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA29') ~~| "'a' extraction projection minerals"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA30') ~~| "'a' extraction projection minerals"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA31') ~~| "'a' extraction projection minerals"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA32') ~~| "'a' extraction projection minerals"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA33') ~~| "'a' extraction projection minerals"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA34') ~~| "'a' extraction projection minerals"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA35') ~~| "'a' extraction projection minerals"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA36') ~~| "'a' extraction projection minerals"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA37') ~~| "'a' extraction projection minerals"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA38') ~~| "'a' extraction projection minerals"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA39') ~~| "'a' extraction projection minerals"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA40') ~~| "'a' extraction projection minerals"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA41') ~~| "'a' extraction projection minerals"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA42') ~~| "'a' extraction projection minerals"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA43') ~~| "'a' extraction projection minerals"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA44') ~~| "'a' extraction projection minerals"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA45') ~~| "'a' extraction projection minerals"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA46') ~~| "'a' extraction projection minerals"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA47') ~~| "'a' extraction projection minerals"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA48') ~~| "'a' extraction projection minerals"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA49') ~~| "'a' extraction projection minerals"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA50') ~~| "'a' extraction projection minerals"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA51') ~~| "'a' extraction projection minerals"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA52') ~~| "'a' extraction projection minerals"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA53') ~~| "'a' extraction projection minerals"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA54') ~~| "'a' extraction projection minerals"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA55') ~~| "'a' extraction projection minerals"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA56') ~~| "'a' extraction projection minerals"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA57') ~~| "'a' extraction projection minerals"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA58') ~~| "'a' extraction projection minerals"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA59') ~~| "'a' extraction projection minerals"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA60') ~~| "'a' extraction projection minerals"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA61') ~~| "'a' extraction projection minerals"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BA62') ~ Mt/Year ~ | "'b' extraction projection minerals"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB5') ~~| "'b' extraction projection minerals"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB6') ~~| "'b' extraction projection minerals"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB7') ~~| "'b' extraction projection minerals"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB8') ~~| "'b' extraction projection minerals"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB9') ~~| "'b' extraction projection minerals"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB10') ~~| "'b' extraction projection minerals"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB11') ~~| "'b' extraction projection minerals"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB12') ~~| "'b' extraction projection minerals"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB13') ~~| "'b' extraction projection minerals"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB14') ~~| "'b' extraction projection minerals"["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB15') ~~| "'b' extraction projection minerals"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB16') ~~| "'b' extraction projection minerals"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB17') ~~| "'b' extraction projection minerals"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB18') ~~| "'b' extraction projection minerals"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB19') ~~| "'b' extraction projection minerals"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB20') ~~| "'b' extraction projection minerals"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB21') ~~| "'b' extraction projection minerals"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB22') ~~| "'b' extraction projection minerals"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB23') ~~| "'b' extraction projection minerals"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB24') ~~| "'b' extraction projection minerals"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB25') ~~| "'b' extraction projection minerals"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB26') ~~| "'b' extraction projection minerals"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB27') ~~| "'b' extraction projection minerals"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB28') ~~| "'b' extraction projection minerals"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB29') ~~| "'b' extraction projection minerals"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB30') ~~| "'b' extraction projection minerals"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB31') ~~| "'b' extraction projection minerals"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB32') ~~| "'b' extraction projection minerals"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB33') ~~| "'b' extraction projection minerals"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB34') ~~| "'b' extraction projection minerals"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB35') ~~| "'b' extraction projection minerals"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB36') ~~| "'b' extraction projection minerals"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB37') ~~| "'b' extraction projection minerals"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB38') ~~| "'b' extraction projection minerals"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB39') ~~| "'b' extraction projection minerals"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB40') ~~| "'b' extraction projection minerals"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB41') ~~| "'b' extraction projection minerals"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB42') ~~| "'b' extraction projection minerals"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB43') ~~| "'b' extraction projection minerals"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB44') ~~| "'b' extraction projection minerals"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB45') ~~| "'b' extraction projection minerals"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB46') ~~| "'b' extraction projection minerals"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB47') ~~| "'b' extraction projection minerals"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB48') ~~| "'b' extraction projection minerals"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB49') ~~| "'b' extraction projection minerals"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB50') ~~| "'b' extraction projection minerals"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB51') ~~| "'b' extraction projection minerals"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB52') ~~| "'b' extraction projection minerals"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB53') ~~| "'b' extraction projection minerals"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB54') ~~| "'b' extraction projection minerals"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB55') ~~| "'b' extraction projection minerals"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB56') ~~| "'b' extraction projection minerals"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB57') ~~| "'b' extraction projection minerals"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB58') ~~| "'b' extraction projection minerals"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB59') ~~| "'b' extraction projection minerals"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB60') ~~| "'b' extraction projection minerals"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB61') ~~| "'b' extraction projection minerals"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BB62') ~ Mt/Year ~ | variation minerals extraction Rest[materials,scenarios]= IF THEN ELSE(Time<2015,Historical variation minerals extraction Rest[materials], IF THEN ELSE(Minerals extraction projection Rest cte rr[materials,scenarios]>0.01,("'a' extraction projection minerals"\ [materials]*(GDP[scenarios]-GDP delayed 1yr[scenarios])),0))*Mt per tonne ~ Mt ~ Variation of minerals extraction of the rest of the economy. | Total recycled materials for other Mt[materials, scenarios]= Minerals consumption estimation Rest cte rr[materials,scenarios]-Minerals extraction projection Rest with rr\ [materials,scenarios] ~ Mt ~ | share minerals consumption alt techn vs total economy[materials, scenarios]= ZIDZ( "Total materials required for RES elec + EV batteries Mt"[materials,scenarios]\ , (Minerals consumption estimation Rest cte rr[materials,scenarios]+"Total materials required for RES elec + EV batteries Mt"\ [materials,scenarios])) ~ Dmnl ~ | "Labor share cte?"= 1 ~ Dmnl ~ 0: Labor share: cte 1: Labor share evolves following "P labor share" | initial minerals extraction Rest[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE5') ~~| initial minerals extraction Rest[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE6') ~~| initial minerals extraction Rest[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE7') ~~| initial minerals extraction Rest[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE8') ~~| initial minerals extraction Rest[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE9') ~~| initial minerals extraction Rest[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE10') ~~| initial minerals extraction Rest[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE11') ~~| initial minerals extraction Rest[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE12') ~~| initial minerals extraction Rest[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE13') ~~| initial minerals extraction Rest[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE14') ~~| initial minerals extraction Rest["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE15') ~~| initial minerals extraction Rest[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE16') ~~| initial minerals extraction Rest[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE17') ~~| initial minerals extraction Rest[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE18') ~~| initial minerals extraction Rest[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE19') ~~| initial minerals extraction Rest[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE20') ~~| initial minerals extraction Rest[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE21') ~~| initial minerals extraction Rest[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE22') ~~| initial minerals extraction Rest[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE23') ~~| initial minerals extraction Rest[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE24') ~~| initial minerals extraction Rest[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE25') ~~| initial minerals extraction Rest[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE26') ~~| initial minerals extraction Rest[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE27') ~~| initial minerals extraction Rest[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE28') ~~| initial minerals extraction Rest[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE29') ~~| initial minerals extraction Rest[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE30') ~~| initial minerals extraction Rest[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE31') ~~| initial minerals extraction Rest[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE32') ~~| initial minerals extraction Rest[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE33') ~~| initial minerals extraction Rest[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE34') ~~| initial minerals extraction Rest[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE35') ~~| initial minerals extraction Rest[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE36') ~~| initial minerals extraction Rest[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE37') ~~| initial minerals extraction Rest[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE38') ~~| initial minerals extraction Rest[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE39') ~~| initial minerals extraction Rest["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE40') ~~| initial minerals extraction Rest["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE41') ~~| initial minerals extraction Rest[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE42') ~~| initial minerals extraction Rest[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE43') ~~| initial minerals extraction Rest[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE44') ~~| initial minerals extraction Rest[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE45') ~~| initial minerals extraction Rest[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE46') ~~| initial minerals extraction Rest[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE47') ~~| initial minerals extraction Rest[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE48') ~~| initial minerals extraction Rest[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE49') ~~| initial minerals extraction Rest[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE50') ~~| initial minerals extraction Rest[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE51') ~~| initial minerals extraction Rest[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE52') ~~| initial minerals extraction Rest[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE53') ~~| initial minerals extraction Rest[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE54') ~~| initial minerals extraction Rest[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE55') ~~| initial minerals extraction Rest[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE56') ~~| initial minerals extraction Rest[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE57') ~~| initial minerals extraction Rest[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE58') ~~| initial minerals extraction Rest[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE59') ~~| initial minerals extraction Rest[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE60') ~~| initial minerals extraction Rest[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE61') ~~| initial minerals extraction Rest[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'BE62') ~ tonnes ~ Initial minerals extraction of the rest of the economy. | Minerals extraction projection Rest cte rr[materials, scenarios]= INTEG ( variation minerals extraction Rest[materials,scenarios], initial minerals extraction Rest[materials]*Mt per tonne) ~ Mt ~ Projection of annual mineral extraction of the rest of the economy using \ historical data and assuming recycling rates remaing constant. | Materials to extract Rest Mt[materials,scenarios]= Minerals extraction projection Rest with rr[materials,scenarios] ~ Mt/Year ~ Annual materials to be mined for the rest of the economy. | Historical extraction minerals Rest[Adhesive]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD5')) ~~| Historical extraction minerals Rest[Aluminium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD6')) ~~| Historical extraction minerals Rest[Aluminium mirrors]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD7')) ~~| Historical extraction minerals Rest[Cadmium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD8')) ~~| Historical extraction minerals Rest[Carbon fiber]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD9')) ~~| Historical extraction minerals Rest[Cement]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD10')) ~~| Historical extraction minerals Rest[Chromium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD11')) ~~| Historical extraction minerals Rest[Copper]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD12')) ~~| Historical extraction minerals Rest[diesel]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD13')) ~~| Historical extraction minerals Rest[Dy]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD14')) ~~| Historical extraction minerals Rest["Electric/electronic components"]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD15')) ~~| Historical extraction minerals Rest[Evacuation lines]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD16')) ~~| Historical extraction minerals Rest[Fiberglass]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD17')) ~~| Historical extraction minerals Rest[Foam glass]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD18')) ~~| Historical extraction minerals Rest[Galium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD19')) ~~| Historical extraction minerals Rest[Glass]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD20')) ~~| Historical extraction minerals Rest[Glass reinforcing plastic]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD21')) ~~| Historical extraction minerals Rest[gravel]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD22')) ~~| Historical extraction minerals Rest[Indium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD23')) ~~| Historical extraction minerals Rest[Iron]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD24')) ~~| Historical extraction minerals Rest[KNO3 mined]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD25')) ~~| Historical extraction minerals Rest[Asphalt]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD26')) ~~| Historical extraction minerals Rest[Lime]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD27')) ~~| Historical extraction minerals Rest[Limestone]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD28')) ~~| Historical extraction minerals Rest[Lithium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD29')) ~~| Historical extraction minerals Rest[Lubricant]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD30')) ~~| Historical extraction minerals Rest[Magnesium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD31')) ~~| Historical extraction minerals Rest[Manganese]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD32')) ~~| Historical extraction minerals Rest[Heavy equipment]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD33')) ~~| Historical extraction minerals Rest[Concrete]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD34')) ~~| Historical extraction minerals Rest[Molybdenum]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD35')) ~~| Historical extraction minerals Rest[NaNO3 mined]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD36')) ~~| Historical extraction minerals Rest[NaNO3 synthetic]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD37')) ~~| Historical extraction minerals Rest[Neodymium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD38')) ~~| Historical extraction minerals Rest[Nickel]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD39')) ~~| Historical extraction minerals Rest["Over grid (15%)"]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD40')) ~~| Historical extraction minerals Rest["Over grid (5%)"]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD41')) ~~| Historical extraction minerals Rest[Paint]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD42')) ~~| Historical extraction minerals Rest[Lead]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD43')) ~~| Historical extraction minerals Rest[Plastics]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD44')) ~~| Historical extraction minerals Rest[Polypropylene]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD45')) ~~| Historical extraction minerals Rest[Rock]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD46')) ~~| Historical extraction minerals Rest[Rock wool]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD47')) ~~| Historical extraction minerals Rest[Sand]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD48')) ~~| Historical extraction minerals Rest[Silicon sand]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD49')) ~~| Historical extraction minerals Rest[Silicon wafer modules]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD50')) ~~| Historical extraction minerals Rest[Silver]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD51')) ~~| Historical extraction minerals Rest[Site preparation]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD52')) ~~| Historical extraction minerals Rest[Tin]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD53')) ~~| Historical extraction minerals Rest[soda ash]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD54')) ~~| Historical extraction minerals Rest[steel]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD55')) ~~| Historical extraction minerals Rest[synthetic oil]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD56')) ~~| Historical extraction minerals Rest[tellurium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD57')) ~~| Historical extraction minerals Rest[titanium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD58')) ~~| Historical extraction minerals Rest[titanium dioxide]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD59')) ~~| Historical extraction minerals Rest[vanadium]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD60')) ~~| Historical extraction minerals Rest[wires]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD61')) ~~| Historical extraction minerals Rest[zinc]( GET XLS LOOKUPS('inputs.xlsx', 'Materials', '3', 'BD62')) ~ tonnes ~ Historical extraction of minerals of the rest of the economy. | Historical variation minerals extraction Rest[materials]= Historical extraction minerals Rest[materials](Time+1)-Historical extraction minerals Rest\ [materials](Time) ~ tonnes ~ Historical variation in the extraction of minerals of the rest of the \ economy. | Minerals extraction projection Rest with rr[materials, scenarios]= Minerals consumption estimation Rest cte rr[materials,scenarios]*(1-recycling rates minerals Rest\ [materials,scenarios]) ~ Mt ~ Minerals extraction projection of the rest of the economy accounting for \ the dynamic evolution of recycling rates. | Minerals consumption estimation Rest cte rr[materials, scenarios]= Minerals extraction projection Rest cte rr[materials,scenarios]/(1-current recycling rates minerals\ [materials]) ~ Mt ~ Projection of annual mineral consumption of the rest of the economy using \ historical data and assuming recycling rates remaing constant. | "Total materials required for RES elec + EV batteries Mt"[materials,scenarios]= Total materials required for EV batteries[materials,scenarios]+Total materials required for RES elec Mt\ [materials,scenarios] ~ Mt/Year ~ | "variation non-energy use"[electricity,scenarios]= 0 ~~| "variation non-energy use"[heat,scenarios]= 0 ~~| "variation non-energy use"[liquids,scenarios]= IF THEN ELSE("Non-energy use demand by final fuel EJ"[scenarios,liquids]>0.01,0.461414\ *(GDP[scenarios]-GDP delayed 1yr[scenarios]),0) ~~| "variation non-energy use"[gases,scenarios]= IF THEN ELSE("Non-energy use demand by final fuel EJ"[scenarios,gases]>0.01,0.123925\ *(GDP[scenarios]-GDP delayed 1yr[scenarios]),0) ~~| "variation non-energy use"[solids,scenarios]= IF THEN ELSE("Non-energy use demand by final fuel EJ"[scenarios,solids]>0.01,0.0797511\ *(GDP[scenarios]-GDP delayed 1yr[scenarios]),0) ~ EJ ~ | Number 2w[scenarios]= Number vehicles H[scenarios,liq 2wheels]+Number vehicles H[scenarios,elec 2wheels] ~ vehicles ~ total number of 2w vehicles househols | Number 4w[scenarios]= Number vehicles H[scenarios,liq 4wheels]+Number vehicles H[scenarios,hib 4wheels]+Number vehicles H\ [scenarios,elec 4wheels]+Number vehicles H[scenarios,gas 4wheels] ~ vehicles ~ agregated number of 4w vehicles | Number all[scenarios]= Number 2w[scenarios]+Number 4w[scenarios] ~ vehicles ~ Total number of household vehicles 4w+2w | sum 4w shares[scenarios]= percents H vehicles[scenarios,hib 4wheels]+percents H vehicles[scenarios,elec 4wheels\ ]+percents H vehicles[scenarios,gas 4wheels] ~ Dmnl ~ sum of shares of 4w and the maximum. It's used to saturate the growth \ when limits are close. | share available 4w[scenarios]= (max percent 4 wheels[scenarios]-sum 4w shares[scenarios])/max percent 4 wheels[scenarios\ ] ~ Dmnl ~ share of 4wheelers available for alternatives. Percent relative to total \ number of vehicles 2w+4w.It's used to saturate the growth when limits are \ close | percent 4w[scenarios]= percents H vehicles[scenarios,liq 4wheels]+percents H vehicles[scenarios,hib 4wheels\ ]+percents H vehicles[scenarios,elec 4wheels]+percents H vehicles[scenarios,gas 4wheels\ ] ~ Dmnl ~ percentages of 4 wheels vehicles | saving ratio 2wE= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B92') ~ Dmnl ~ saving ratio of electrical 2wheelers compared to gasoline 2 wheelers | percent all[scenarios]= percent 2w[scenarios]+percent 4w[scenarios] ~ ~ Variable to check that the total percent is 1 | percent 2w[scenarios]= percents H vehicles[scenarios,liq 2wheels]+percents H vehicles[scenarios,elec 2wheels\ ] ~ Dmnl ~ percentages of 2 wheels and 3 wheels vehicles | Households vehicles: liq 4wheels, hib 4wheels, elec 4wheels, gas 4wheels, liq 2wheels, elec 2wheels ~ ~ Transportation vehicles used by households. | "share FED coal vs NRE heat-nc"[scenarios]= ZIDZ( "FED coal for heat-nc"[scenarios] , "FED NRE for heat-nc"[scenarios] ) ~ Dmnl ~ Share coal vs non-renewable energy sources for non-commercial heat \ generation. | "share FED gas vs NRE heat-nc"[scenarios]= ZIDZ( "FED nat. gas for heat-nc"[scenarios] , "FED NRE for heat-nc"[scenarios] ) ~ Dmnl ~ Share gas vs non-renewable energy sources for non-commercial heat \ generation. | "FED NRE for heat-nc"[scenarios]= "FED coal for heat-nc"[scenarios]+"FED nat. gas for heat-nc"[scenarios]+"FED oil for heat-nc"\ [scenarios] ~ EJ ~ | "share FED liquids vs NRE heat-nc"[scenarios]= ZIDZ( "FED oil for heat-nc"[scenarios] , "FED NRE for heat-nc"[scenarios] ) ~ Dmnl ~ Share liquids vs non-renewable energy sources for non-commercial heat \ generation. | Required FED by fuel[scenarios,electricity]= Required FED by fuel before heat correction[scenarios,electricity] ~~| Required FED by fuel[scenarios,heat]= Required FED by fuel before heat correction[scenarios,heat]*(1+"ratio FED for heat-nc vs FED for heat-com"\ [scenarios]) ~~| Required FED by fuel[scenarios,liquids]= Required FED by fuel before heat correction[scenarios,liquids]*(1-share FEH over FED by final fuel\ [liquids,scenarios]) ~~| Required FED by fuel[scenarios,gases]= Required FED by fuel before heat correction[scenarios,gases]*(1-share FEH over FED by final fuel\ [gases,scenarios]) ~~| Required FED by fuel[scenarios,solids]= Required FED by fuel before heat correction[scenarios,solids]*(1-share FEH over FED by final fuel\ [solids,scenarios]) ~ EJ ~ Required final energy demand by fuel after heat demand correction. | BioE gen land marg available[scenarios]= (Max PEavail potential biofuels marginal lands[scenarios]-Potential PEavail biofuels land marg EJ\ [scenarios])/Max PEavail potential biofuels marginal lands[scenarios] ~ Dmnl ~ Remaining potential available as given as a fraction of unity. | Potential PEavail cellulosic biofuel EJ[scenarios]= Potential PE cellulosic biofuel EJ[scenarios]*Conv efficiency from NPP to biofuels ~ EJ ~ | Potential PEavail total biofuels[scenarios]= Potential PEavail biofuels 2gen land compet EJ[scenarios]+Potential PEavail biofuels prod 3gen EJ\ [scenarios]+Potential PEavail biofuels land marg EJ[scenarios]+Potential PEavail cellulosic biofuel EJ\ [scenarios] ~ EJ ~ | Biofuels 3gen land compet available[scenarios]= (Max land compet biofuels 2gen[scenarios]-Land compet biofuels 3gen Mha[scenarios])/\ Max land compet biofuels 2gen[scenarios ] ~ Dmnl ~ Remaining potential land available (dedicated to 2nd generation) as given \ as a fraction of unity. We assume that no new land starts directly to \ produce biofuels 3rd generation biofuels. | FES total biofuels production EJ[scenarios]= +PEavail biofuels 2gen land compet EJ[scenarios]+PEavail biofuels 3gen land compet EJ\ [scenarios]+PEavail biofuels land marg EJ[scenarios]+PEavail cellulosic biofuel EJ[\ scenarios] ~ EJ/Year ~ Final energy supply total biofuels liquids production. Equivalent to "FES \ total biofuels production EJ 2" but obtained disaggregately. | FES total biofuels production EJ 2[scenarios]= MIN(PED liquids EJ[scenarios], Potential PEavail total biofuels[scenarios]) ~ EJ/Year ~ Final energy supply total biofuels liquids production. Equivalent to "FES \ total biofuels production EJ" but obtained aggregately to estimate the \ "share biofuels overcapacity". | "FES total biofuels production Mb/d"[scenarios]= FES total biofuels production EJ[scenarios]*"Mb/d per EJ/year" ~ Mb/d ~ Final energy supply total biofuels liquids production. | PEavail biofuels 2gen land compet EJ[scenarios]= Potential PEavail biofuels 2gen land compet EJ[scenarios]*(1-share biofuels overcapacity\ [scenarios]) ~ EJ/Year ~ Primary energy available of biofuels from dedicated crops (2nd generation). | PEavail biofuels 3gen land compet EJ[scenarios]= Potential PEavail biofuels prod 3gen EJ[scenarios]*(1-share biofuels overcapacity[scenarios\ ]) ~ EJ/Year ~ Primary energy available of biofuels from dedicated crops (3rd generation). | PEavail biofuels land marg EJ[scenarios]= Potential PEavail biofuels land marg EJ[scenarios]*(1-share biofuels overcapacity[scenarios\ ]) ~ EJ ~ Total annual biofuel production in marginal lands. | PE biofuels land marg EJ[scenarios]= PEavail biofuels land marg EJ[scenarios]/Conv efficiency from NPP to biofuels ~ ~ Total annual primary energy biomass for biofuel production in marginal \ lands. | "PE biofuels prod 2gen+3gen EJ"[scenarios]= (PEavail biofuels 2gen land compet EJ[scenarios]+PEavail biofuels 3gen land compet EJ\ [scenarios])/Conv efficiency from NPP to biofuels ~ EJ/Year ~ Total annual primary energy biomass for biofuel production (2nd and 3rd \ generation) in marginal lands. | PE biomass for biofuels production EJ[scenarios]= PE biofuels land marg EJ[scenarios]+PE cellulosic biofuel EJ[scenarios]+"PE biofuels prod 2gen+3gen EJ"\ [scenarios ] ~ EJ/Year ~ Primary energy of biomass for biofuels production. | PE cellulosic biofuel EJ[scenarios]= Potential PE cellulosic biofuel EJ[scenarios]*(1-share biofuels overcapacity[scenarios\ ]) ~ EJ ~ Annual primary energy biomass used for cellulosic biofuels. | Max PEavail biofuels potential[scenarios]= Max PEavail potential bioE residues for cellulosic biofuels[scenarios]+"Max PEavail potential biofuels 2-3gen"\ [scenarios ]+Max PEavail potential biofuels marginal lands[scenarios] ~ EJ/Year ~ Maximum biofuels potential (primary energy) available. | start year biofuels land marg[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C45') ~~| start year biofuels land marg[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C45') ~~| start year biofuels land marg[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C45') ~~| start year biofuels land marg[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C45') ~~| start year biofuels land marg[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C45') ~~| start year biofuels land marg[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C45') ~ Year ~ First year when the technology "biofuels land marg" is available. | Land required biofuels land marg[scenarios]= Potential PEavail biofuels land marg EJ[scenarios]*Land occupation ratio biofuels marg land\ /Conv efficiency from NPP to biofuels ~ MHa/Year ~ Marginal lands occupied by biofuels. | Max PEavail potential biofuels marginal lands[scenarios]= BioE potential NPP marginal lands*Conv efficiency from NPP to biofuels ~ EJ/Year ~ Annual biofuels potential (primary energy) available from marginal lands | share biofuels overcapacity[scenarios]= ZIDZ( (Potential PEavail total biofuels[scenarios]-FES total biofuels production EJ 2\ [scenarios]) , Potential PEavail total biofuels[scenarios] ) ~ Dmnl ~ | Total land requirements renew Mha[scenarios]= surface solar PV Mha[scenarios]+surface CSP Mha[scenarios]+surface hydro Mha[scenarios\ ]+Land compet required dedicated crops for biofuels [scenarios]+Land required biofuels land marg[scenarios]+surface onshore wind Mha[scenarios\ ]*0 ~ MHa ~ Land required for RES power plants and total bioenergy (land competition + \ marginal lands). | Land occupation ratio biofuels marg land= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C62') ~ MHa/EJ ~ Field et al. (2008) found that 27 EJ of NPP can be extracted from 386 MHa \ of marginal lands. So, the land occupation ratio would be 386 MHa/27 EJ, \ i.e. 14.3 MHa/EJ NPP. | PEavail cellulosic biofuel EJ[scenarios]= PE cellulosic biofuel EJ[scenarios]*Efficiency bioE residues to cellulosic liquids[scenarios\ ] ~ EJ/Year ~ Cellulosic biofuels production from bioenergy-residues. | Potential PEavail biofuels land marg EJ[scenarios]= INTEG ( new biofuels land marg[scenarios], 0) ~ EJ/Year ~ Potential total annual biofuel production in marginal lands. | BioE potential NPP marginal lands= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C60') ~ EJ/Year ~ Potential in marginal lands, i.e. witout competition with current uses. \ (Field et al., 2008) find that 27 EJ of NPP can be extracted from 386 Mha \ of marginal lands. We assume that all the production from marginal lands \ is used for producing liquids. | start production biofuels= GET XLS LOOKUPS('inputs.xlsx', 'Parameters', '28', 'B29') ~ ktoe/Year ~ Exogenous start production scenario from the year "start year biofuels \ land marg". It mimics the biofuel 2nd generation deployment from the year \ 2000. | Additional PE production of bioenergy for biofuels[scenarios]= PE biomass for biofuels production EJ[scenarios]-Oil liquids saved by biofuels EJ[scenarios\ ] ~ EJ/Year ~ Additional primary energy demand of bioenergy (NPP) for biofuels in \ relation to the PEavail. We assume than 1 unit of energy of biofuels \ substitutes 1 unit of energy of oil. | Oil liquids saved by biofuels EJ[scenarios]= FES total biofuels production EJ[scenarios] ~ EJ/Year ~ Oil liquids saved by biofuels. | Efficiency bioE residues to cellulosic liquids[scenarios]= Conv efficiency from NPP to biofuels ~ Dmnl ~ Efficiency of the transformation from bioenergy residues to cellulosic \ liquids. We assume it is the same efficiency than for the conversion from \ biomass to 2nd generation biofuels. | Conv efficiency from NPP to biofuels= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C61') ~ Dmnl ~ Conversion efficiency from net primary productivity (NPP) of biomass to \ biofuels of 15%. Ref: de Castro & Carpintero (2014). | PES heat RES[scenarios]= "PES tot biogas for heat-com"[scenarios]+SUM("PES RES for heat-com by techn"[RES heat\ !,scenarios])+SUM("PES RES for heat-nc by techn" [RES heat!,scenarios]) ~ EJ ~ Primary energy of RES for heat. | PED NRE Liquids[scenarios]= MAX(0, PED liquids EJ[scenarios]-FES total biofuels production EJ[scenarios]) ~ EJ ~ Primary energy demand of non-renewable energy for the production of \ liquids. | "Potential FES CTL+GTL EJ"[scenarios]= CTL potential production[scenarios]+GTL potential production[scenarios] ~ EJ ~ | TFEC RES delayed 1yr[scenarios]= DELAY FIXED ( TFEC RES EJ[scenarios], 1, 43) ~ EJ ~ | "PE supply from RES non-elec without trad bioE EJ"[scenarios]= PES tot RES for heat[scenarios]+FES total biofuels production EJ[scenarios]+PES biogas for TFC\ [scenarios] ~ EJ/Year ~ Primary energy (non electric) supply from RES without traditional biomass. | PES gases[scenarios]= "PES nat. gas"[scenarios]+PES biogas for TFC[scenarios] ~ EJ ~ Primary energy supply gas. | "FES CTL+GTL EJ"[scenarios]= MIN(PED NRE Liquids[scenarios], "Potential FES CTL+GTL EJ"[scenarios]) ~ EJ/Year ~ CTL and GTL production. | "activate ELF all scen?"[scenarios]= 1 ~ Dmnl ~ Active/deactivate the energy loss function by scenario: 1: activate 0: not active | TPES RES delayed 1yr[scenarios]= DELAY FIXED ( TPE from RES EJ[scenarios], 1, 48.03) ~ Dmnl ~ | Annual TPES RES growth rate[scenarios]= -1+TPE from RES EJ[scenarios]/TPES RES delayed 1yr[scenarios] ~ Dmnl ~ | "PED nat. gas EJ"[scenarios]= MAX(0, PED gases[scenarios]-PES biogas for TFC[scenarios]) ~ EJ/Year ~ Primary energy demand of natural (fossil) gas. | Annual share RES vs TFEC growth rate[scenarios]= -1+share RES vs TFEC[scenarios]/share RES vs TFEC delayed 1yr[scenarios] ~ Dmnl ~ | Annual share RES vs TPES growth rate[scenarios]= -1+share RES vs TPES[scenarios]/share RES vs TPES delayed 1yr[scenarios] ~ Dmnl ~ | share RES vs TPES delayed 1yr[scenarios]= DELAY FIXED ( share RES vs TPES[scenarios], 1, 0.123) ~ Dmnl ~ | GTL production[scenarios]= GTL potential production[scenarios]*(1-"share CTL+GTL overcapacity"[scenarios]) ~ EJ ~ GTL production. | PES biogas for TFC[scenarios]= MIN(PED gases[scenarios], Potential PES biogas for TFC[scenarios]) ~ EJ ~ Primary energy supply biogas for total final consumption. | "share CTL+GTL overcapacity"[scenarios]= ZIDZ( ("Potential FES CTL+GTL EJ"[scenarios]-"FES CTL+GTL EJ"[scenarios]) , "Potential FES CTL+GTL EJ"\ [scenarios] ) ~ Dmnl ~ | share RES vs TFEC delayed 1yr[scenarios]= DELAY FIXED ( share RES vs TFEC[scenarios], 1, 0.1614) ~ Dmnl ~ | "share E-losses CC"[scenarios]= IF THEN ELSE(Time<2015, 0, IF THEN ELSE("activate ELF all scen?"[scenarios]=0, 0, IF THEN ELSE("activate ELF by scen?"[scenarios]=0, 0, "share E-losses CC from 2015"[\ scenarios]))) ~ Dmnl ~ Share of energy losses in relation to TFED due to climate change impacts. | "PED nat. gas for GTL EJ"[scenarios]= GTL production[scenarios]/GTL efficiency ~ EJ/Year ~ Demand of gas for CTL. | max unconv gas growth extraction[scenarios]= MAX(0, 1+IF THEN ELSE(Selection constraint extraction unconv gas[scenarios]=1, (P constraint growth extraction unconv gas\ [scenarios ])*TIME STEP*scarcity conv gas stock[scenarios],("User-defined extraction growth unconv gas"\ (Time))*TIME STEP)) ~ Dmnl ~ Constraint to maximum annual unconventional gas extraction (%). | PED coal for CTL EJ[scenarios]= CTL production[scenarios]/CTL efficiency ~ EJ/Year ~ Demand of coal for CTL. | Annual TFEC RES growth rate[scenarios]= -1+TFEC RES EJ[scenarios]/TFEC RES delayed 1yr[scenarios] ~ Dmnl ~ | PED total oil EJ[scenarios]= MAX(0,PED NRE Liquids[scenarios]-"FES CTL+GTL EJ"[scenarios]-Oil refinery gains EJ[scenarios\ ]) ~ EJ/Year ~ Primary energy demand of total oil (conventional and unconventional). | CTL production[scenarios]= CTL potential production[scenarios]*(1-"share CTL+GTL overcapacity"[scenarios]) ~ EJ ~ CTL production. | CH4 emissions coal without CTL[scenarios]= extraction coal emissions relevant EJ[scenarios]*gCH4 per MJ coal*MJ per EJ/g per Mt ~ MtCH4 ~ CH4 emissions coal. | PES tot RES for heat[scenarios]= SUM("PES RES for heat-com by techn"[RES heat!,scenarios])+SUM("PES RES for heat-nc by techn"\ [RES heat!,scenarios])+"PES tot biogas for heat-com"[scenarios] ~ EJ ~ Total primary energy supply for generating commercial and non-commercial \ heat from renewables. | "Total FE real supply RES for heat-nc EJ"[scenarios]= SUM("FE real generation RES heat-nc EJ"[RES heat!,scenarios]) ~ EJ ~ Total final energy supply delivered by RES for non-commercial heat. | real extraction conv oil emissions relevant EJ[scenarios]= MAX(0, real extraction conv oil EJ[scenarios]-("Non-energy use demand by final fuel EJ"\ [scenarios,liquids])*share conv vs total oil extraction [scenarios]) ~ EJ ~ Extraction of emission-relevant conventional oil, i.e. excepting the \ resource used for non-energy uses. We assume conventional and \ unconventional resource are used for non-energy uses following the same \ share as for their relative extraction. | "new RES capacity for heat-nc TW"[RES heat, scenarios]= IF THEN ELSE(Time<2013, "Historic RES capacity for heat-nc"[RES heat](Time+1)-"Historic RES capacity for heat-nc"\ [RES heat ](Time), "adapt growth RES for heat-nc"[RES heat,scenarios]*"installed capacity RES heat-nc TW"\ [RES heat,scenarios]*remaining potential constraint on new RES heat capacity[RES heat\ ,scenarios])*"abundance RES heat-nc2"[scenarios] ~ TW/Year ~ New annual installed capacity of RES technologies for non-commercial heat. | CO2 emissions coal without CTL[scenarios]= extraction coal emissions relevant EJ[scenarios]*gCO2 per MJ coal*MJ per EJ/g per Gt ~ GtCO2/Year ~ Emissions from coal withoug accounting for CTL-related emissions. | "Annual variation non-energy use"[scenarios,final sources]= IF THEN ELSE(Time>2009, "variation non-energy use"[final sources,scenarios], "Historic non-energy use"\ [final sources](Time+1)-"Historic non-energy use"[final sources](Time)) ~ EJ ~ Annual variation non-energy use by final fuel. | real extraction conv gas emissions relevant EJ[scenarios]= MAX(0, real extraction conv gas EJ[scenarios]-("PED nat. gas for GTL EJ"[scenarios]+\ "Non-energy use demand by final fuel EJ"[scenarios,gases])*share conv vs total gas extraction\ [scenarios]) ~ EJ ~ Extraction of emission-relevant conventional gas, i.e. excepting the \ resource used to produce GTL and for non-energy uses. We assume \ conventional and unconventional resource are used to produce GTL and for \ non-energy uses following the same share as for their relative extraction. | "PES RES for heat-nc by techn"["geot-heat", scenarios]= "FE real generation RES heat-nc EJ"["geot-heat",scenarios]/Efficiency RES heat["geot-heat"\ ] ~~| "PES RES for heat-nc by techn"["solar-heat",scenarios]= "FE real generation RES heat-nc EJ"["solar-heat",scenarios]*Efficiency solar panels for heat\ /Efficiency RES heat["solar-heat" ] ~~| "PES RES for heat-nc by techn"["solid bioE-heat",scenarios]= "FE real generation RES heat-nc EJ"["solid bioE-heat",scenarios]/Efficiency RES heat\ ["solid bioE-heat"] ~ EJ ~ Primary energy supply of RES technologies for non-commercial heat. | FES NRE for heat[scenarios]= "FES heat-com fossil fuels CHP plants EJ"[scenarios]+FES Heat from coal[scenarios]+"FES Heat from nat. gas"\ [scenarios]+ FES Heat from oil[scenarios]+"FES Heat-com nuclear CHP plants EJ"[scenarios] ~ EJ ~ Heat from non-renewable energy resources. | "installed capacity RES heat-nc TW"[RES heat,scenarios]= INTEG ( "new RES capacity for heat-nc TW"[RES heat,scenarios]+"replacement RES for heat-nc TW"\ [RES heat,scenarios]-"wear RES capacity for heat-nc TW"[RES heat,scenarios], "initial value RES for heat-nc"[RES heat]) ~ TW ~ Installed capacity of RES for non-commercial heat. | PES solids bioE EJ[scenarios]= Losses in charcoal plants EJ+PE bioE for Elec generation EJ[scenarios]+PE traditional biomass EJ delayed 1yr\ [scenarios] +"PES RES for heat-com by techn"["solid bioE-heat",scenarios]+"PES RES for heat-nc by techn"\ ["solid bioE-heat",scenarios] ~ EJ/Year ~ Total biomass supply.It aggregates supply for electricity, heat and \ traditional biomass. | "FED Heat-com plants fossil fuels EJ"[scenarios]= MAX("FED Heat-com NRE EJ"[scenarios]-"FES heat-com fossil fuels CHP plants EJ"[scenarios\ ]-"FES Heat-com nuclear CHP plants EJ"[scenarios],0) ~ EJ ~ Demand of fossil fuels for commercial heat plants. Fossil fuels CHP plants \ have priority due a better efficiency. | real extraction unconv gas emissions relevant EJ[scenarios]= MAX(0, real extraction unconv gas EJ[scenarios]-("PED nat. gas for GTL EJ"[scenarios\ ]+"Non-energy use demand by final fuel EJ"[scenarios,gases])*(1-share conv vs total gas extraction\ [scenarios])) ~ EJ ~ Extraction of emission-relevant unconventional gas, i.e. excepting the \ resource used to produce GTL and for non-energy uses. We assume \ conventional and unconventional resource are used to produce GTL and for \ non-energy uses following the same share as for their relative extraction. | real extraction unconv oil emissions relevant EJ[scenarios]= MAX(0, real extraction unconv oil EJ[scenarios]-("Non-energy use demand by final fuel EJ"\ [scenarios,liquids])*(1-share conv vs total oil extraction[scenarios])) ~ EJ ~ Extraction of emission-relevant unconventional oil, i.e. excepting the \ resource used for non-energy uses. We assume conventional and \ unconventional resource are used for non-energy uses following the same \ share as for their relative extraction. | available PE potential solid bioE for elec EJ[scenarios]= MAX(0, "Total PE solid bioE potential heat+elec EJ"[scenarios]-"PES RES for heat-com by techn"\ ["solid bioE-heat", scenarios]-"PES RES for heat-nc by techn"["solid bioE-heat",scenarios\ ]) ~ EJ ~ Available (primary energy) potential solid bioenergy for electricity. | remaining potential RES for heat[RES heat, scenarios]= ZIDZ( (MAX(0, Max FE potential RES for heat[RES heat,scenarios]-"potential FES RES for heat-com EJ"\ [RES heat,scenarios]-"potential FES RES for heat-nc EJ"[RES heat,scenarios])) , Max FE potential RES for heat\ [RES heat,scenarios] ) ~ Dmnl ~ Remaining potential available as given as a fraction of unity. | extraction coal emissions relevant EJ[scenarios]= MAX(0, extraction coal without CTL EJ[scenarios]-"Non-energy use demand by final fuel EJ"\ [scenarios,solids]) ~ EJ ~ Extraction of emission-relevant coal, i.e. excepting the resource used for \ non-energy uses. | "wear RES capacity for heat-nc TW"[RES heat, scenarios]= "installed capacity RES heat-nc TW"[RES heat,scenarios]/life time RES for heat[RES heat\ ] ~ TW ~ Decommission of the capacity that reachs the end of its lifetime. | "FE real generation RES heat-nc EJ"[RES heat, scenarios]= "potential FES RES for heat-nc EJ"[RES heat,scenarios]*(1-"RES heat-nc tot overcapacity"\ [scenarios]) ~ EJ ~ Non-commercial heat generation by RES technology. | "Total FE real supply RES for heat-com EJ"[scenarios]= SUM("FE real generation RES heat-com EJ"[RES heat!,scenarios]) ~ EJ ~ Total final energy supply delivered by RES for commercial heat. | "past RES growth for heat-com 0"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C101') ~~| "past RES growth for heat-com 0"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C102') ~~| "past RES growth for heat-com 0"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C103') ~ 1/Year ~ Historic annual average growth. | Efficiency conversion BioE plants to heat 0= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C43') ~ Dmnl ~ Efficiency of the transformation from bioenergy to heat in heat and CHP \ plants (aggregated). Efficiency of the transformation from bioenergy to \ electricity (estimation for 2014 from the IEA balances. | "FED Heat-com after priorities EJ"[scenarios]= MAX(0, "Total FED Heat-com EJ"[scenarios]-"FES heat-com from waste EJ"[scenarios]-"FES heat-com from biogas EJ"\ [scenarios]) ~ EJ ~ Total commercial heat demand including distribution losses after \ technologies with priority in the mix (waste and biogas). | FES heat from BioW[scenarios]= "FE real supply RES for heat-com tot EJ"[scenarios]+"FE real supply RES for heat-nc tot EJ"\ [scenarios]+"FES heat-com from biogas EJ"[scenarios]+"FES heat-com from waste EJ" [scenarios] ~ EJ ~ Heat generation of total bioenergy and waste (to compare with more common \ statistics). | "abundance RES heat-nc"[scenarios]= IF THEN ELSE("Total FED Heat-nc EJ"[scenarios]=0,0, ZIDZ( ("Total FED Heat-nc EJ"[scenarios\ ]-"FE real supply RES for heat-nc tot EJ"[scenarios]) , "Total FED Heat-nc EJ"[scenarios\ ] )) ~ Dmnl ~ The parameter abundance varies between (1;0). The closest to 1 indicates that heat \ generation from RES is far to cover to whole heat demand, if "abundance \ RES heat"=0 it means that RES heat cover the whole heat demand. IF THEN ELSE(Total FED Heat EJ delayed 1yr[scenarios]=0,0, IF THEN ELSE(Total FED Heat EJ delayed 1yr[scenarios] > FE real supply RES for heat \ tot EJ[scenarios], (Total FED Heat EJ delayed 1yr[scenarios]-FE real supply RES for heat tot \ EJ[scenarios])/Total FED Heat EJ delayed 1yr[scenarios], 0)) | Efficiency geothermal for heat 0= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G43') ~ Dmnl ~ | "FES Heat-com nuclear CHP plants EJ"[scenarios]= MIN("Potential FES Heat-com nuclear CHP plants EJ"[scenarios],"FED Heat-com NRE EJ"[\ scenarios]) ~ EJ ~ Commercial heat produced in cogeration nuclear plants. | "FE real supply RES for heat-nc tot EJ"[scenarios]= MIN(MAX("Total FED Heat-nc EJ"[scenarios], 0), "potential FES tot RES for heat-nc EJ"\ [scenarios]) ~ EJ ~ Total final energy supply delivered by RES for non-commercial heat. | "initial value RES for heat-nc"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H62') ~~| "initial value RES for heat-nc"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H63') ~~| "initial value RES for heat-nc"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H61') ~ TW ~ RES supply by technology for non-commercial heat in the year 1995. | "past RES growth for heat-nc"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C104') ~~| "past RES growth for heat-nc"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C105') ~~| "past RES growth for heat-nc"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C106') ~ 1/Year ~ Historic annual average growth. | P solid bioE for heat 0[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F59') ~~| P solid bioE for heat 0[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F59') ~~| P solid bioE for heat 0[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F59') ~~| P solid bioE for heat 0[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F59') ~~| P solid bioE for heat 0[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F59') ~~| P solid bioE for heat 0[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F59') ~ 1/Year ~ Annual growth in relation to the existing installed capacity. | FED heat fossil fuels CHP plants EJ[scenarios]= MAX("FED heat-com by NRE CHP plants EJ"[scenarios]-"FES Heat-com nuclear CHP plants EJ"\ [scenarios],0) ~ EJ ~ Final energy demand of fossil fuels in CHP plants. | "replacement RES for heat-nc"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D17') ~~| "replacement RES for heat-nc"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D18') ~~| "replacement RES for heat-nc"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D19') ~ Dmnl ~ If =1, we asume that all the power that reaches the end of its lifetime is \ replaced. | Efficiency solar panels for heat 0= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G41') ~ Dmnl ~ | P RES for heat 0["solar-heat",scenarios]= P solar for heat 0[scenarios] ~~| P RES for heat 0["geot-heat",scenarios]= P geothermal for heat 0[scenarios] ~~| P RES for heat 0["solid bioE-heat",scenarios]= P solid bioE for heat 0[scenarios] ~ 1/Year ~ Annual growth in RES supply for heat depending on the policy of the \ scenario. | P solar for heat 0[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F57') ~~| P solar for heat 0[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F57') ~~| P solar for heat 0[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F57') ~~| P solar for heat 0[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F57') ~~| P solar for heat 0[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F57') ~~| P solar for heat 0[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F57') ~ 1/Year ~ Annual growth in relation to the existing installed capacity. | "abundance RES heat-com"[scenarios]= IF THEN ELSE("FED Heat-com after priorities EJ"[scenarios]=0,0, ZIDZ( ("FED Heat-com after priorities EJ"\ [scenarios]-"FE real supply RES for heat-com tot EJ"[scenarios]) , "FED Heat-com after priorities EJ"\ [scenarios] )) ~ Dmnl ~ The parameter abundance varies between (1;0). The closest to 1 indicates that heat \ generation from RES is far to cover to whole heat demand, if "abundance \ RES heat"=0 it means that RES heat cover the whole heat demand. IF THEN ELSE(Total FED Heat EJ delayed 1yr[scenarios]=0,0, IF THEN ELSE(Total FED Heat EJ delayed 1yr[scenarios] > FE real supply RES for heat \ tot EJ[scenarios], (Total FED Heat EJ delayed 1yr[scenarios]-FE real supply RES for heat tot \ EJ[scenarios])/Total FED Heat EJ delayed 1yr[scenarios], 0)) | "abundance RES heat-nc2"[scenarios]= SQRT ("abundance RES heat-nc"[scenarios]) ~ Dmnl ~ Adaptation of the parameter abundance for better behaviour of the model. | "potential FES tot RES for heat-nc EJ"[scenarios]= SUM("potential FES RES for heat-nc EJ"[RES heat!,scenarios]) ~ EJ ~ Potential total final energy supply renewables for non-commercial heat \ given the installed capacity. | life time RES for heat 0["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C17') ~~| life time RES for heat 0["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C18') ~~| life time RES for heat 0["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C19') ~ Year ~ Lifetime RES thermal technologies and plants. | Efficiency RES heat 0["solar-heat"]= Efficiency solar panels for heat 0*Losses solar for heat 0 ~~| Efficiency RES heat 0["geot-heat"]= Efficiency geothermal for heat 0 ~~| Efficiency RES heat 0["solid bioE-heat"]= Efficiency conversion BioE plants to heat 0 ~ Dmnl ~ | replacement RES for heat 0["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D17') ~~| replacement RES for heat 0["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D18') ~~| replacement RES for heat 0["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D19') ~ Dmnl ~ If =1, we asume that all the power that reaches the end of its lifetime is \ replaced. | P geothermal for heat 0[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F58') ~~| P geothermal for heat 0[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F58') ~~| P geothermal for heat 0[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F58') ~~| P geothermal for heat 0[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F58') ~~| P geothermal for heat 0[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F58') ~~| P geothermal for heat 0[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F58') ~ 1/Year ~ Annual growth in relation to the existing installed capacity. | FES RES for heat EJ[scenarios]= "FE real supply RES for heat-com tot EJ"[scenarios]+"FE real supply RES for heat-nc tot EJ"\ [scenarios]+"FES heat-com from biogas EJ"[scenarios] ~ EJ ~ Heat from renewable energy sources. | "FE real supply RES for heat-com tot EJ"[scenarios]= MIN(MAX("FED Heat-com after priorities EJ"[scenarios], 0), "potential FES tot RES for heat-com EJ"\ [scenarios]) ~ EJ ~ Total final energy supply delivered by RES for commercial heat. | Losses solar for heat 0= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G42') ~ Dmnl ~ | "RES heat-nc tot overcapacity"[scenarios]= IF THEN ELSE("potential FES tot RES for heat-nc EJ"[scenarios]=0,0, ("potential FES tot RES for heat-nc EJ"[scenarios]-"FE real supply RES for heat-nc tot EJ"\ [scenarios])/"potential FES tot RES for heat-nc EJ" [scenarios]) ~ Dmnl ~ Overcapacity for each technology RES for heat-nc taking into account the \ installed capacity and the real generation. | "potential FES RES for heat-nc EJ"[RES heat, scenarios]= "potential FES RES for heat-nc TWh"[RES heat,scenarios]*EJ per TWh ~ EJ ~ Potential final energy supply renewables for non-commercial heat given the \ installed capacity. | "Historic RES capacity for heat-nc"["solar-heat"]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H62')) ~~| "Historic RES capacity for heat-nc"["geot-heat"]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H63')) ~~| "Historic RES capacity for heat-nc"["solid bioE-heat"]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H61')) ~ TW ~ Historic installed capacity of RES technologies for non-commercial heat \ generation. | Historic share of transformation losses vs extraction[liquids]:= GET XLS DATA('inputs.xlsx', 'Constants', '203', 'B204') ~~| Historic share of transformation losses vs extraction[solids]:= GET XLS DATA('inputs.xlsx', 'Constants', '203', 'B205') ~ Dmnl ~ Historic share transformation losses of each fossil fuel vs annual \ extraction. (Own elaboration from IEA balances) | Other solids required[scenarios]= Transformation FF losses EJ[scenarios,solids]+Energy distr losses FF EJ[scenarios,solids\ ]+"Non-energy use demand by final fuel EJ"[scenarios,solids] ~ EJ ~ | Ratio gain gas vs lose solids in tranf processes:= GET XLS DATA('inputs.xlsx', 'Constants', '203', 'B206') ~ Dmnl ~ Gas gain in transformation processes of coal(Coke oven, Blust furnace,...) \ (Own elaboration from IEA balances) | Other gases required[scenarios]= +Transformation FF losses EJ[scenarios,gases]+Energy distr losses FF EJ[scenarios,gases\ ]+"Non-energy use demand by final fuel EJ"[scenarios,gases] ~ EJ ~ | Transformation FF losses EJ[scenarios,liquids]= PES fossil fuel extraction delayed[scenarios,liquids]*Historic share of transformation losses vs extraction\ [liquids] ~~| Transformation FF losses EJ[scenarios,solids]= PES fossil fuel extraction delayed[scenarios,solids]*Historic share of transformation losses vs extraction\ [solids] ~~| Transformation FF losses EJ[scenarios,electricity]= 0 ~~| Transformation FF losses EJ[scenarios,gases]= Transformation FF losses EJ[scenarios,solids]*Ratio gain gas vs lose solids in tranf processes\ ~~| Transformation FF losses EJ[scenarios,heat]= 0 ~ ~ Losses in transformation processes of each fossil fuel | FES Elec fossil fuel CHP plants EJ[scenarios]= MIN(Potential FE gen Elec fossil fuel CHP plants EJ[scenarios], Demand Elec NRE TWh[\ scenarios]*EJ per TWh) ~ EJ/Year ~ Final Energy supply of electricity from fossil fuels in CHP plants. We \ assign priority to it due to its better efficiency. | Total FE Elec demand after priorities TWh[scenarios]= MAX(Total FE Elec demand TWh[scenarios]-FES elec from RES with priority TWh[scenarios\ ]-FES elec from waste TWh[scenarios],0) ~ TWh ~ | Demand Elec NRE TWh[scenarios]= MAX(0, Total FE Elec demand TWh[scenarios]-FE tot generation all RES elec TWh[scenarios\ ]-FES elec from waste TWh[scenarios]) ~ TWh/Year ~ The model assigns priority to RES generation to cover the electricity \ demand. | "Non-energy use demand by final fuel EJ"[scenarios,final sources]= INTEG ( "Annual variation non-energy use"[scenarios,final sources], "initial non-energy use"[final sources]) ~ EJ ~ Non-energy use demand by final fuel | share solids for final energy[scenarios]= ZIDZ( Required FED solids[scenarios] , (PED solids[scenarios]-PED coal for CTL EJ[scenarios\ ]-Other solids required[scenarios]) ) ~ Dmnl ~ Share of final energy vs primary energy for solids. | real FE consumption gases EJ[scenarios]= (PES gases[scenarios]-"PED nat. gas for GTL EJ"[scenarios]-Other gases required[scenarios\ ])*share gases for final energy[scenarios] ~ EJ ~ Real final energy consumption by gases after accounting for energy \ availability. | real FE consumption solids EJ[scenarios]= (extraction coal EJ[scenarios]+(PE traditional biomass EJ delayed 1yr[scenarios]+PES waste for TFC\ [scenarios ]+PES peat EJ+Losses in charcoal plants EJ)-PED coal for CTL EJ[scenarios]-Other solids required\ [scenarios])*share solids for final energy[scenarios] ~ EJ ~ Real final energy consumption by solids after accounting for energy \ availability. | "Total real non-energy use consumption EJ"[scenarios]= SUM("Non-energy use demand by final fuel EJ"[scenarios,final sources!]) ~ EJ ~ | share gases for final energy[scenarios]= ZIDZ( Required FED by gas[scenarios] , (PED gases[scenarios]-"PED nat. gas for GTL EJ"\ [scenarios]-Other gases required[scenarios]) ) ~ Dmnl ~ Share of final energy vs primary energy for gases. | "ratio FED for heat-nc vs FED for heat-com"[scenarios]= SUM("FED by fuel for heat-nc"[final sources!,scenarios])*ZIDZ( 1 , Required FED by fuel before heat correction\ [scenarios,heat] ) ~ Dmnl ~ Ratio FED for non-commercial heat vs FED for commercial heat (before \ climate change impacts). | real FE consumption by fuel before heat correction[scenarios, electricity]= real FE consumption by fuel[scenarios,electricity] ~~| real FE consumption by fuel before heat correction[scenarios,heat]= real FE consumption by fuel[scenarios,heat]/(1+"ratio FED for heat-nc vs FED for heat-com"\ [scenarios]) ~~| real FE consumption by fuel before heat correction[scenarios, liquids]= real FE consumption by fuel[scenarios,liquids]/(1-share FEH over FED by final fuel[liquids\ ,scenarios]) ~~| real FE consumption by fuel before heat correction[scenarios,gases]= real FE consumption by fuel[scenarios,gases]/(1-share FEH over FED by final fuel[gases\ ,scenarios]) ~~| real FE consumption by fuel before heat correction[scenarios,solids]= real FE consumption by fuel[scenarios,solids]/(1-share FEH over FED by final fuel[solids\ ,scenarios]) ~ EJ ~ | Required TFED before heat dem corr[scenarios]= SUM(Required FED by fuel before heat correction[scenarios,final sources!]) ~ EJ ~ Total final energy demand before heat demand correction, i.e. following \ the data from the IEA Balances (Non-commercial heat is not accounted as \ heat). | cum materials to extract for EV batteries[materials, scenarios]= INTEG ( Total materials to extract for EV batteries Mt[materials,scenarios], initial cumulated material requirements for EV batteries 1995) ~ Mt ~ Cumulative materials to be mined for EV batteries. | share cum dem materials to extract alt techn vs total[materials, scenarios]= IF THEN ELSE(total cumulative demand materials to extract from 2015[materials,scenarios\ ]<=0,0,(cum materials to extract for alt techn from 2015[materials,scenarios])/total cumulative demand materials to extract from 2015\ [materials,scenarios]) ~ Dmnl ~ Yearly share of cumulative demand of materials to extract for alternative \ technologies (RES elec & EV batteries) vs. total. | Total recycled materials for EV batteries Mt[materials, scenarios]= Total materials required for EV batteries[materials,scenarios]-Total materials to extract for EV batteries Mt\ [materials,scenarios] ~ Mt ~ Total recycled materials for EV batteries. | share RES vs TFEC[scenarios]= ZIDZ( TFEC RES EJ[scenarios] , Real TFEC[scenarios] ) ~ Dmnl ~ Share of total final energy consumption from RES over the total. | cum materials to extract for alt techn from 2015[materials, scenarios]= cum materials to extract for EV batteries from 2015[materials,scenarios]+cum materials to extract for RES elec from 2015\ [materials,scenarios] ~ Mt ~ Cumulative materials demand for alternative technologies (RES elec & EV \ batteries) from the year 2015. | Total materials to extract for EV batteries from 2015 Mt[materials,scenarios]= IF THEN ELSE(Time<2015,0,Total materials to extract for EV batteries Mt[materials,scenarios\ ]) ~ Mt/Year ~ Annual materials to be mined for EV batteries from 2015. | "materials per new capacity installed - EV batteries"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F5') ~~| "materials per new capacity installed - EV batteries"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F6') ~~| "materials per new capacity installed - EV batteries"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F7') ~~| "materials per new capacity installed - EV batteries"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F8') ~~| "materials per new capacity installed - EV batteries"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F9') ~~| "materials per new capacity installed - EV batteries"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F10') ~~| "materials per new capacity installed - EV batteries"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F11') ~~| "materials per new capacity installed - EV batteries"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F12') ~~| "materials per new capacity installed - EV batteries"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F13') ~~| "materials per new capacity installed - EV batteries"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F14') ~~| "materials per new capacity installed - EV batteries"["Electric/electronic components"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F15') ~~| "materials per new capacity installed - EV batteries"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F16') ~~| "materials per new capacity installed - EV batteries"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F17') ~~| "materials per new capacity installed - EV batteries"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F18') ~~| "materials per new capacity installed - EV batteries"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F19') ~~| "materials per new capacity installed - EV batteries"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F20') ~~| "materials per new capacity installed - EV batteries"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F21') ~~| "materials per new capacity installed - EV batteries"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F22') ~~| "materials per new capacity installed - EV batteries"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F23') ~~| "materials per new capacity installed - EV batteries"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F24') ~~| "materials per new capacity installed - EV batteries"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F25') ~~| "materials per new capacity installed - EV batteries"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F26') ~~| "materials per new capacity installed - EV batteries"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F27') ~~| "materials per new capacity installed - EV batteries"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F28') ~~| "materials per new capacity installed - EV batteries"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F29') ~~| "materials per new capacity installed - EV batteries"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F30') ~~| "materials per new capacity installed - EV batteries"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F31') ~~| "materials per new capacity installed - EV batteries"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F32') ~~| "materials per new capacity installed - EV batteries"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F33') ~~| "materials per new capacity installed - EV batteries"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F34') ~~| "materials per new capacity installed - EV batteries"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F35') ~~| "materials per new capacity installed - EV batteries"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F36') ~~| "materials per new capacity installed - EV batteries"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F37') ~~| "materials per new capacity installed - EV batteries"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F38') ~~| "materials per new capacity installed - EV batteries"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F39') ~~| "materials per new capacity installed - EV batteries"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F40') ~~| "materials per new capacity installed - EV batteries"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F41') ~~| "materials per new capacity installed - EV batteries"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F42') ~~| "materials per new capacity installed - EV batteries"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F43') ~~| "materials per new capacity installed - EV batteries"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F44') ~~| "materials per new capacity installed - EV batteries"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F45') ~~| "materials per new capacity installed - EV batteries"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F46') ~~| "materials per new capacity installed - EV batteries"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F47') ~~| "materials per new capacity installed - EV batteries"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F48') ~~| "materials per new capacity installed - EV batteries"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F49') ~~| "materials per new capacity installed - EV batteries"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F50') ~~| "materials per new capacity installed - EV batteries"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F51') ~~| "materials per new capacity installed - EV batteries"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F52') ~~| "materials per new capacity installed - EV batteries"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F53') ~~| "materials per new capacity installed - EV batteries"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F54') ~~| "materials per new capacity installed - EV batteries"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F55') ~~| "materials per new capacity installed - EV batteries"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F56') ~~| "materials per new capacity installed - EV batteries"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F57') ~~| "materials per new capacity installed - EV batteries"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F58') ~~| "materials per new capacity installed - EV batteries"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F59') ~~| "materials per new capacity installed - EV batteries"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F60') ~~| "materials per new capacity installed - EV batteries"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F61') ~~| "materials per new capacity installed - EV batteries"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'F62') ~ kg/MW ~ Materials requirements per EV battery. | Total materials to extract for EV batteries Mt[materials,scenarios]= Total materials required for EV batteries[materials,scenarios]*(1-recycling rates minerals alt techn\ [materials,scenarios]) ~ Mt/Year ~ Annual materials to be mined for the construction of EV batteries. | Total materials to extract Mt[materials, scenarios]= Materials to extract Rest Mt[materials,scenarios]+Total materials to extract for RES elec Mt\ [materials,scenarios]+Total materials to extract for EV batteries Mt[materials,scenarios\ ] ~ Mt ~ | cum materials requirements for EV batteries[materials, scenarios]= INTEG ( Total materials required for EV batteries[materials,scenarios], initial cumulated material requirements for EV batteries 1995) ~ Mt ~ Total cumulative materials requirements for EV batteries. | "'static' EROIgrid RES elec"[RES elec, scenarios]= IF THEN ELSE("'static' EROI RES elec"[RES elec,scenarios]<=0,0,(1-"share RES elec generation curtailed&stored"\ [RES elec,scenarios]+"share RES elec generation curtailed&stored"[RES elec ,scenarios]*rt elec storage efficiency[scenarios])/(1/"'static' EROI RES elec"[RES elec\ ,scenarios]+"share RES elec generation curtailed&stored"[RES elec,scenarios ]*rt elec storage efficiency[scenarios]/ESOI elec storage[scenarios])) ~ Dmnl ~ System EROI after accounting for the energy losses of electricity storage. \ Equation from Barnhart et al (2013). | T per x= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'G20') ~ Dmnl ~ 1e12 = 1 T | Total materials required for EV batteries[materials,scenarios]= materials required for EV batteries Mt[materials,scenarios] ~ Mt/Year ~ Total annual materials requirements for EV batteries. | TFEC from RES per capita[scenarios]= ZIDZ( TFEC RES EJ[scenarios]*GJ per EJ , Population[scenarios] ) ~ GJ/person ~ | share materials cum demand to extract vs reserves for RES elec[materials, scenarios]= IF THEN ELSE(current mineral reserves Mt[materials]=0,0,cum materials to extract for alt techn from 2015\ [materials,scenarios]/current mineral reserves Mt[materials]) ~ Dmnl ~ Share of materials cumulative demand to extract in mines for RES elec vs \ reserves of each material. | rt storage efficiency EV batteries= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G46') ~ Dmnl ~ Round-trip storage efficiency of electric batteries frome electric \ vehicles. | cum materials to extract for EV batteries from 2015[materials, scenarios]= INTEG ( Total materials to extract for EV batteries from 2015 Mt[materials,scenarios], initial cumulated material requirements for EV batteries 1995) ~ Mt ~ Cumulative materials to be mined for EV batteries. | total cumulative demand materials to extract from 2015[materials,scenarios]= cum materials to extract for alt techn from 2015[materials,scenarios]+cum materials to extract Rest from 2015\ [materials,scenarios] ~ Mt ~ Total cumulative demand materials to extract in mines. | initial cumulated material requirements for EV batteries 1995= 0 ~ Mt ~ | share materials cum demand to extract vs resources for RES elec[materials, scenarios]\ = IF THEN ELSE(current mineral resources Mt[materials]=0,0,cum materials to extract for alt techn from 2015\ [materials,scenarios]/current mineral resources Mt[materials]) ~ Dmnl ~ Share of materials cumulative demand to extract in mines for RES elec vs \ resources of each material. | FE tot generation all RES elec EJ[scenarios]= FE tot generation all RES elec TWh[scenarios]*EJ per TWh ~ EJ ~ Electricity generation from all RES technologies. | "Carbon footprint tonnesC/person"[scenarios]= "Carbon footprint tCO2/person"[scenarios]*C per CO2 ~ tonnesC/person ~ Carbon footprint. | Potential max HDI[scenarios]= IF THEN ELSE(Net TFEC per capita[scenarios]<=0, 0, MIN(1, 0.1395*LN(Net TFEC per capita\ [scenarios])+0.1508)) ~ Dmnl ~ Potential HDI that can be reached by a society given its final energy use \ per capita. | kW per battery EV= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G49') ~ kW/battery ~ Average kW per battery of electrical vehicle. | PES fossil fuel extraction delayed[scenarios,liquids]= DELAY FIXED ( PES fossil fuel extraction[scenarios,liquids], TIME STEP, 139) ~~| PES fossil fuel extraction delayed[scenarios,solids]= DELAY FIXED ( PES fossil fuel extraction[scenarios,solids], TIME STEP , 101) ~~| PES fossil fuel extraction delayed[scenarios,gases]= DELAY FIXED ( PES fossil fuel extraction[scenarios,gases], TIME STEP, 79) ~ EJ/Year ~ Annual extraction of fossil fuels delayed | Historic share of losses vs extraction[liquids]:= GET XLS DATA('inputs.xlsx', 'Constants', '196', 'B198') ~~| Historic share of losses vs extraction[solids]:= GET XLS DATA('inputs.xlsx', 'Constants', '196', 'B197') ~~| Historic share of losses vs extraction[gases]:= GET XLS DATA('inputs.xlsx', 'Constants', '196', 'B199') ~ Dmnl ~ Historic share losses of each fossil fuel vs annual extraction. (Own \ elaboration from IEA balances) | Energy distr losses FF EJ[scenarios,liquids]= PES fossil fuel extraction delayed[scenarios,liquids]*Historic share of losses vs extraction\ [liquids] ~~| Energy distr losses FF EJ[scenarios,solids]= PES fossil fuel extraction delayed[scenarios,solids]*Historic share of losses vs extraction\ [solids] ~~| Energy distr losses FF EJ[scenarios,gases]= PES fossil fuel extraction delayed[scenarios,gases]*Historic share of losses vs extraction\ [gases] ~~| Energy distr losses FF EJ[scenarios,electricity]= 0 ~~| Energy distr losses FF EJ[scenarios,heat]= 0 ~ EJ/Year ~ Energy distribution losses of fossil fuels. | PES fossil fuel extraction[scenarios,liquids]= PES oil EJ[scenarios] ~~| PES fossil fuel extraction[scenarios,solids]= extraction coal EJ[scenarios] ~~| PES fossil fuel extraction[scenarios,gases]= "PES nat. gas"[scenarios] ~ EJ/Year ~ Annual extraction of fossil fuels | Historic demand by sector[sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '1' , 'B2') ~ Mdollars ~ Historic demand (35 WIOD sectors). US$1995 | variation demand flow FD[scenarios,sectors]= IF THEN ELSE(Time<2009 ,historic variation demand[scenarios,sectors],(Gross fixed capital formation\ [scenarios,sectors]* (1-((1-share consum goverments and inventories next step[sectors])/(1-share consum goverment and inventories\ [sectors]))) +Household demand[scenarios,sectors]*(1-((1-share consum goverments and inventories next step\ [sectors])/(1-share consum goverment and inventories [sectors])))+variation GFCF[scenarios,sectors]+variation household demand[scenarios,\ sectors])/(1-share consum goverments and inventories next step [sectors])) ~ Mdollars/Year ~ variation of final demand by industrial sectors | historic variation demand[scenarios,sectors]= Historic demand by sector[sectors](Time+1)-Historic demand by sector[sectors](Time) ~ Mdollars ~ Historic variation of demand (35 WIOD sectors). US$1995 | Initial energy intensity 1995 H[final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'GM49') ~ ~ | min energy intensity vs intial H[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C200') ~~| min energy intensity vs intial H[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C200') ~~| min energy intensity vs intial H[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C200') ~~| min energy intensity vs intial H[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C200') ~~| min energy intensity vs intial H[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C200') ~~| min energy intensity vs intial H[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C200') ~ Dmnl ~ | minimum fraction H[BAU,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU213') ~~| minimum fraction H[SCEN1,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU213') ~~| minimum fraction H[SCEN2,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU213') ~~| minimum fraction H[SCEN3,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU213') ~~| minimum fraction H[SCEN4,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU213') ~~| minimum fraction H[User defined,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU213') ~ ~ | Policy to improve efficiency speed H[BAU,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU208') ~~| Policy to improve efficiency speed H[SCEN1,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU208') ~~| Policy to improve efficiency speed H[SCEN2,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU208') ~~| Policy to improve efficiency speed H[SCEN3,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU208') ~~| Policy to improve efficiency speed H[SCEN4,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU208') ~~| Policy to improve efficiency speed H[User defined,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU208') ~ ~ | Max yearly change H[BAU,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU214') ~~| Max yearly change H[SCEN1,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU214') ~~| Max yearly change H[SCEN2,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU214') ~~| Max yearly change H[SCEN3,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU214') ~~| Max yearly change H[SCEN4,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU214') ~~| Max yearly change H[User defined,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU214') ~ ~ | available improvement efficiency H[scenarios]= MIN(1,IF THEN ELSE(Time>2009, ZIDZ( (Global energy intensity H[scenarios]-(min energy intensity vs intial H\ [scenarios]*Initial global energy intensity 2009 H)), 0.7*Initial global energy intensity 2009 H\ ), 1)) ~ ~ | Year policy change energy H[BAU,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU211') ~~| Year policy change energy H[SCEN1,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU211') ~~| Year policy change energy H[SCEN2,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU211') ~~| Year policy change energy H[SCEN3,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU211') ~~| Year policy change energy H[SCEN4,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU211') ~~| Year policy change energy H[User defined,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU211') ~ ~ | efficiency rate of substitution H[BAU,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU216') ~~| efficiency rate of substitution H[SCEN1,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU216') ~~| efficiency rate of substitution H[SCEN2,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU216') ~~| efficiency rate of substitution H[SCEN3,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU216') ~~| efficiency rate of substitution H[SCEN4,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU216') ~~| efficiency rate of substitution H[User defined,final sources,final sources1]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU216') ~ ~ | Energy cost pressure H[scenarios,final sources]= 1-abundance of energy H[scenarios,final sources] ~ ~ | abundance of energy H[scenarios,liquids]= abundance liquids[scenarios] ~~| abundance of energy H[scenarios,gases]= abundance gases[scenarios] ~~| abundance of energy H[scenarios,solids]= abundance solids[scenarios] ~~| abundance of energy H[scenarios,electricity]= 1 ~~| abundance of energy H[scenarios,heat]= 1 ~ ~ | Global energy intensity H[scenarios]= SUM(Evol final energy intensity H[scenarios,final sources!]) ~ ~ | historic rate final energy intensity H[final sources]= Historic final energy intensity H[final sources](Time+1)-Historic final energy intensity H\ [final sources](Time) ~ EJ/Tdollars/Year ~ Historic variation of final energy intensity by final souerce (WIOD data) | Maximun yearly aceleration of intensity improvement pct H[BAU,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU209') ~~| Maximun yearly aceleration of intensity improvement pct H[SCEN1,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU209') ~~| Maximun yearly aceleration of intensity improvement pct H[SCEN2,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU209') ~~| Maximun yearly aceleration of intensity improvement pct H[SCEN3,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU209') ~~| Maximun yearly aceleration of intensity improvement pct H[SCEN4,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU209') ~~| Maximun yearly aceleration of intensity improvement pct H[User defined,final sources]\ = GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU209') ~ ~ | historical mean rate energy intensity H[final sources]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'GM48') ~ Dmnl ~ Historical trend of households energy intensity by final souerce (OLS \ method) | Policy change energy speed H[BAU,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU212') ~~| Policy change energy speed H[SCEN1,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU212') ~~| Policy change energy speed H[SCEN2,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU212') ~~| Policy change energy speed H[SCEN3,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU212') ~~| Policy change energy speed H[SCEN4,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU212') ~~| Policy change energy speed H[User defined,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU212') ~ ~ | Historic final energy intensity H[electricity]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C83') ~~| Historic final energy intensity H[heat]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C119') ~~| Historic final energy intensity H[liquids]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C155') ~~| Historic final energy intensity H[solids]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C227') ~~| Historic final energy intensity H[gases]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C191') ~ EJ/Tdollars ~ Historic final energy intensity by final souerce (WIOD data) | Initial global energy intensity 2009 H= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'AK230') ~ ~ | Year policy to improve efficiency H[BAU,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'FU207') ~~| Year policy to improve efficiency H[SCEN1,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'FU207') ~~| Year policy to improve efficiency H[SCEN2,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'FU207') ~~| Year policy to improve efficiency H[SCEN3,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'FU207') ~~| Year policy to improve efficiency H[SCEN4,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'FU207') ~~| Year policy to improve efficiency H[User defined,final sources]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'FU207') ~ ~ | share conv vs total oil extraction[scenarios]= ZIDZ( real extraction conv oil EJ[scenarios] , (real extraction conv oil EJ[scenarios\ ]+real extraction unconv oil EJ[scenarios]) ) ~ EJ ~ Share of conventional oil vs total oil extracted. | "PES nat. gas without GTL"[scenarios]= "PES nat. gas"[scenarios]-"PED nat. gas for GTL EJ"[scenarios] ~ EJ/Year ~ Total extraction of conventional gas and unconventional (without GTL). | CO2 emissions conv gas without GTL[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1,real extraction conv gas emissions relevant EJ\ [scenarios]*gCO2 per MJ conv gas,(1-Adapt CO2 emissions unconv gas[scenarios])*real extraction conv gas emissions relevant EJ\ [scenarios]*gCO2 per MJ conv gas+Adapt CO2 emissions unconv gas[scenarios]*real extraction conv gas emissions relevant EJ\ [scenarios]*gCO2 per MJ unconv gas)*MJ per EJ/g per Gt ~ GtCO2/Year ~ CO2 emissions from conventional gas (withouth GTL) when the gas extraction \ is disaggregated in conventional and unconventional resource, and CO2 \ emissions from total gas when the extraction is aggregated. | CO2 emissions conv oil[scenarios]= real extraction conv oil emissions relevant EJ[scenarios]*gCO2 per MJ conv oil*MJ per EJ\ /g per Gt ~ GtCO2/Year ~ CO2 emissions from conventional oil. | CO2 emissions GTL[scenarios]= "PED nat. gas for GTL EJ"[scenarios]*gCO2 per MJ GTL*MJ per EJ/g per Gt ~ GtCO2/Year ~ CO2 emissions associated to GTL production. | CH4 emissions conv gas without GTL[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1, real extraction conv gas emissions relevant EJ[scenarios]*gCH4 per MJ conv gas, (1-Adapt CO2 emissions unconv gas[scenarios])*real extraction conv gas emissions relevant EJ\ [scenarios]*gCH4 per MJ conv gas+Adapt CO2 emissions unconv gas[scenarios]*real extraction conv gas emissions relevant EJ\ [scenarios]*gCH4 per MJ unconv gas)*MJ per EJ/g per Mt ~ MtCH4 ~ CH4 emissions conventional gas. | CO2 emissions unconv oil[scenarios]= (real extraction unconv oil emissions relevant EJ[scenarios]*(gCO2 per MJ unconv oil\ +(gCO2 per MJ shale oil-gCO2 per MJ unconv oil )*Adapt emissions shale oil[scenarios]))*MJ per EJ/g per Gt ~ GtCO2/Year ~ CO2 emissions from unconventional oil. | share conv vs total gas extraction[scenarios]= ZIDZ( real extraction conv gas EJ[scenarios] , (real extraction conv gas EJ[scenarios\ ]+real extraction unconv gas EJ[scenarios]) ) ~ EJ ~ Share of conventional gas vs total gas extracted. | CH4 emissions unconv gas[scenarios]= real extraction unconv gas emissions relevant EJ[scenarios]*gCH4 per MJ unconv gas*MJ per EJ\ /g per Mt ~ MtCH4 ~ CH4 emissions unconventional gas. | FE heat demand consum [scenarios]= Required FED by fuel[scenarios,heat] ~ EJ ~ Heat demand consumption. | share electricity vs TFES[scenarios]= real FE consumption by fuel[scenarios,electricity]/SUM(real FE consumption by fuel[scenarios\ ,final sources!]) ~ Dmnl ~ Share of electricity vs TFES. | CO2 emissions peat= PES peat EJ*gCO2 per MJ shale oil*MJ per EJ/g per Gt ~ GtCO2/Year ~ CO2 emissions from peat. | Required FED by gas[scenarios]= Required FED by fuel[scenarios,gases] ~ EJ ~ Required final energy demand by gas. | Required TFED[scenarios]= SUM(Required FED by fuel[scenarios,final sources!]) ~ EJ ~ Required total final energy demand after heat demand correction. \ Non-commercial heat is accounted as heat, i.e. not following the data from \ the IEA Balances. | Total FE Elec consumption EJ[scenarios]= Total FE Elec consumption TWh[scenarios]*EJ per TWh ~ EJ ~ Total final energy electricity consumption (fossil fuels, nuclear, waste & \ renewables) (TWh) excluding distribution losses and the energy losses due \ to impacts of Climate Change. | Total FE Elec consumption TWh[scenarios]= Total FE Elec generation TWh[scenarios]/(1+"share transm&distr elec losses"[scenarios\ ]) ~ TWh/Year ~ Total final energy electricity consumption (fossil fuels, nuclear, waste & \ renewables) (TWh) excluding distribution losses. | PED gases[scenarios]= MAX(0, Required FED by gas[scenarios]+"PED nat. gas for GTL EJ"[scenarios]+PE demand gas Elec plants EJ\ [scenarios]+PED gases for Heat plants EJ[scenarios]+PED gas for CHP plants EJ[scenarios\ ]+"PED gas Heat-nc"[scenarios]+Other gases required[scenarios]) ~ EJ ~ Primary energy demand total gases. | Total FE Heat consumption EJ[scenarios]= Total FE Heat generation EJ[scenarios]/(1+Share heat distribution losses) ~ EJ ~ Total final heat consumption (fossil fuels, nuclear, waste & renewables) \ (EJ). | share solids vs TFES[scenarios]= real FE consumption by fuel[scenarios,solids]/SUM(real FE consumption by fuel[scenarios\ ,final sources!]) ~ Dmnl ~ Share of solids vs TFES. | share gases vs TFES[scenarios]= real FE consumption by fuel[scenarios,gases]/SUM(real FE consumption by fuel[scenarios\ ,final sources!]) ~ Dmnl ~ Share of gases vs TFES. | Required FED solids[scenarios]= Required FED by fuel[scenarios,solids] ~ EJ ~ Required final energy demand solids. | share heat vs TFES[scenarios]= real FE consumption by fuel[scenarios,heat]/SUM(real FE consumption by fuel[scenarios\ ,final sources!]) ~ Dmnl ~ Share of heat vs TFES. | PED solids[scenarios]= MAX(0, Required FED solids[scenarios]+PED coal for CTL EJ[scenarios]+PE demand coal Elec plants EJ\ [scenarios]+PED coal for Heat plants EJ [scenarios]+PED coal for CHP plants EJ[scenarios]+"PED coal Heat-nc"[scenarios]+Other solids required\ [scenarios]) ~ EJ ~ Primary energy demand of solids. | scarcity conv oil[scenarios]= IF THEN ELSE(max extraction conv oil EJ[scenarios]=0,0, IF THEN ELSE(max extraction conv oil EJ[scenarios]>=extraction conv oil EJ[scenarios\ ], 1-((max extraction conv oil EJ[scenarios ]-extraction conv oil EJ[scenarios])/max extraction conv oil EJ[scenarios])^exponent availability conv oil\ ,0)) ~ Dmnl ~ Priority to conventional resource to cover the demand while the maximum \ extraction level of energy/time is not reached. If scarcity=1 there is no \ more available flow to be extracted. | share liquids vs TFES[scenarios]= real FE consumption by fuel[scenarios,liquids]/SUM(real FE consumption by fuel[scenarios\ ,final sources!]) ~ Dmnl ~ Share of liquids vs TFES. | GFCF not covered[scenarios,sectors]= IF THEN ELSE(Time<2009,0,Gross fixed capital formation[scenarios,sectors]-Real GFCF[\ scenarios,sectors]) ~ Mdollars/Year ~ Gap between gross fixed capital formation required and real gross fixed \ capital formation (after energy-economy feedback) | LC not covered[scenarios]= demand not covered total FD[scenarios]*labour share[scenarios] ~ Mdollars/Year ~ Gap between labour compensation required andreal labour compensation \ (after energy-economy feedback) | CC total not covered[scenarios]= demand not covered total FD[scenarios]*capital share[scenarios] ~ Mdollars/Year ~ Gap between capital compensation required and real capital compensation \ (after energy-economy feedback) | Household demand not covered[scenarios,sectors]= IF THEN ELSE(Time<2009,0,Household demand[scenarios,sectors]-Real Household demand[scenarios\ ,sectors]) ~ Mdollars/Year ~ Gap between households consumption required and households real \ consumption (after energy-economy feedback) | Real total output inland transport[scenarios]= Real total output by sector[scenarios,Inland Transport]/1e+006 ~ T$ ~ /1e+006 | TFES intensity EJ T$[scenarios]= ZIDZ( Real TFEC[scenarios] , GDP[scenarios] ) ~ EJ/T$ ~ Total final energy intensity. | TFES intensity EJ T$ delayed 1yr[scenarios]= DELAY FIXED ( TFES intensity EJ T$[scenarios], 1, 8.827) ~ Tdollars/Year ~ TFES intensity delayed 1 year. | TPES intensity EJ T$ delayed 1yr[scenarios]= DELAY FIXED ( TPES intensity EJ T$[scenarios], 1, 13.14) ~ Tdollars/Year ~ TPES intensity delayed 1 year. | Annual TPES intensity growth rate[scenarios]= -1+ZIDZ( TPES intensity EJ T$[scenarios] , TPES intensity EJ T$ delayed 1yr[scenarios\ ] ) ~ Dmnl ~ Annual TPES intensity growth rate. | Annual TFES intensity growth rate[scenarios]= -1+ZIDZ( TFES intensity EJ T$[scenarios] , TFES intensity EJ T$ delayed 1yr[scenarios\ ] ) ~ Dmnl ~ Annual TFES intensity growth rate. | Total D jobs RES elec per techn[RES elec,scenarios]= D jobs new installed RES elec per techn[RES elec,scenarios]+"Jobs O&M RES elec per techn"\ [RES elec,scenarios] ~ people ~ Total direct annual jobs for RES elec per technology. | Total D jobs RES heat per techn[RES heat,scenarios]= D jobs new installed RES heat per techn[RES heat,scenarios]+"Jobs O&M RES heat per techn"\ [RES heat,scenarios] ~ people ~ Total direct annual jobs for RES heat per technology. | Employment factors new RES elec[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y13') ~~| Employment factors new RES elec["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y7') ~~| Employment factors new RES elec["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y8') ~~| Employment factors new RES elec[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y9') ~~| Employment factors new RES elec[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y10') ~~| Employment factors new RES elec[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y12') ~~| Employment factors new RES elec[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y11') ~~| Employment factors new RES elec[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y16') ~ people*Year/MW ~ Employment factors for the manufacture, construction and installation of \ RES power plants for electricity generation. | Employment factors new RES heat["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y17') ~~| Employment factors new RES heat["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y18') ~~| Employment factors new RES heat["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Y19') ~ people*Year/MW ~ Employment factors for the manufacture, construction and installation of \ RES power plants for heat generation. | "Employment factors O&M RES elec"[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z13') ~~| "Employment factors O&M RES elec"["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z7') ~~| "Employment factors O&M RES elec"["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z8') ~~| "Employment factors O&M RES elec"[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z9') ~~| "Employment factors O&M RES elec"[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z10') ~~| "Employment factors O&M RES elec"[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z12') ~~| "Employment factors O&M RES elec"[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z11') ~~| "Employment factors O&M RES elec"[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z16') ~ people/MW ~ Employment factors for the O&M of RES power plants for electricity \ generation. | "Employment factors O&M RES heat"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z17') ~~| "Employment factors O&M RES heat"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z18') ~~| "Employment factors O&M RES heat"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'Z19') ~ people/MW ~ Employment factors for the O&M of RES power plants for heat generation. | D jobs new installed RES elec per techn[RES elec, scenarios]= RES elec capacity under construction TW[RES elec,scenarios]*Employment factors new RES elec\ [RES elec]*M per T ~ people ~ Annual direct jobs new installed RES elec per technology. | "Jobs O&M RES elec per techn"[RES elec, scenarios]= installed capacity RES elec TW[RES elec,scenarios]*"Employment factors O&M RES elec"\ [RES elec]*M per T ~ people ~ Annual jobs operation&maintenance of RES elec per technology. | NX0 vehicles per Xinland T[HV liq]= NX HV inland T ~~| NX0 vehicles per Xinland T[HV hib]= NX HV inland T ~~| NX0 vehicles per Xinland T[HV gas]= NX HV inland T ~~| NX0 vehicles per Xinland T[LV liq]= NX LV inland T ~~| NX0 vehicles per Xinland T[LV elec]= NX LV inland T ~~| NX0 vehicles per Xinland T[LV hib]= NX LV inland T ~~| NX0 vehicles per Xinland T[LV gas]= NX LV inland T ~~| NX0 vehicles per Xinland T[bus liq]= NX bus inlandT ~~| NX0 vehicles per Xinland T[bus hib]= NX bus inlandT ~~| NX0 vehicles per Xinland T[bus gas]= NX bus inlandT ~~| NX0 vehicles per Xinland T[train liq]= NX train inland T ~~| NX0 vehicles per Xinland T[train elec]= NX train inland T ~~| NX0 vehicles per Xinland T[bus elec]= NX bus inlandT ~ vehicles/T$ ~ Estimated number of vehicles per unit of inland transport economic activity | initial percent T vehicles[HV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B35') ~~| initial percent T vehicles[HV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B36') ~~| initial percent T vehicles[HV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B37') ~~| initial percent T vehicles[LV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B38') ~~| initial percent T vehicles[LV elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B39') ~~| initial percent T vehicles[LV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B40') ~~| initial percent T vehicles[LV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B41') ~~| initial percent T vehicles[bus liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B42') ~~| initial percent T vehicles[bus hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B44') ~~| initial percent T vehicles[bus gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B43') ~~| initial percent T vehicles[train liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B46') ~~| initial percent T vehicles[train elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B47') ~~| initial percent T vehicles[bus elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B45') ~ Dmnl ~ Initial percentage of vehicles of each fuel, percents relative to each \ class of vehicles (LV; HV, bus, train) | vehicleT: HV liq,HV hib,HV gas,LV liq,LV elec,LV hib,LV gas,bus liq,bus elec, bus hib, bus gas\ , train liq, train elec ~ ~ Transportation vehicles of inland Transport sector. | saving ratios V[HV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B94') ~~| saving ratios V[HV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B95') ~~| saving ratios V[HV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B96') ~~| saving ratios V[LV liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B97') ~~| saving ratios V[LV elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B98') ~~| saving ratios V[LV hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B99') ~~| saving ratios V[LV gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B100') ~~| saving ratios V[bus liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B101') ~~| saving ratios V[bus hib]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B103') ~~| saving ratios V[bus gas]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B104') ~~| saving ratios V[train liq]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B105') ~~| saving ratios V[train elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B106') ~~| saving ratios V[bus elec]= GET XLS CONSTANTS('inputs.xlsx', 'Transportation', 'B102') ~ Dmnl ~ ratios of energy consumption of diferente vehicles per Km compared to \ conventional liquids vechicles | "share gases dem for Heat-nc"[scenarios]= ZIDZ("PED gas Heat-nc"[scenarios], (PES gases[scenarios]-"PED nat. gas for GTL EJ"[scenarios\ ])) ~ Dmnl ~ Share of natural gas demand for non-commercial Heat plants in relation to \ the demand of natural fossil gas. | increase scarcity conv gas[scenarios]= scarcity conv gas stock[scenarios]*ZIDZ( (scarcity conv gas[scenarios]-scarcity conv gas delayed 1yr\ [scenarios]) , scarcity conv gas[scenarios] ) ~ Dmnl ~ | scarcity conv gas stock[scenarios]= INTEG ( increase scarcity conv gas[scenarios], 0.2502) ~ Dmnl ~ | "PES nat. gas for Heat-nc plants"[scenarios]= (PES gases[scenarios]-"PED nat. gas for GTL EJ"[scenarios])*"share gases dem for Heat-nc"\ [scenarios] ~ EJ ~ Primary energy supply of natural gas for non-commercial Heat plants. | real growth CTL[scenarios]= IF THEN ELSE(abundance coal[scenarios]>=abundance liquids[scenarios], IF THEN ELSE(abundance coal[scenarios]=1, Exogenous growth CTL[scenarios],0 ),0)*abundance liquids CTL\ [scenarios]*scarcity conv oil[scenarios] ~ 1/Year ~ The real growth of CTL depends on the relative abundance of coal and \ liquids, as well as on the availability of coal. | CTL potential production[scenarios]= INTEG ( replacement CTL[scenarios]+variation CTL[scenarios]-wear CTL[scenarios], initial CTL production) ~ EJ/Year ~ Annual CTL potential production. | abundance liquids GTL[scenarios]= SQRT(ABS((PED liquids EJ[scenarios]-GTL potential production[scenarios])/PED liquids EJ\ [scenarios])) ~ Dmnl ~ Variable to moderate the growth of GTL when it comes close to supply all \ the liquids. This variable limits the growth of a technology supplying a \ particular final energy type when its supply increases its share in \ relation to the total supply of this energy type (to avoid overshootings). | GTL potential production[scenarios]= INTEG ( replacement GTL[scenarios]+variation GTL[scenarios]-wear GTL[scenarios], initial GTL production) ~ EJ/Year ~ Annual GTL potential production. | abundance liquids CTL[scenarios]= SQRT(ABS((PED liquids EJ[scenarios]-CTL potential production[scenarios])/PED liquids EJ\ [scenarios])) ~ Dmnl ~ Variable to moderate the growth of CTL when it comes close to supply all \ the liquids. This variable limits the growth of a technology supplying a \ particular final energy type when its supply increases its share in \ relation to the total supply of this energy type (to avoid overshootings). | wear GTL[scenarios]= IF THEN ELSE(Time<2015, 0, GTL potential production[scenarios]/lifetime GTL) ~ EJ/Year ~ Depreciation of GTL plants. | lifetime GTL= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K48') ~ Year ~ Lifetime of GTL plants. | lifetime CTL= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K47') ~ Year ~ Lifetime of CTL plants. | wear CTL[scenarios]= IF THEN ELSE(Time<2015, 0, CTL potential production[scenarios]/lifetime CTL) ~ EJ/Year ~ Depreciation of CTL plants. | abundance unconv oil stock[scenarios]= INTEG ( increase abundance unconv oil[scenarios], 1) ~ Dmnl ~ | increase abundance unconv oil[scenarios]= abundance unconv oil[scenarios]-abundance unconv oil delayed 1yr[scenarios] ~ Dmnl ~ | abundance unconv oil[scenarios]= IF THEN ELSE(PED total oil EJ[scenarios]=0,0, IF THEN ELSE(PED total oil EJ[scenarios] > real extraction unconv oil EJ[scenarios], (PED total oil EJ[scenarios]-real extraction unconv oil EJ[scenarios])/PED total oil EJ\ [scenarios], 0)) ~ Dmnl ~ The parameter abundance varies between (1;0). The closest to 1 indicates \ that unconventional oil extractione is far to cover to whole oil demand, \ if "abundance unconv oil"=0 it means that unconventional oil extraction \ covers the whole demand of oil. | abundance unconv oil delayed 1yr[scenarios]= DELAY FIXED ( abundance unconv oil[scenarios], 1, 1) ~ Dmnl ~ | abundance unconv oil2[scenarios]= abundance unconv oil stock[scenarios] ~ Dmnl ~ Adaptation of the parameter abundance for better behaviour of the model. \ This variable limits the growth of a technology supplying a particular \ final energy type when its supply increases its share in relation to the \ total supply of this energy type (to avoid overshootings). | real extraction unconv oil EJ[scenarios]= IF THEN ELSE("separate conv and unconv oil?"[scenarios]=1, extraction unconv oil EJ[\ scenarios], "extraction unconv oil - tot agg" [scenarios]) ~ EJ/Year ~ | scarcity conv oil stock[scenarios]= INTEG ( increase scarcity conv oil[scenarios], 0.3989) ~ Dmnl ~ | Share variable RES elec generation vs total gen[scenarios]= INTEG ( increase variable RES share elec vs total generation[scenarios], initial share variable RES elec gen vs total) ~ Dmnl ~ Share variable RES electricity generation vs total electricity generation. \ Same variable as "share variable RES elec generation vs total" but \ introduced as stock in order to avoid simultaneous equations. | extra monet invest to cope with variable Elec RES[scenarios]= (FE Elec generation from onshore wind TWh[scenarios]+FE Elec generation from offshore wind TWh\ [scenarios])*Balancing costs [scenarios]+Grid reinforcement costs Tdollar[scenarios] ~ Tdollars/Year ~ Annual additional monetary investment to cope with the intermittency of \ RES (taking wind as a proxy) including balancing and grid reinforcement \ costs (1995 US$). | increase scarcity conv oil[scenarios]= scarcity conv oil[scenarios]-scarcity conv oil delayed 1yr[scenarios] ~ Dmnl ~ | share extra monet invest to cope with variable Elec RES[scenarios]= extra monet invest to cope with variable Elec RES[scenarios]/Total monet invest RES for elec Tdolar\ [scenarios] ~ ~ Share of the anual additional monetary investment to cope with the \ intermittency of RES (taking wind as a proxy) in relation to the total \ investment for RES. | initial share variable RES elec gen vs total= 0.0071 ~ Dmnl ~ Initial share of variable RES electricity in relation to the total \ generation. | "PES oil for Heat-nc plants"[scenarios]= PES Liquids EJ[scenarios]*"share liquids dem for Heat-nc"[scenarios] ~ EJ ~ Primary energy supply of natural oil for non-commercial Heat plants. | cumulated invest E grid[scenarios]= INTEG ( extra monet invest to cope with variable Elec RES[scenarios], 0) ~ Tdollars ~ Cumulated monetary investment for developing electricity grids to \ integrate renewable intermittent sources. | Total monet invest RES for elec Tdolar[scenarios]= Invest RES for Elec[scenarios]+extra monet invest to cope with variable Elec RES[scenarios\ ] ~ Tdollars/Year ~ Annual total monetary investment for RES for electricity: capacity, \ balancing costs and grid improvements to cope with variability (1995 US$). | Cp exogenous RES elec var reduction[scenarios]= 1/(1+0.0001*EXP(9.85*Share variable RES elec generation vs total gen[scenarios])) ~ Dmnl ~ Reduction of the capacity factor of the RES elec variables plants as a \ function of the penetration of variables RES in the electricity generation \ (Source: Delarue & Morris (2015), see MEDEAS D4.1). | Cp exogenous RES elec dispatch reduction[scenarios]= MIN(1, -0.6209*(Share variable RES elec generation vs total gen[scenarios])^2 - 0.3998\ *(Share variable RES elec generation vs total gen[scenarios]) + 1.0222) ~ Dmnl ~ Reduction of the capacity factor of the dispatchable plants as a function \ of the penetration of variables RES in the electricity generation (Source: \ NREL (2012), see MEDEAS D4.1). | increase variable RES share elec vs total generation[scenarios]= Share variable RES elec generation vs total[scenarios]-Share variable RES elec vs total generation delayed 1yr\ [scenarios] ~ Dmnl ~ | available improvement efficiency[scenarios,sectors]= MIN(1,IF THEN ELSE(Time>2009, ZIDZ( (Global energy intensity by sector[scenarios,sectors\ ]-(min energy intensity vs intial[scenarios]*Initial global energy intensity by sector 2009\ [sectors])), 0.7*Initial global energy intensity by sector 2009[sectors]), 1)) ~ ~ | "PES NRE Heat-nc"[scenarios]= "PES coal for Heat-nc plants"[scenarios]+"PES nat. gas for Heat-nc plants"[scenarios\ ]+"PES oil for Heat-nc plants"[scenarios] ~ EJ ~ | "FED nat. gas for heat-nc"[scenarios]= Required FED by fuel before heat correction[scenarios,gases]*share FEH over FED by final fuel\ [gases,scenarios]*efficiency gases for heat plants/(1+Share heat distribution losses\ ) ~ EJ ~ Final energy demand (excluding distribution and generation losses) of \ non-commercial heat from natural gas. | TPES heat[scenarios]= PES NRE heat[scenarios]+PES heat RES[scenarios]+"PES tot waste for heat-com"[scenarios\ ] ~ EJ ~ | "FED oil for heat-nc"[scenarios]= Required FED by fuel before heat correction[scenarios,liquids]*share FEH over FED by final fuel\ [liquids,scenarios]*efficiency liquids for heat plants/(1+Share heat distribution losses\ ) ~ EJ ~ Final energy demand (excluding distribution and generation losses) of \ non-commercial heat from oil. | PES NRE heat[scenarios]= "PES NRE Heat-com"[scenarios]+"PES NRE Heat-nc"[scenarios] ~ EJ ~ | "share liquids dem for Heat-nc"[scenarios]= ZIDZ("PED liquids Heat-nc"[scenarios], PES Liquids EJ[scenarios]) ~ Dmnl ~ Share of liquids demand for non-commercial Heat plants in relation to the \ total demand of liquids. | "PES NRE Heat-com"[scenarios]= "PES coal for Heat-com plants"[scenarios]+"PES nat. gas for Heat-com plants"[scenarios\ ]+"PES oil for Heat-com plants"[scenarios] ~ EJ ~ | check TPE[scenarios]= (TPED by fuel[scenarios]-TPES EJ[scenarios])*100/TPES EJ[scenarios] ~ percent ~ Comparison between TPED by fuel and TPED by sector (they should \ correspond). | "FED by fuel for heat-nc"[electricity, scenarios]= 0 ~~| "FED by fuel for heat-nc"[heat, scenarios]= 0 ~~| "FED by fuel for heat-nc"[liquids, scenarios]= "FED oil for heat-nc"[scenarios] ~~| "FED by fuel for heat-nc"[gases, scenarios]= "FED nat. gas for heat-nc"[scenarios] ~~| "FED by fuel for heat-nc"[solids, scenarios]= "FED coal for heat-nc"[scenarios]+"FED solid bioE for heat-nc"[scenarios] ~ EJ ~ Final energy demand (excluding distribution and generation losses) of \ non-commercial heat by final fuel. | "Share FED heat-com vs total heat"[scenarios]= "Total FED Heat-com EJ"[scenarios]/(Total FED Heat EJ[scenarios]+"Total FED Heat-com EJ"\ [scenarios]) ~ Dmnl ~ Share of commercial heat in relation to total final energy use for heat. | Average elec consumption per capita[scenarios]= Total FE Elec consumption TWh[scenarios]*kWh per TWh/Population[scenarios] ~ kWh/people ~ Electricity consumption per capita (kWh per capita). | PES solids[scenarios]= extraction coal EJ[scenarios]+PE traditional biomass EJ delayed 1yr[scenarios]+PES peat EJ\ +PES waste for TFC[scenarios]+Losses in charcoal plants EJ ~ EJ ~ Primary energy supply solids. | "FED solid bioE for heat-nc"[scenarios]= Required FED by fuel before heat correction[scenarios,solids]*share FEH over FED solid bioE\ *Efficiency conversion BioE plants to heat/(1+Share heat distribution losses) ~ EJ ~ Final energy demand (excluding distribution and generation losses) of \ non-commercial heat from solid bioenergy. | Total FED Heat EJ[scenarios]= "Total FED Heat-com EJ"[scenarios]+"Total FED Heat-nc EJ"[scenarios] ~ EJ ~ Total final energy demand (including distribution losses) of heat. | "Heat-nc distribution losses"[scenarios]= "Total FED Heat-nc EJ"[scenarios]-"FED Heat-nc EJ"[scenarios] ~ EJ/Year ~ Distribution losses associated to non-commercial heat. | "Total FED Heat-nc EJ"[scenarios]= "FED Heat-nc EJ"[scenarios]*(1+Share heat distribution losses) ~ EJ ~ Total non-commercial heat demand including distribution losses (and \ climate change impacts). | "Total FED NRE Heat-nc"[scenarios]= MAX(0,("Total FED Heat-nc EJ"[scenarios]-"Total FE real supply RES for heat-nc EJ"[scenarios\ ])) ~ EJ ~ Final energy demand heat non-commercial to be covered by NRE (including \ distribution losses and climate change impacts). | "PED gas Heat-nc"[scenarios]= "Total FED NRE Heat-nc"[scenarios]*"share FED gas vs NRE heat-nc"[scenarios]/efficiency gases for heat plants ~ EJ ~ Primary energy demand heat non-commercial to be covered by natural gas. \ It corresponds to the FEH (final energy use for heat) metric which \ includes the distribution and generation losses (see IEA, 2014). | "PED coal Heat-nc"[scenarios]= "Total FED NRE Heat-nc"[scenarios]*"share FED coal vs NRE heat-nc"[scenarios]/efficiency coal for heat plants ~ EJ ~ Primary energy demand heat non-commercial to be covered by coal. It \ corresponds to the FEH (final energy use for heat) metric which includes \ the distribution and generation losses (see IEA, 2014). | "Deactivate heat dem correction?"= 1 ~ Dmnl ~ 1. Demand heat correction to explictely account for non-commercial heat is ACTIVATED. 0. DEACTIVATED (Heat accounts only for commercial heat). *****DO NOT \ WORK****** | "PED liquids Heat-nc"[scenarios]= "Total FED NRE Heat-nc"[scenarios]*"share FED liquids vs NRE heat-nc"[scenarios]/efficiency liquids for heat plants ~ EJ ~ Primary energy demand heat non-commercial to be covered by liquids. It \ corresponds to the FEH (final energy use for heat) metric which includes \ the distribution and generation losses (see IEA, 2014). | PED coal EJ[scenarios]= MAX(0, PED solids[scenarios]-(PE traditional biomass EJ delayed 1yr[scenarios]+PES peat EJ\ +PES waste for TFC[scenarios]+Losses in charcoal plants EJ)) ~ EJ ~ | share FEH over FED solid bioE= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'K41') ~ Dmnl ~ Estimated share of FEH over FED for solid bioenergy for the year 2011 \ (IEA, 2014 and own calculations). | FES Heat from coal[scenarios]= ("PES coal for Heat-com plants"[scenarios]+"PES coal for Heat-nc plants"[scenarios])\ *efficiency coal for heat plants ~ EJ ~ Heat from Heat plants that burn coal (both commercial and non-commercial). | "FES Heat from nat. gas"[scenarios]= ("PES nat. gas for Heat-com plants"[scenarios]+"PES nat. gas for Heat-nc plants"[scenarios\ ])*efficiency gases for heat plants ~ EJ ~ Heat from Heat plants that burn fossil natural gas (both commercial and \ non-commercial). | FES Heat from oil[scenarios]= ("PES oil for Heat-com plants"[scenarios]+"PES oil for Heat-nc plants"[scenarios])*efficiency liquids for heat plants ~ EJ ~ Heat from Heat plants that burn oil (both commercial and non-commercial). | Abundance heat[scenarios]= IF THEN ELSE(Total FE Heat generation EJ[scenarios]>Total FED Heat EJ[scenarios], 1,\ 1-ZIDZ( Total FED Heat EJ[scenarios]-Total FE Heat generation EJ[scenarios] , Total FED Heat EJ\ [scenarios] )) ~ Dmnl ~ The parameter abundance varies between (1;0). Abundance=1 while the supply \ covers the demand; the closest to 0 indicates a higher divergence between \ supply and demand. | "PES coal for Heat-nc plants"[scenarios]= extraction coal EJ[scenarios]*"share coal dem for Heat-nc"[scenarios] ~ EJ ~ Primary energy supply of coal for non-commercial Heat plants. | required FED sectors by fuel[scenarios, final sources]= SUM(Required final energy by sector and fuel[scenarios,final sources,sectors!]) ~ EJ ~ | share trad biomass vs solids in households= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G33') ~ Dmnl ~ | "new RES capacity for heat-com TW"[RES heat, scenarios]= IF THEN ELSE(Time<2013, "Historic RES capacity for heat-com"[RES heat](Time+1)-"Historic RES capacity for heat-com"\ [RES heat](Time), "adapt growth RES for heat-com"[RES heat,scenarios]*"installed capacity RES heat-com TW"\ [RES heat,scenarios]*remaining potential constraint on new RES heat capacity [RES heat,scenarios])*"abundance RES heat-com2"[scenarios] ~ TW/Year ~ New annual installed capacity of RES technologies for commercial heat. | share global pop dependent on trad biomass[scenarios]= Population dependent on trad biomass[scenarios]/Population[scenarios] ~ Dmnl ~ | "Historic RES capacity for heat-com"["solar-heat"]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H66')) ~~| "Historic RES capacity for heat-com"["geot-heat"]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H67')) ~~| "Historic RES capacity for heat-com"["solid bioE-heat"]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H65')) ~ TW ~ Historic installed capacity of RES technologies for commercial heat \ generation. | "PES oil for Heat-com plants"[scenarios]= PES oil EJ[scenarios]*"share oil dem for Heat-com"[scenarios] ~ EJ ~ Primary energy supply of oil for commercial Heat plants. | "share coal dem for Heat-nc"[scenarios]= ZIDZ("PED coal Heat-nc"[scenarios], PED coal EJ[scenarios] ) ~ Dmnl ~ Share of coal demand to cover non-commercial heat consumption in Heat \ plants. | "RES heat-com tot overcapacity"[scenarios]= IF THEN ELSE("potential FES tot RES for heat-com EJ"[scenarios]=0,0, ("potential FES tot RES for heat-com EJ"[scenarios]-"FE real supply RES for heat-com tot EJ"\ [scenarios])/"potential FES tot RES for heat-com EJ" [scenarios]) ~ Dmnl ~ Overcapacity for each technology RES for heat-com taking into account the \ installed capacity and the real generation. | "PES nat. gas for Heat-com plants"[scenarios]= "PES nat. gas"[scenarios]*"share nat. gas dem for Heat-com"[scenarios] ~ EJ ~ Primary energy supply of fossil natural gas for commercial Heat plants. | "PES coal for Heat-com plants"[scenarios]= extraction coal EJ[scenarios]*"share coal dem for Heat-com"[scenarios] ~ EJ ~ Primary energy supply of coal for commercial Heat plants. | "Required heat-com"[scenarios]= Required FED by fuel before heat correction[scenarios,heat] ~ EJ ~ | variation labour share[scenarios]= growth labour share[scenarios]*labour share[scenarios] ~ 1/Year ~ Real variation of labor share. | share inventories next step[sectors]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Economy', '554' ,'C432') ~ Dmnl ~ | variation historic demand[scenarios,sectors]= Historic HD[sectors](Time+1)-Historic HD[sectors](Time) ~ Mdollars/Year ~ Variation of final demand by households | share consum goverments[sectors]:= GET XLS DATA('inputs.xlsx', 'Economy', '392' ,'B393') ~ Dmnl ~ | variation GFCF[scenarios,sectors]= IF THEN ELSE(Time<2009, variation historic GFCF[scenarios,sectors],EXP(beta 0 cap)*EXP\ (beta 1 cap[sectors])*((CC sectoral next step[scenarios,sectors])^beta 2 cap-(CC sectoral\ [scenarios, sectors])^beta 2 cap)) ~ Mdollars/Year ~ Variation of gross fixed capital formation by industrial sectors | variation historic GFCF[scenarios,sectors]= Historic GFCF[sectors](Time+1)-Historic GFCF[sectors](Time) ~ Mdollars/Year ~ Historic variation of gross fixed capital formation (WIOD-35 sectors) | variation household demand[scenarios,sectors]= IF THEN ELSE(Time<2009,variation historic demand[scenarios,sectors],EXP(Bet 0 lab)*EXP\ (Beta 1 lab[sectors])*((LC next step[scenarios])^beta 2 lab-(LC[scenarios])^beta 2 lab\ )) ~ Mdollars/Year ~ Variation of final demand by households by industrial sectors | labour share[scenarios]= INTEG ( variation labour share[scenarios], 0.6374) ~ Dmnl ~ | share inventories[sectors]:= GET XLS DATA('inputs.xlsx', 'Economy', '392' ,'B432') ~ Dmnl ~ | share consum goverments next step[sectors]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Economy', '554' ,'C393') ~ Dmnl ~ Share of public expenditures over total | share consum goverment and inventories[sectors]= share inventories[sectors]+share consum goverments[sectors] ~ Dmnl ~ | share consum goverments and inventories next step[sectors]= share consum goverments next step[sectors]+share inventories next step[sectors] ~ Dmnl ~ Sum of share of Public expenditures and changes in inventories. | capital share[scenarios]= 1-labour share[scenarios] ~ Dmnl ~ Capital share. | growth capital share[scenarios]= -growth labour share[scenarios]*labour share[scenarios]/(1-labour share[scenarios]) ~ Dmnl ~ Historic capital share variation (own calculations from WIOD-SEA). | Historic GFCF[sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '514', 'B515') ~ Mdollars ~ Historic gross fixed capital formation (WIOD-35 sectors) | Historic HD[sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '475', 'B476') ~ ~ Historical final demand by households (WIOD-35 sectors) | "include materials for overgrids?"= 0 ~ Dmnl ~ 1. Include materials for overgrids in the CED of RES elec var 0: NOT include materials for overgrids in the CED of RES elec var | "All minerals virgin?"= 1 ~ Dmnl ~ 0. All minerals are virgin: current and future recycling rates set to 0% (pption to \ compare with results offline MEDEAS). 1. Real share of virgin/recycled minerals (for normal simulations). | materials for new RES elec per capacity installed[hydro, materials]= 0 ~~| materials for new RES elec per capacity installed["geot-elec", materials]= 0 ~~| materials for new RES elec per capacity installed["solid bioE-elec", materials]= 0 ~~| materials for new RES elec per capacity installed[oceanic, materials]= 0 ~~| materials for new RES elec per capacity installed[wind onshore, materials]= "materials per new capacity installed - wind onshore"[materials]+("materials per new RES elec capacity installed - HVDCs" [materials]+"materials per new RES elec capacity installed - material overgrid high power"\ [materials])*"include materials for overgrids?" ~~| materials for new RES elec per capacity installed[wind offshore, materials]= "materials per new capacity installed - wind offshore"[materials]+("materials per new RES elec capacity installed - HVDCs" [materials]+"materials per new RES elec capacity installed - material overgrid high power"\ [materials])*"include materials for overgrids?" ~~| materials for new RES elec per capacity installed[solar PV, materials]= "materials per new capacity installed - PV"[materials]+("materials per new RES elec capacity installed - HVDCs"\ [materials ]+"materials per new RES elec capacity installed - material overgrid high power"[materials\ ])*"include materials for overgrids?" ~~| materials for new RES elec per capacity installed[CSP, materials]= "materials per new capacity installed - CSP"[materials]+("materials per new RES elec capacity installed - HVDCs"\ [materials ]+"materials per new RES elec capacity installed - material overgrid high power"[materials\ ])*"include materials for overgrids?" ~ kg/MW ~ | CEDtot per material RES elec var[RES elec, materials,scenarios]= CED new cap per material RES elec var[RES elec,materials,scenarios]+"CED O&M over lifetime per material RES elec var"\ [RES elec,materials,scenarios] ~ EJ ~ Total cumulative energy demand (construction+O&M) per material of RES \ variables per technology. | CEDtot per TW RES elec var[RES elec, scenarios]= SUM(CEDtot per TW per material RES elec var[RES elec,materials!,scenarios])*1e+006 ~ MJ/MW ~ Total cumulative energy demand (construction+O&M) per power installed of \ RES variables per technology (considering only material requirements). | CEDtot per TW per material RES elec var[RES elec, materials,scenarios]= ZIDZ( CEDtot per material RES elec var[RES elec,materials,scenarios] , RES elec capacity under construction TW\ [RES elec,scenarios] ) ~ EJ/TW ~ Total cumulative energy demand (construction+O&M) per power installed per \ material of RES variables per technology (considering only material \ requirements). | Demand by sector FD[scenarios,sectors]= INTEG ( variation demand flow FD[scenarios,sectors]-demand not covered by sector FD[scenarios\ ,sectors], initial demand by sectot[sectors]) ~ Mdollars ~ Final demand by 35 industrial sectors | sum variation[scenarios]= SUM(variation demand flow FD[scenarios,sectors!]) ~ Mdollars/Year ~ Variation of total final demand | CC sectoral[scenarios,sectors]= CC total[scenarios]*share CC sectoral[sectors] ~ Mdollars ~ Capital compensation by industrial sectors | CC sectoral next step[scenarios,sectors]= CC sectoral[scenarios,sectors]+variation CC sectoral[scenarios,sectors] ~ Mdollars ~ | Gross fixed capital formation[scenarios,sectors]= INTEG ( variation GFCF[scenarios,sectors]-GFCF not covered[scenarios,sectors], initial GFCF[sectors]) ~ Mdollars ~ Value of gross fixed capital formation | variation CC sectoral[scenarios,sectors]= ((CC total[scenarios]+variation CC[scenarios])*share CC next step[sectors])-(CC total\ [scenarios]*share CC sectoral[sectors]) ~ Mdollars/Year ~ Variation of capital compensation by industrial sectors | share CC next step[sectors]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Economy','554', 'C349') ~ Dmnl ~ | "pct GFCF vs GFCF+HD"[scenarios,sectors]= Gross fixed capital formation[scenarios,sectors]/(Gross fixed capital formation[scenarios\ ,sectors]+Household demand[scenarios,sectors]) ~ Dmnl ~ Share of Gross Fixed Capital Formation in final demand by households and \ enterprises. | Household demand[scenarios,sectors]= INTEG (variation household demand[scenarios,sectors\ ]-Household demand not covered[scenarios,sectors], initial household demand[sectors]) ~ Mdollars ~ Finald demand by Households | LC next step[scenarios]= LC[scenarios]+variation LC[scenarios] ~ Mdollars ~ | Household demand total[scenarios]= SUM(Household demand[scenarios,sectors!]) ~ Mdollars ~ Economic households demand (in millionUS$1995) | CEDtot per TW over lifetime RES elec dispatch[RES elec, scenarios]= ZIDZ( (1-"RES elec variables?"[RES elec])*("Cp-ini RES elec"[RES elec]*lifetime RES elec\ [RES elec]*EJ per TWh/TWe per TWh) , "EROI-ini RES elec dispatch"[RES elec]*quality of electricity 2015[scenarios] ) ~ EJ/TW ~ Total cumulative energy demand (including installation of new capacity and \ O&M) per MW for RES dispatchables per technology over the lifetime of the \ infrastructure. | quality of electricity 2015[scenarios]= IF THEN ELSE(Time<2015, Dynamic quality of electricity[scenarios] , aux3[scenarios]) ~ Dmnl ~ Quality of electricity until the year 2015. | Dynamic quality of electricity[scenarios]= Real TFEC[scenarios]/(TPES EJ[scenarios]-"Total real non-energy use consumption EJ"[\ scenarios]) ~ Dmnl ~ Dynamic quality of electricity (TFES/TPES, the latter without taking into \ account the non-energy uses). | quality of electricity[scenarios]= IF THEN ELSE("static/dynamic quality of electricity?"=1,quality of electricity 2015[\ scenarios],Dynamic quality of electricity[scenarios]) ~ Dmnl ~ Quality of electricity (TFES/TPES, the latter without taking into account \ the non-energy uses). | Cp exogenous RES elec reduction[hydro, scenarios]= Cp exogenous RES elec dispatch reduction[scenarios] ~~| Cp exogenous RES elec reduction["geot-elec", scenarios]= Cp exogenous RES elec dispatch reduction[scenarios] ~~| Cp exogenous RES elec reduction["solid bioE-elec", scenarios]= Cp exogenous RES elec dispatch reduction[scenarios] ~~| Cp exogenous RES elec reduction[oceanic, scenarios]= Cp exogenous RES elec dispatch reduction[scenarios] ~~| Cp exogenous RES elec reduction[wind onshore, scenarios]= Cp exogenous RES elec var reduction[scenarios] ~~| Cp exogenous RES elec reduction[wind offshore, scenarios]= Cp exogenous RES elec var reduction[scenarios] ~~| Cp exogenous RES elec reduction[solar PV, scenarios]= Cp exogenous RES elec var reduction[scenarios] ~~| Cp exogenous RES elec reduction[CSP, scenarios]= Cp exogenous RES elec var reduction[scenarios] ~ Dmnl ~ Reduction of Cp of RES elec due to the penetration of RES elec variables \ (modelling of overcapacities due to the intermittence of RES elec \ variables). | "RES elec variables?"[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X13') ~~| "RES elec variables?"["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X7') ~~| "RES elec variables?"["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X8') ~~| "RES elec variables?"[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X9') ~~| "RES elec variables?"[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X10') ~~| "RES elec variables?"[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X12') ~~| "RES elec variables?"[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X11') ~~| "RES elec variables?"[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'X16') ~ Dmnl ~ Vector to distinguis between RES elec variables and dispatchables: *If=1, RES elec variables (fully endogenous calculation from the materials \ requirements). *If=0, RES elec dispatchables (partially endogenous calculation requiring \ a value of EROI as starting point). | aux3[scenarios]= DELAY FIXED ( quality of electricity 2015[scenarios], 0.03125 , 0.75) ~ Dmnl ~ Auxiliary variable to estimate the quality of electricity until the year \ 2015. | FEI RES elec var[RES elec,scenarios]= (CEDtot new cap RES elec var[RES elec,scenarios]*(1+Grid correction factor RES elec[\ RES elec])+CED decom RES elec capacity [RES elec,scenarios]+"CEDtot O&M RES elec var"[RES elec,scenarios])*quality of electricity\ [scenarios]+real generation RES elec EJ[RES elec,scenarios]*"self-electricity consumption RES elec"\ [RES elec] ~ EJ ~ Final energy invested (equivalent to the denominator of the EROI (=CED*g, \ with total cumulative energy demand including installation of new capacity \ and O&M) for RES variables per technology). | "'static' EROI RES elec"[hydro, scenarios]= IF THEN ELSE(FEI over lifetime RES elec dispatch[hydro,scenarios]=0,0,output elec over lifetime RES elec\ [hydro, scenarios]/(FEI over lifetime RES elec dispatch[hydro,scenarios]*quality of electricity\ [scenarios])) ~~| "'static' EROI RES elec"["geot-elec",scenarios]= IF THEN ELSE(FEI over lifetime RES elec dispatch["geot-elec",scenarios]=0,0,output elec over lifetime RES elec\ [ "geot-elec",scenarios]/(FEI over lifetime RES elec dispatch["geot-elec",scenarios]*quality of electricity\ [scenarios])) ~~| "'static' EROI RES elec"["solid bioE-elec",scenarios]= IF THEN ELSE(FEI over lifetime RES elec dispatch["solid bioE-elec",scenarios]=0,0,output elec over lifetime RES elec ["solid bioE-elec",scenarios]/(FEI over lifetime RES elec dispatch["solid bioE-elec"\ ,scenarios]*quality of electricity[scenarios])) ~~| "'static' EROI RES elec"[oceanic,scenarios]= IF THEN ELSE(FEI over lifetime RES elec dispatch[oceanic,scenarios]=0,0,output elec over lifetime RES elec\ [oceanic ,scenarios]/(FEI over lifetime RES elec dispatch[oceanic,scenarios]*quality of electricity\ [scenarios])) ~~| "'static' EROI RES elec"[wind onshore,scenarios]= IF THEN ELSE(FEI over lifetime RES elec var[wind onshore,scenarios]=0,0,output elec over lifetime RES elec\ [wind onshore ,scenarios]/FEI over lifetime RES elec var[wind onshore,scenarios]) ~~| "'static' EROI RES elec"[wind offshore,scenarios]= IF THEN ELSE(FEI over lifetime RES elec var[wind offshore,scenarios]=0,0,output elec over lifetime RES elec\ [wind offshore ,scenarios]/FEI over lifetime RES elec var[wind offshore,scenarios]) ~~| "'static' EROI RES elec"[solar PV,scenarios]= IF THEN ELSE(FEI over lifetime RES elec var[solar PV,scenarios]=0,0,output elec over lifetime RES elec\ [solar PV, scenarios]/FEI over lifetime RES elec var[solar PV,scenarios]) ~~| "'static' EROI RES elec"[CSP,scenarios]= IF THEN ELSE(FEI over lifetime RES elec var[CSP,scenarios]=0,0,output elec over lifetime RES elec\ [CSP, scenarios]/FEI over lifetime RES elec var[CSP,scenarios]) ~ Dmnl ~ Energy return on energy invested (over the full lifetime of the \ infrastructure) per RES technology for generating electricity. | materials required for new RES elec Mt[RES elec, materials, scenarios]= RES elec capacity under construction TW[RES elec,scenarios]*materials for new RES elec per capacity installed\ [RES elec,materials]*M per T/kg per Mt ~ Mt ~ Annual materials required for the installation of new capacity of RES for \ electricity by technology. | FEI over lifetime RES elec var[RES elec,scenarios]= (CEDtot new cap RES elec var[RES elec,scenarios]*(1+share energy requirements for decom RES elec\ [RES elec]+Grid correction factor RES elec [RES elec])+"CED O&M over lifetime RES elec var"[RES elec,scenarios])*quality of electricity\ [scenarios]+output elec over lifetime RES elec[RES elec,scenarios]*"self-electricity consumption RES elec"\ [RES elec] ~ EJ ~ Final energy invested over lifetime per RES elec variable technology \ (equivalent to the denominator of the EROI (=CED*g, with total cumulative \ energy demand (including installation of new capacity and O&M) for RES \ variables per technology over the lifetime of the infrastructure. | CED decom RES elec capacity[RES elec, scenarios]= ZIDZ( share energy requirements for decom RES elec[RES elec]*CEDtot new cap RES elec var\ [RES elec,scenarios]*wear RES elec[RES elec,scenarios], RES elec capacity under construction TW\ [RES elec,scenarios]) ~ EJ ~ Cumulative energy demand (CED) required to decommission RES electricity \ generation plants which have ended their lifetime. | "CED O&M per material RES elec var"[RES elec, materials,scenarios]= "materials required for O&M RES elec Mt"[RES elec,materials,scenarios]*Energy cons per unit of material cons for RES elec\ [materials,scenarios]*kg per Mt/MJ per EJ ~ EJ ~ Cumulative energy demand per material of new installed capacity of RES \ variables per technology. | CEDtot new cap RES elec var[RES elec,scenarios]= SUM(CED new cap per material RES elec var[RES elec,materials!,scenarios]) ~ EJ ~ Cumulative energy demand of new capacity for RES variables per technology. | "CEDtot O&M RES elec var"[RES elec,scenarios]= SUM("CED O&M per material RES elec var"[RES elec,materials!,scenarios])+"Total energy requirements O&M for water consumption RES elec"\ [RES elec,scenarios] ~ EJ ~ Cumulative energy demand of O&M for RES variables per technology. | aux1[scenarios]= DELAY FIXED ( "share-E losses CC until 2015"[scenarios], 0.03125 , 0) ~ Dmnl ~ Auxiliary variable to estimate the energy losses due to climate change \ impacts in the year 2015. | b lineal regr[scenarios]= ESOI PHS depleted potential-a lineal regr[scenarios]*max capacity potential PHS[scenarios\ ] ~ ~ | a lineal regr[scenarios]= (ESOI PHS full potential-ESOI PHS depleted potential)/(0-max capacity potential PHS[\ scenarios]) ~ ~ | ESOI PHS depleted potential= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G54') ~ Dmnl ~ ESOI PHS of the depleted potential of the resource. We assume the ESOI of \ PHS linearly decreases with the PHS cumulated installed capacity. | Historic labour share:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Economy', '324', 'B326') ~ Dmnl ~ Historic variation of labour share (own calculations from WIOD-SEA). | CC total[scenarios]= INTEG (variation CC[scenarios]-CC total not covered[scenarios], initial CC total) ~ Mdollars ~ Capital compensation | initial household demand[sectors]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'B339') ~ ~ Initial final demand by households | total demand[scenarios]= SUM(Demand by sector FD[scenarios,sectors!])/1e+006 ~ Tdollars ~ Total final demand | demand not covered by sector FD[scenarios,sectors]= IF THEN ELSE(Time>2009,Demand by sector FD[scenarios,sectors]-Real demand by sector[\ scenarios,sectors],0) ~ Mdollars/Year ~ | initial demand by sectot[sectors]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'B341') ~ Mdollars ~ | share CC sectoral[sectors]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Economy','348', 'B349') ~ Dmnl ~ Sectoral share of capital compensation. (Capital compensation[i]/Total \ capital compensation) | Beta 1 lab[sectors]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'B336') ~ Dmnl ~ Beta coefficient in panel data regression of households consumption | initial LC total= 1.85847e+007 ~ Mdollars ~ Initial labour compensation | initial GFCF[sectors]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'B340') ~ Mdollars ~ Initial gross fixed capital formation | beta 0 cap= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'C329') ~ Dmnl ~ Beta coefficient (intercept) of panel data regression of Gross fixed \ capital formation | initial CC total= 1.05739e+007 ~ Mdollars ~ | beta 2 cap= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'E329') ~ Dmnl ~ Beta coefficient of panel data regression of Gross fixed capital formation | demand not covered total FD[scenarios]= SUM(demand not covered by sector FD[scenarios,sectors!]) ~ Mdollars/Year ~ | beta 1 cap[sectors]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'B331') ~ Dmnl ~ Beta coefficient of panel data regression of Gross fixed capital formation | LC[scenarios]= INTEG (variation LC[scenarios]-LC not covered[scenarios], initial LC total) ~ Mdollars ~ Labour compensation | Bet 0 lab= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'C334') ~ Dmnl ~ Beta coefficient (intercept) in panel data regression of households \ consumption | TPED by fuel[scenarios]= extraction uranium EJ[scenarios]+"PE supply RES non-Elec EJ"[scenarios]+PE Elec generation from RES EJ\ [scenarios]+PED total oil EJ [scenarios]+PED coal EJ[scenarios]+"PED nat. gas EJ"[scenarios]+PES waste EJ[scenarios\ ] ~ EJ/Year ~ Total primary energy demand by fuel. | abundance TPE[scenarios]= IF THEN ELSE(TPES EJ[scenarios]>TPED by fuel[scenarios], 1, 1-((TPED by fuel[scenarios\ ]-TPES EJ[scenarios])/TPED by fuel[scenarios])) ~ Dmnl ~ The parameter abundance varies between (1;0). Abundance=1 while the supply \ covers the demand; the closest to 0 indicates a higher divergence between \ supply and demand. | beta 2 lab= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'E334') ~ Dmnl ~ beta coefficient in panel data regression of households consumption | historic rate final energy intensity[sectors,final sources]= Historic final energy intensity by sector and fuel[final sources,sectors](Time+1)-Historic final energy intensity by sector and fuel\ [final sources,sectors](Time) ~ ~ | Initial global energy intensity by sector 2009[sectors]= GET XLS CONSTANTS('inputs.xlsx', 'Economy', 'B230') ~ ~ Initial global energy intensity by sector 2009 | available PE potential solid bioE for heat EJ[scenarios]= MAX(0, "Total PE solid bioE potential heat+elec EJ"[scenarios]-PE bioE for Elec generation EJ\ [scenarios]) ~ EJ ~ Available (primary energy) potential solid bioenergy for heat. | Max PE potential RES for heat["solar-heat", scenarios]= FE solar potential for heat[scenarios] ~~| Max PE potential RES for heat["geot-heat", scenarios]= Geot PE potential for heat EJ[scenarios] ~~| Max PE potential RES for heat["solid bioE-heat",scenarios]= available PE potential solid bioE for heat EJ[scenarios] ~ EJ ~ Potential (primary energy) for producing heat from renewables. | "PES RES for heat-com by techn"["geot-heat", scenarios]= "FE real generation RES heat-com EJ"["geot-heat",scenarios]/Efficiency RES heat["geot-heat"\ ] ~~| "PES RES for heat-com by techn"["solar-heat",scenarios]= "FE real generation RES heat-com EJ"["solar-heat",scenarios]*Efficiency solar panels for heat\ /Efficiency RES heat["solar-heat"] ~~| "PES RES for heat-com by techn"["solid bioE-heat",scenarios]= "FE real generation RES heat-com EJ"["solid bioE-heat",scenarios]/Efficiency RES heat\ ["solid bioE-heat"] ~ EJ ~ Primary energy supply of RES technologies for commercial heat. | P RES for heat["solar-heat",scenarios]= P solar for heat[scenarios] ~~| P RES for heat["geot-heat",scenarios]= P geothermal for heat[scenarios] ~~| P RES for heat["solid bioE-heat",scenarios]= P solid bioE for heat[scenarios] ~ 1/Year ~ Annual growth in RES supply for heat depending on the policy of the \ scenario. | "FE real generation RES heat-com EJ"[RES heat, scenarios]= "potential FES RES for heat-com EJ"[RES heat,scenarios]*(1-"RES heat-com tot overcapacity"\ [scenarios]) ~ EJ ~ Commercial heat generation by RES technology. | "potential FES tot RES for heat-com EJ"[scenarios]= SUM("potential FES RES for heat-com EJ"[RES heat!,scenarios]) ~ EJ ~ Potential total final energy supply renewables for commercial heat given \ the installed capacity. | available potential FE solid bioE for elec EJ[scenarios]= available PE potential solid bioE for elec EJ[scenarios]*efficiency conversion bioE to Elec ~ EJ ~ Available (final energy) potential solid bioenergy for electricity. | max BioE TWe[scenarios]= available potential FE solid bioE for elec EJ[scenarios]*TWe per TWh/EJ per TWh ~ TWe ~ Techno-ecological potential of biomass&waste. This potential is dynamic \ and dependant on the potential assigned for bioenergy residues. | remaining potential tot RES heat[scenarios]= IF THEN ELSE(max PE potential tot RES heat EJ[scenarios] > PES tot RES for heat[scenarios\ ], ZIDZ( max PE potential tot RES heat EJ[scenarios]-PES tot RES for heat[scenarios\ ] , max PE potential tot RES heat EJ[scenarios] ), 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | "Potential FES Heat-com nuclear CHP plants EJ"[scenarios]= FE nuclear Elec generation TWh[scenarios]*share of heat production in CHP plants vs total nucelar elec generation ~ EJ ~ Potential commercial heat to be produced in cogeration nuclear plants. | share of heat production in CHP plants vs total nucelar elec generation= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G60') ~ Dmnl ~ Share of heat production in CHP plants vs total nucelar elec generation. | PES waste for elec plants[scenarios]= PES waste EJ[scenarios]*share PES waste for elec plants ~ EJ ~ Primary energy supply of heat in Heat plants from waste. | Losses CHP biogas[scenarios]= PES biogas for CHP[scenarios]-"FES heat-com from biogas in CHP plants"[scenarios]-FES elec from biogas in CHP plants\ [scenarios] ~ EJ ~ Losses in biogas CHP plants. | Losses CHP waste[scenarios]= PES waste for CHP plants[scenarios]-FES elec from waste in CHP plants[scenarios]-"FES heat-com from waste in CHP plants"\ [scenarios] ~ EJ ~ Losses in waste CHP plants. | share PES biogas for heat[scenarios]= "PES tot biogas for heat-com"[scenarios]/PES Biogas EJ[scenarios] ~ Dmnl ~ | PE losses RES for elec[scenarios]= PE losses BioE for Elec EJ[scenarios]+PE losses biogas for elec[scenarios]+PE losses waste for elec\ [scenarios] ~ EJ ~ | PES tot waste for elec[scenarios]= PES waste for elec plants[scenarios]+FES elec from waste in CHP plants[scenarios]+Losses CHP waste\ [scenarios]*share efficiency waste for elec in CHP plants ~ EJ ~ Total primary energy supply for generating electricity from biogas \ (including CHP plants). | "PES tot waste for heat-com"[scenarios]= "PES waste for heat-com plants"[scenarios]+"FES heat-com from waste in CHP plants"[scenarios\ ]+Losses CHP waste[scenarios]*(1-share efficiency waste for elec in CHP plants ) ~ EJ ~ Total primary energy supply for generating commercial heat from waste \ (including CHP plants). | "abundance RES heat-com2"[scenarios]= SQRT ("abundance RES heat-com"[scenarios]) ~ Dmnl ~ Adaptation of the parameter abundance for better behaviour of the model. | max PE potential biogas for heat[scenarios]= max biogas EJ[scenarios]*share PES biogas for heat[scenarios] ~ EJ ~ Primary energy potential of biogas for heat taking into account the \ current share. | share efficiency biogas for elec in CHP plants= efficiency biogas for elec CHP plants/(efficiency biogas for elec CHP plants+efficiency biogas for heat CHP plants\ ) ~ Dmnl ~ | share efficiency waste for elec in CHP plants= efficiency waste for elec CHP plants/(efficiency waste for elec CHP plants+efficiency waste for heat CHP plants\ ) ~ Dmnl ~ | "Max potential PE non-electric RES"[scenarios]= max PE potential tot RES heat EJ[scenarios]+Max PEavail biofuels potential[scenarios\ ] ~ EJ/Year ~ Techno-ecological sustainable potential (primary energy) of non-electric \ RES. | PES tot biogas for elec[scenarios]= PES biogas for elec plants[scenarios]+FES elec from biogas in CHP plants[scenarios]+\ Losses CHP biogas[scenarios]*share efficiency biogas for elec in CHP plants ~ EJ ~ Total primary energy supply for generating electricity from biogas \ (including CHP plants). | "PES tot biogas for heat-com"[scenarios]= "PES biogas for heat-com plants"[scenarios]+"FES heat-com from biogas in CHP plants"\ [scenarios]+Losses CHP biogas[scenarios]*(1-share efficiency biogas for elec in CHP plants\ ) ~ EJ ~ Total primary energy supply for generating commercial heat from biogas \ (including CHP plants). | PE losses NRE elec generation[scenarios]= PE losses coal for Elec EJ[scenarios]+PE losses conv gas for Elec EJ[scenarios]+PE losses oil for Elec EJ\ [scenarios]+PE losses uncon gas for Elec EJ[scenarios]+PE losses uranium for Elec EJ\ [scenarios] ~ EJ ~ Losses for electricity generation from non-renewable energy resources. | Elec gen related losses EJ[scenarios]= PE losses NRE elec generation[scenarios]+PE losses RES for elec[scenarios] ~ EJ/Year ~ Electricity generation losses (EJ). | PE losses biogas for elec[scenarios]= PES tot biogas for elec[scenarios]-FES elec from biogas EJ[scenarios] ~ EJ ~ | PE losses waste for elec[scenarios]= PES tot waste for elec[scenarios]-FES elec from waste EJ[scenarios] ~ EJ ~ | max PE potential tot RES heat EJ[scenarios]= max PE potential biogas for heat[scenarios]+SUM(Max PE potential RES for heat[RES heat\ !,scenarios]) ~ EJ ~ Maximum total primary energy potential of RES for heat. | share PES biogas for elec[scenarios]= PES tot biogas for elec[scenarios]/PES Biogas EJ[scenarios] ~ Dmnl ~ | P hydro growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C32') ~~| P hydro growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C32') ~~| P hydro growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C32') ~~| P hydro growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C32') ~~| P hydro growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C32') ~~| P hydro growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C32') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | FE real tot generation RES elec TWh[scenarios]= MIN(MAX(Total FE Elec demand after priorities TWh[scenarios], 0), potential tot generation RES elec TWh\ [scenarios]) ~ TWh ~ | P solar PV growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C38') ~~| P solar PV growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C38') ~~| P solar PV growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C38') ~~| P solar PV growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C38') ~~| P solar PV growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C38') ~~| P solar PV growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C38') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | remaining potential constraint on new RES heat capacity[RES heat,scenarios]= IF THEN ELSE(remaining potential RES for heat[RES heat,scenarios]>threshold remaining potential new capacity ,1,remaining potential RES for heat[RES heat,scenarios]*(1/threshold remaining potential new capacity\ )) ~ Dmnl ~ Constraint of remaining potential on new RES elec capacity. Another alternative: SQRT(remaining potential RES elec after intermitt[RES \ elec,scenarios]) | Total FE Elec generation TWh[scenarios]= FE Elec generation from NRE TWh[scenarios]+FE tot generation all RES elec TWh[scenarios\ ]+FES elec from waste TWh[scenarios] ~ TWh/Year ~ Total final energy electricity generation (fossil fuels, nuclear, waste & \ renewables) (TWh). | FE tot generation all RES elec TWh[scenarios]= FE real tot generation RES elec TWh[scenarios]+FES elec from RES with priority TWh[scenarios\ ] ~ TWh ~ Electricity generation from all RES technologies. | P oceanic growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C35') ~~| P oceanic growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C35') ~~| P oceanic growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C35') ~~| P oceanic growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C35') ~~| P oceanic growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C35') ~~| P oceanic growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C35') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | PE Elec generation from RES EJ[scenarios]= PE bioE for Elec generation EJ[scenarios]+"PE geot-elec for Elec generation EJ"[scenarios\ ]+PE hydro for Elec generation EJ [scenarios]+PE oceanic for Elec generation EJ[scenarios]+PE solar PV for Elec generation EJ\ [scenarios]+PE CSP for Elec generation EJ [scenarios]+PE onshore wind for Elec generation EJ[scenarios]+PE offshore wind for Elec generation EJ\ [scenarios]+PES tot biogas for elec[scenarios] ~ EJ/Year ~ Primary energy from RES electricity generation. For all sources excepting \ "Bio" the factor "RES to fossil accounting" is applied for the equivalent \ primary energy. | P RES elec growth[hydro, scenarios]= P hydro growth[scenarios] ~~| P RES elec growth["geot-elec", scenarios]= P geot growth[scenarios] ~~| P RES elec growth["solid bioE-elec", scenarios]= "P solid bioE-elec growth"[scenarios] ~~| P RES elec growth[oceanic, scenarios]= P oceanic growth[scenarios] ~~| P RES elec growth[wind onshore, scenarios]= P wind onshore growth[scenarios] ~~| P RES elec growth[wind offshore, scenarios]= P wind offshore growth[scenarios] ~~| P RES elec growth[solar PV, scenarios]= P solar PV growth[scenarios] ~~| P RES elec growth[CSP,scenarios]= P CSP growth[scenarios] ~ ~ For hydro, geot-elec and solid bioenergy this variable represents the \ projected annual growth in relation to past growth trends, for the rest of \ RES elec (oceanic, wind & solar), it represents the annual growth in \ relation to the existing installed capacity. | share RES electricity generation[scenarios]= FE tot generation all RES elec TWh[scenarios]/Total FE Elec generation TWh[scenarios\ ] ~ Dmnl ~ Share of RES in the electricity generation. | "P solid bioE-elec growth"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C34') ~~| "P solid bioE-elec growth"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C34') ~~| "P solid bioE-elec growth"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C34') ~~| "P solid bioE-elec growth"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C34') ~~| "P solid bioE-elec growth"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C34') ~~| "P solid bioE-elec growth"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C34') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | P CSP growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G38') ~~| P CSP growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G38') ~~| P CSP growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G38') ~~| P CSP growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G38') ~~| P CSP growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G38') ~~| P CSP growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G38') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | remaining potential tot RES elec[scenarios]= IF THEN ELSE(max potential tot RES elec TWh[scenarios] > FE tot generation all RES elec TWh\ [scenarios], (max potential tot RES elec TWh[scenarios]-FE tot generation all RES elec TWh\ [scenarios])/max potential tot RES elec TWh[scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | P wind offshore growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C37') ~~| P wind offshore growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C37') ~~| P wind offshore growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C37') ~~| P wind offshore growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C37') ~~| P wind offshore growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C37') ~~| P wind offshore growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C37') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | P wind onshore growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C36') ~~| P wind onshore growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C36') ~~| P wind onshore growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C36') ~~| P wind onshore growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C36') ~~| P wind onshore growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C36') ~~| P wind onshore growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C36') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | Elec generation dispatch from RES TWh[scenarios]= FE Elec generation from bioE TWh[scenarios]+"FE Elec generation from geot-elec TWh"[\ scenarios]+FE Elec generation from hydro TWh [scenarios]+FE Elec generation from oceanic TWh[scenarios]+FES elec from biogas TWh[\ scenarios] ~ TWh ~ Base-load electricity generation from RES. | FES elec from RES with priority TWh[scenarios]= FES elec from biogas TWh[scenarios] ~ TWh ~ | abundance RES elec[scenarios]= IF THEN ELSE(Total FE Elec demand after priorities TWh[scenarios]=0,0, IF THEN ELSE(Total FE Elec demand after priorities TWh[scenarios] > FE real tot generation RES elec TWh\ [scenarios], (Total FE Elec demand after priorities TWh[scenarios]-FE real tot generation RES elec TWh\ [scenarios])/Total FE Elec demand after priorities TWh[scenarios], 0)) ~ Dmnl ~ The parameter abundance varies between (1;0). The closest to 1 indicates \ that electricity generation from RES is far to cover to whole electricity \ demand, if "abundance RES elec"=0 it means that RES elec cover the whole \ electricity demand. | FES elec from BioW[scenarios]= real generation RES elec TWh["solid bioE-elec",scenarios]+FES elec from biogas TWh[scenarios\ ]+FES elec from waste TWh[scenarios] ~ TWh ~ Electricity generation of total bioenergy and waste (to compare with more \ common statistics). | P geot growth[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C33') ~~| P geot growth[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C33') ~~| P geot growth[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C33') ~~| P geot growth[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C33') ~~| P geot growth[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C33') ~~| P geot growth[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C33') ~ Dmnl ~ Annual growth in relation to the existing installed capacity. | max potential tot RES elec TWh[scenarios]= SUM(max potential RES elec TWh[RES elec!,scenarios])+max potential PHS TWe[scenarios\ ]/TWe per TWh+max biogas EJ[scenarios]*share PES biogas for elec[scenarios]/EJ per TWh ~ TWh ~ Maximum total potential of RES for electricity considering an optimal Cp. | P solid bioE for heat[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F59') ~~| P solid bioE for heat[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F59') ~~| P solid bioE for heat[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F59') ~~| P solid bioE for heat[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F59') ~~| P solid bioE for heat[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F59') ~~| P solid bioE for heat[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F59') ~ 1/Year ~ Annual growth in relation to the existing installed capacity. | PE real generation RES elec[hydro, scenarios]= real generation RES elec TWh[hydro,scenarios]*EJ per TWh*RES to fossil accounting ~~| PE real generation RES elec["geot-elec",scenarios]= real generation RES elec TWh["geot-elec",scenarios]*EJ per TWh*RES to fossil accounting\ ~~| PE real generation RES elec["solid bioE-elec",scenarios]= (real generation RES elec TWh["solid bioE-elec",scenarios]/efficiency conversion bioE to Elec\ )*EJ per TWh ~~| PE real generation RES elec[oceanic,scenarios]= real generation RES elec TWh[oceanic,scenarios]*EJ per TWh*RES to fossil accounting ~~| PE real generation RES elec[wind onshore,scenarios]= real generation RES elec TWh[wind onshore,scenarios]*EJ per TWh*RES to fossil accounting\ ~~| PE real generation RES elec[wind offshore,scenarios]= real generation RES elec TWh[wind offshore,scenarios]*EJ per TWh*RES to fossil accounting\ ~~| PE real generation RES elec[solar PV,scenarios]= real generation RES elec TWh[solar PV,scenarios]*EJ per TWh*RES to fossil accounting\ ~~| PE real generation RES elec[CSP,scenarios]= real generation RES elec TWh[CSP,scenarios]*EJ per TWh*RES to fossil accounting ~ EJ ~ Primary energy supply of electricity production of RES. | Efficiency RES heat["solar-heat"]= Efficiency solar panels for heat*Losses solar for heat ~~| Efficiency RES heat["geot-heat"]= Efficiency geothermal for heat ~~| Efficiency RES heat["solid bioE-heat"]= Efficiency conversion BioE plants to heat ~ Dmnl ~ | "FED heat-com by NRE CHP plants EJ"[scenarios]= "Share heat-com CHP plants NRE vs NRE tot heat-com generation"*"FED Heat-com NRE EJ"\ [scenarios] ~ EJ ~ Final energy demand of commercial heat in CHP plants without RES. | "Constant final energy intensity sectors&households TD?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C199') ~~| "Constant final energy intensity sectors&households TD?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C199') ~~| "Constant final energy intensity sectors&households TD?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C199') ~~| "Constant final energy intensity sectors&households TD?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C199') ~~| "Constant final energy intensity sectors&households TD?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C199') ~~| "Constant final energy intensity sectors&households TD?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C199') ~ Dmnl ~ 1: Constant final energy intensities for sectors and households top-down after 2009. 0: Evolution of the final energy intensities for sectors and households \ top-down following assumptions in inputs.xlsx. | "share oil dem for Heat-com"[scenarios]= IF THEN ELSE(PED total oil EJ[scenarios]>0, PED oil for Heat plants EJ[scenarios]/PED total oil EJ\ [scenarios],0) ~ Dmnl ~ Share of oil demand for commercial Heat plants in relation to the total \ demand of oil. | FE Elec generation from total oil TWh[scenarios]= PES oil EJ[scenarios]*share oil dem for Elec[scenarios]*efficiency liquids for electricity\ /EJ per TWh ~ TWh/Year ~ Electricity generation (final energy) from total oil. | Total FE Heat generation EJ[scenarios]= FES RES for heat EJ[scenarios]+"FES heat-com from waste EJ"[scenarios]+FES NRE for heat\ [scenarios] ~ EJ ~ Total final heat generation (fossil fuels, nuclear, waste & renewables) \ (EJ). | "PE supply RES non-Elec EJ"[scenarios]= "PE supply from RES non-elec without trad bioE EJ"[scenarios]+PE traditional biomass EJ delayed 1yr\ [scenarios]+Losses in charcoal plants EJ ~ EJ/Year ~ Primary energy (non electricity) from RES, including traditional biomass. | share coal dem for Elec[scenarios]= IF THEN ELSE(PED coal EJ[scenarios]>0, PE demand coal Elec plants EJ[scenarios]/PED coal EJ\ [scenarios], 0) ~ Dmnl ~ Share of coal demand to cover electricity consumption in Elec plants. | PE losses oil for Elec EJ[scenarios]= PES oil EJ[scenarios]*share oil dem for Elec[scenarios]*(1-efficiency liquids for electricity\ ) ~ EJ/Year ~ Primary energy losses related with oil for electricity generation. | share oil dem for Elec[scenarios]= IF THEN ELSE(PED total oil EJ[scenarios]>0, PE demand oil Elec plants EJ[scenarios]/\ PED total oil EJ[scenarios], 0) ~ Dmnl ~ Share of oil demand to cover electricity consumption. | "share coal dem for Heat-com"[scenarios]= IF THEN ELSE(PED coal EJ[scenarios]>0, PED coal for Heat plants EJ[scenarios]/PED coal EJ\ [scenarios], 0) ~ Dmnl ~ Share of coal demand to cover commercial heat consumption in Heat plants. | FE Elec generation from conv gas TWh[scenarios]= real extraction conv gas EJ[scenarios]*"share nat. gas dem for Elec"[scenarios]*efficiency gas for electricity /EJ per TWh ~ TWh/Year ~ Final energy electricity generation from conventional gas (TWh). | share RES heat generation[scenarios]= FES RES for heat EJ[scenarios]/Total FE Heat generation EJ[scenarios] ~ Dmnl ~ Share of RES in the total heat generation. | "share nat. gas dem for Elec"[scenarios]= IF THEN ELSE("PED nat. gas EJ"[scenarios]>0, PE demand gas Elec plants EJ[scenarios]\ /"PED nat. gas EJ"[scenarios], 0) ~ Dmnl ~ Share of natural gas demand to cover electricity consumption. | PE losses conv gas for Elec EJ[scenarios]= real extraction conv gas EJ[scenarios]*"share nat. gas dem for Elec"[scenarios]*(1-efficiency gas for electricity\ ) ~ EJ/Year ~ (Primary) Energy losses in the generation of electricity in gas power \ centrals. | PE losses coal for Elec EJ[scenarios]= extraction coal EJ[scenarios]*share coal dem for Elec[scenarios]*(1-efficiency coal for electricity\ ) ~ EJ/Year ~ (Primary) Energy losses in the generation of electricity in coal power \ centrals. | FE Elec generation from coal TWh[scenarios]= extraction coal EJ[scenarios]*efficiency coal for electricity*share coal dem for Elec\ [scenarios]/EJ per TWh ~ TWh/Year ~ Final energy electricity generation from coal (TWh). | "share nat. gas dem for Heat-com"[scenarios]= IF THEN ELSE("PED nat. gas EJ"[scenarios]>0, PED gases for Heat plants EJ[scenarios]\ /"PED nat. gas EJ"[scenarios], 0) ~ Dmnl ~ Share of natural gas demand for commercial Heat plants in relation to the \ demand of natural fossil gas. | Year scarcity Heat[scenarios]= IF THEN ELSE(Abundance heat[scenarios]>0.95, 0, Time) ~ Year ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | "FES heat-com from biogas in CHP plants"[scenarios]= PES biogas for CHP[scenarios]*efficiency biogas for heat CHP plants ~ EJ ~ Final energy supply of commercial heat in CHP plants from biogas. | efficiency biogas for heat plants= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G83') ~ Dmnl ~ Efficiency of the transformation of biogas in heat plants. | FES elec from biogas in CHP plants[scenarios]= PES biogas for CHP[scenarios]*efficiency biogas for elec CHP plants ~ EJ ~ Final energy supply of elec in CHP plants from biogas. | FES elec from biogas EJ[scenarios]= FES elec from biogas in CHP plants[scenarios]+FES elec from biogas in elec plants[scenarios\ ] ~ EJ ~ TFES electricity from biogas. | "PES biogas for heat-com plants"[scenarios]= PES Biogas EJ[scenarios]*"share PES biogas for heat-com plants" ~ EJ ~ Primary energy supply of heat in commercial Heat plants from biogas. | FES elec from biogas in elec plants[scenarios]= PES biogas for elec plants[scenarios]*efficiency biogas for elec plants ~ EJ ~ Final energy supply of electricity in Elec plants from biogas. | efficiency biogas for elec plants= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G84') ~ Dmnl ~ Efficiency of the transformation of biogas in elec plants. | "FES biogas for heat-com plants"[scenarios]= "PES biogas for heat-com plants"[scenarios]*efficiency biogas for heat plants ~ EJ ~ Final energy supply of commercial heat in Heat plants from biogas. | PES biogas for elec plants[scenarios]= PES Biogas EJ[scenarios]*share PES biogas for elec plants ~ EJ ~ Primary energy supply of heat in Heat plants from biogas. | share PES biogas TFC= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G82') ~ Dmnl ~ Share of PES biogas for total final consumption. | Potential PES biogas for TFC[scenarios]= PES Biogas EJ[scenarios]*share PES biogas TFC ~ EJ ~ Potential primary energy supply biogas for total final consumption. | FES elec from biogas TWh[scenarios]= FES elec from biogas EJ[scenarios]/EJ per TWh ~ TWh ~ TFES electricity from biogas. | PES biogas for CHP[scenarios]= PES Biogas EJ[scenarios]*share PES biogas for CHP ~ EJ ~ Primary energy supply biogas for CHP plants. | "share PES biogas for heat-com plants"= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G79') ~ Dmnl ~ Share of PES biogas for commercial heat plants. | efficiency biogas for elec CHP plants= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G86') ~ Dmnl ~ Efficiency of the transformation of biogas in elec in CHP plants. | "FES heat-com from biogas EJ"[scenarios]= "FES biogas for heat-com plants"[scenarios]+"FES heat-com from biogas in CHP plants"\ [scenarios] ~ EJ ~ TFES commercial heat from biogas. | efficiency biogas for heat CHP plants= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G85') ~ Dmnl ~ Efficiency of the transformation of biogas in heat in CHP plants. | share PES biogas for elec plants= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G80') ~ Dmnl ~ Share of PES biogas for elec plants. | share PES biogas for CHP= GET XLS CONSTANTS('inputs.xlsx' , 'Parameters', 'G81') ~ Dmnl ~ Share of PES biogas for CHP plants. | demand Elec plants fossil fuels TWh[scenarios]= MAX(Demand Elec NRE TWh[scenarios]-FE nuclear Elec generation TWh[scenarios]-FES Elec fossil fuel CHP plants TWh\ [scenarios ], 0) ~ TWh/Year ~ The model assigns priority to RES, CHP plants and nuclear generation \ (depending on the selected nuclear scenario) among the electricity \ generation. | Total extraction NRE EJ[scenarios]= extraction coal EJ[scenarios]+real extraction conv gas EJ[scenarios]+real extraction conv oil EJ\ [scenarios] +real extraction unconv gas EJ[scenarios]+real extraction unconv oil EJ[scenarios]+extraction uranium EJ\ [scenarios] ~ EJ/Year ~ Annual total extraction of non-renewable energy resources. | new PES biogas[scenarios]= IF THEN ELSE(Time<2014, (Historic biogas PES(Time+1)-Historic biogas PES(Time)), ((max biogas EJ\ [scenarios]-PES Biogas EJ[ scenarios])/max biogas EJ[scenarios])*adapt growth biogas[scenarios]*PES Biogas EJ[scenarios\ ]) ~ EJ/Year ~ New annual primary energy supply of biogas. | Energy cost pressure[scenarios,final sources]= 1-abundance of energy[scenarios,final sources] ~ ~ | Pressure to improve energy intensity efficiency[scenarios,sectors,final sources]= Energy cost pressure[scenarios,final sources]+Implementation policy to improve energy intensity effciency\ [scenarios,sectors,final sources] ~ ~ This variable represents the pressure in each economic sector to improve \ energy efficiency in the technology used. This change according to the \ sectors will have different technological difficulty and different cost. \ This pressure may be due to (1) energy policies, eg incentives for energy \ efficiency, or (2) significant variations in the prices of each type of \ final energy. This price variation will be related to the absolute \ abundance of each energy source. | abundance of energy[scenarios,liquids]= abundance liquids[scenarios] ~~| abundance of energy[scenarios,gases]= abundance gases[scenarios] ~~| abundance of energy[scenarios,solids]= abundance solids[scenarios] ~~| abundance of energy[scenarios,electricity]= 1 ~~| abundance of energy[scenarios,heat]= 1 ~ ~ | final sources1: electricity, heat, liquids,gases, solids ~ ~ | constrain rr improv for alt techn per mineral[materials,scenarios]= IF THEN ELSE(recycling rates minerals alt techn[materials,scenarios]threshold remaining potential new capacity\ ,1,remaining potential RES elec after intermitt [RES elec,scenarios]*(1/threshold remaining potential new capacity)) ~ Dmnl ~ Constraint of remaining potential on new RES elec capacity. Another alternative: SQRT(remaining potential RES elec after intermitt[RES \ elec,scenarios]) | required capacity RES elec TW[RES elec,scenarios]= INTEG ( new required capacity RES elec[RES elec,scenarios]-new RES elec capacity under planning\ [RES elec,scenarios], initial required capacity RES elec[RES elec]) ~ TW ~ Required capacity of RES technologies for electricity generation. | RES elec planned capacity TW[RES elec, scenarios]= INTEG ( new RES elec capacity under planning[RES elec,scenarios]+replacement capacity RES elec\ [RES elec,scenarios]-RES elec capacity under construction TW[RES elec,scenarios], initial capacity in construction RES elec[RES elec]) ~ TW ~ Planned capacity of RES for electricity. | "Initial energy cons per unit of material cons (recycled) - data"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z5') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z6') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z7') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z8') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z9') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z10') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z11') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z12') ~~| "Initial energy cons per unit of material cons (recycled) - data"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z13') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z14') ~~| "Initial energy cons per unit of material cons (recycled) - data"["Electric/electronic components"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z15') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z16') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z17') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z18') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z19') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z20') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Glass reinforcing plastic\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z21') ~~| "Initial energy cons per unit of material cons (recycled) - data"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z22') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z23') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z24') ~~| "Initial energy cons per unit of material cons (recycled) - data"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z25') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z26') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z27') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z28') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z29') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z30') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z31') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z32') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z33') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z34') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z35') ~~| "Initial energy cons per unit of material cons (recycled) - data"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z36') ~~| "Initial energy cons per unit of material cons (recycled) - data"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z37') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z38') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z39') ~~| "Initial energy cons per unit of material cons (recycled) - data"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z40') ~~| "Initial energy cons per unit of material cons (recycled) - data"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z41') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z42') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z43') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z44') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z45') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z46') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z47') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z48') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z49') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Silicon wafer modules\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z50') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z51') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z52') ~~| "Initial energy cons per unit of material cons (recycled) - data"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z53') ~~| "Initial energy cons per unit of material cons (recycled) - data"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z54') ~~| "Initial energy cons per unit of material cons (recycled) - data"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z55') ~~| "Initial energy cons per unit of material cons (recycled) - data"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z56') ~~| "Initial energy cons per unit of material cons (recycled) - data"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z57') ~~| "Initial energy cons per unit of material cons (recycled) - data"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Z58') ~~| "Initial energy cons per unit of material cons (recycled) - data"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y59') ~~| "Initial energy cons per unit of material cons (recycled) - data"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y60') ~~| "Initial energy cons per unit of material cons (recycled) - data"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y61') ~~| "Initial energy cons per unit of material cons (recycled) - data"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y62') ~ MJ/kg ~ Energy consumption required to use recycled materials per unit of material \ consumption. This variable reads directly from "inputs.xlsx" but has 0s \ for those materials for which information was not found. | Cp PHS= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G53') ~ Dmnl ~ Capacity factor of pumped hydro storage (PHS). | max potential PHS TWe[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'G24') ~~| max potential PHS TWe[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'G24') ~~| max potential PHS TWe[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'G24') ~~| max potential PHS TWe[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'G24') ~~| max potential PHS TWe[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'G24') ~~| max potential PHS TWe[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'G24') ~ TWe ~ Maximum potential for PHS. | max capacity potential PHS[scenarios]= max potential PHS TWe[scenarios]/Cp PHS ~ TW ~ Maximum capacity potential of PHS. | "materials per new RES elec capacity installed - HVDCs"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H5') ~~| "materials per new RES elec capacity installed - HVDCs"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H6') ~~| "materials per new RES elec capacity installed - HVDCs"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H7') ~~| "materials per new RES elec capacity installed - HVDCs"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H8') ~~| "materials per new RES elec capacity installed - HVDCs"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H9') ~~| "materials per new RES elec capacity installed - HVDCs"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H10') ~~| "materials per new RES elec capacity installed - HVDCs"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H11') ~~| "materials per new RES elec capacity installed - HVDCs"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H12') ~~| "materials per new RES elec capacity installed - HVDCs"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H13') ~~| "materials per new RES elec capacity installed - HVDCs"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H14') ~~| "materials per new RES elec capacity installed - HVDCs"["Electric/electronic components"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H15') ~~| "materials per new RES elec capacity installed - HVDCs"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H16') ~~| "materials per new RES elec capacity installed - HVDCs"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H17') ~~| "materials per new RES elec capacity installed - HVDCs"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H18') ~~| "materials per new RES elec capacity installed - HVDCs"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H19') ~~| "materials per new RES elec capacity installed - HVDCs"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H20') ~~| "materials per new RES elec capacity installed - HVDCs"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H21') ~~| "materials per new RES elec capacity installed - HVDCs"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H22') ~~| "materials per new RES elec capacity installed - HVDCs"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H23') ~~| "materials per new RES elec capacity installed - HVDCs"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H24') ~~| "materials per new RES elec capacity installed - HVDCs"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H25') ~~| "materials per new RES elec capacity installed - HVDCs"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H26') ~~| "materials per new RES elec capacity installed - HVDCs"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H27') ~~| "materials per new RES elec capacity installed - HVDCs"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H28') ~~| "materials per new RES elec capacity installed - HVDCs"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H29') ~~| "materials per new RES elec capacity installed - HVDCs"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H30') ~~| "materials per new RES elec capacity installed - HVDCs"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H31') ~~| "materials per new RES elec capacity installed - HVDCs"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H32') ~~| "materials per new RES elec capacity installed - HVDCs"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H33') ~~| "materials per new RES elec capacity installed - HVDCs"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H34') ~~| "materials per new RES elec capacity installed - HVDCs"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H35') ~~| "materials per new RES elec capacity installed - HVDCs"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H36') ~~| "materials per new RES elec capacity installed - HVDCs"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H37') ~~| "materials per new RES elec capacity installed - HVDCs"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H38') ~~| "materials per new RES elec capacity installed - HVDCs"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H39') ~~| "materials per new RES elec capacity installed - HVDCs"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H40') ~~| "materials per new RES elec capacity installed - HVDCs"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H41') ~~| "materials per new RES elec capacity installed - HVDCs"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H42') ~~| "materials per new RES elec capacity installed - HVDCs"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H43') ~~| "materials per new RES elec capacity installed - HVDCs"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H44') ~~| "materials per new RES elec capacity installed - HVDCs"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H45') ~~| "materials per new RES elec capacity installed - HVDCs"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H46') ~~| "materials per new RES elec capacity installed - HVDCs"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H47') ~~| "materials per new RES elec capacity installed - HVDCs"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H48') ~~| "materials per new RES elec capacity installed - HVDCs"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H49') ~~| "materials per new RES elec capacity installed - HVDCs"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H50') ~~| "materials per new RES elec capacity installed - HVDCs"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H51') ~~| "materials per new RES elec capacity installed - HVDCs"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H52') ~~| "materials per new RES elec capacity installed - HVDCs"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H53') ~~| "materials per new RES elec capacity installed - HVDCs"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H54') ~~| "materials per new RES elec capacity installed - HVDCs"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H55') ~~| "materials per new RES elec capacity installed - HVDCs"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H56') ~~| "materials per new RES elec capacity installed - HVDCs"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H57') ~~| "materials per new RES elec capacity installed - HVDCs"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H58') ~~| "materials per new RES elec capacity installed - HVDCs"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H59') ~~| "materials per new RES elec capacity installed - HVDCs"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H60') ~~| "materials per new RES elec capacity installed - HVDCs"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H61') ~~| "materials per new RES elec capacity installed - HVDCs"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'H62') ~ kg/MW ~ Materials requirements for inter-regional grids (HVDCs) per unit of new \ installed capacity of RES variable for electricity. | "materials per new RES elec capacity installed - material overgrid high power"[Adhesive\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G5') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Aluminium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G6') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Aluminium mirrors\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G7') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Cadmium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G8') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Carbon fiber\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G9') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Cement\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G10') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Chromium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G11') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Copper\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G12') ~~| "materials per new RES elec capacity installed - material overgrid high power"[diesel\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G13') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G14') ~~| "materials per new RES elec capacity installed - material overgrid high power"["Electric/electronic components"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G15') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Evacuation lines\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G16') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Fiberglass\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G17') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Foam glass\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G18') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Galium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G19') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Glass]\ = GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G20') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Glass reinforcing plastic\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G21') ~~| "materials per new RES elec capacity installed - material overgrid high power"[gravel\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G22') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Indium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G23') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G24') ~~| "materials per new RES elec capacity installed - material overgrid high power"[KNO3 mined\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G25') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Asphalt\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G26') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G27') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Limestone\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G28') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Lithium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G29') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Lubricant\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G30') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Magnesium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G31') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Manganese\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G32') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Heavy equipment\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G33') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Concrete\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G34') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Molybdenum\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G35') ~~| "materials per new RES elec capacity installed - material overgrid high power"[NaNO3 mined\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G36') ~~| "materials per new RES elec capacity installed - material overgrid high power"[NaNO3 synthetic\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G37') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Neodymium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G38') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Nickel\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G39') ~~| "materials per new RES elec capacity installed - material overgrid high power"["Over grid (15%)"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G40') ~~| "materials per new RES elec capacity installed - material overgrid high power"["Over grid (5%)"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G41') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Paint]\ = GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G42') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G43') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Plastics\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G44') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Polypropylene\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G45') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G46') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Rock wool\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G47') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G48') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Silicon sand\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G49') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Silicon wafer modules\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G50') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Silver\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G51') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Site preparation\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G52') ~~| "materials per new RES elec capacity installed - material overgrid high power"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G53') ~~| "materials per new RES elec capacity installed - material overgrid high power"[soda ash\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G54') ~~| "materials per new RES elec capacity installed - material overgrid high power"[steel]\ = GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G55') ~~| "materials per new RES elec capacity installed - material overgrid high power"[synthetic oil\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G56') ~~| "materials per new RES elec capacity installed - material overgrid high power"[tellurium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G57') ~~| "materials per new RES elec capacity installed - material overgrid high power"[titanium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G58') ~~| "materials per new RES elec capacity installed - material overgrid high power"[titanium dioxide\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G59') ~~| "materials per new RES elec capacity installed - material overgrid high power"[vanadium\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G60') ~~| "materials per new RES elec capacity installed - material overgrid high power"[wires]\ = GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G61') ~~| "materials per new RES elec capacity installed - material overgrid high power"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'G62') ~ kg/MW ~ Materials requirements for overgrid high power per unit of new installed \ capacity of RES variable for electricity. | real growth GTL[scenarios]= IF THEN ELSE(abundance gases[scenarios]>=abundance liquids[scenarios], IF THEN ELSE(abundance gases[scenarios]=1, Exogenous growth GTL[scenarios],0 ),0)*abundance liquids GTL\ [scenarios]*scarcity conv oil[scenarios] ~ 1/Year ~ The real growth of GTL depends on the relative abundance of gas and \ liquids, as well as on the availability of gas. | scarcity conv gas delayed 1yr[scenarios]= DELAY FIXED ( scarcity conv gas[scenarios], 1, 0.2502) ~ Dmnl ~ | scarcity conv oil delayed 1yr[scenarios]= DELAY FIXED ( scarcity conv oil[scenarios], 1, 0.3989) ~ Dmnl ~ | "PES nat. gas"[scenarios]= real extraction conv gas EJ[scenarios]+real extraction unconv gas EJ[scenarios] ~ EJ/Year ~ | FE Elec generation from unconv gas TWh[scenarios]= real extraction unconv gas EJ[scenarios]*"share nat. gas dem for Elec"[scenarios]*efficiency gas for electricity\ /EJ per TWh ~ TWh/Year ~ Final energy electricity generation from unconventional gas (TWh). | exponent availability conv oil= 1/4 ~ Dmnl ~ The smaller the exponent, more priority to conventional vs unconventional oil: 1: lineal 1/2: square root 1/3: cube root ... | PE losses uncon gas for Elec EJ[scenarios]= real extraction unconv gas EJ[scenarios]*"share nat. gas dem for Elec"[scenarios]*(1\ -efficiency gas for electricity) ~ EJ/Year ~ (Primary) Energy losses in the generation of electricity in gas power \ centrals. | "abundance total nat. gas"[scenarios]= IF THEN ELSE("PED nat. gas EJ"[scenarios]<"PES nat. gas"[scenarios], 1, 1-ZIDZ(("PED nat. gas EJ"\ [scenarios]-"PES nat. gas"[scenarios]), "PED nat. gas EJ"[scenarios])) ~ Dmnl ~ The parameter abundance varies between (1;0). Abundance=1 while the supply \ covers the demand; the closest to 0 indicates a higher divergence between \ supply and demand. | exponent availability conv gas= 1/4 ~ Dmnl ~ The smaller the exponent, more priority to conventional vs unconventional gas: 1: lineal 1/2: square root 1/3: cube root ... | scarcity conv gas[scenarios]= IF THEN ELSE(max extraction conv gas EJ[scenarios]=0,0, IF THEN ELSE(max extraction conv gas EJ[scenarios]>=extraction conv gas EJ[scenarios\ ], 1-((max extraction conv gas EJ[scenarios]-extraction conv gas EJ[scenarios])/max extraction conv gas EJ\ [scenarios])^exponent availability conv gas,0)) ~ Dmnl ~ Priority to conventional resource to cover the demand while the maximum \ extraction level of energy/time is not reached. | "Year scarcity total nat. gas"[scenarios]= IF THEN ELSE("abundance total nat. gas"[scenarios]>0.95, 0, Time) ~ ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | share unconv gas vs tot agg in 2050[scenarios]= IF THEN ELSE(choose extraction tot agg gas curve[scenarios]=1, share unconv gas vs tot agg in 2050 Lahèrrere2010\ , IF THEN ELSE(choose extraction tot agg gas curve[scenarios]=2, share unconv gas vs tot agg in 2050 Mohr12 BG\ , share unconv gas vs tot agg in 2050 User defined)) ~ Dmnl ~ Share of unconventional gas vs total aggregated gas in 2050 depending on \ the maximum extraction curve selected for total aggregated gas. | share unconv gas vs tot agg in 2050 Lahèrrere2010= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'B153') ~ Dmnl ~ | share unconv gas vs tot agg in 2050 Mohr12 BG= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'B155') ~ Dmnl ~ | share unconv gas vs tot agg in 2050 User defined= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B150') ~ Dmnl ~ | cumulated tot agg gas extraction to 1995= cumulated conv gas extraction to 1995+cumulated unconv gas extraction to 1995 ~ EJ ~ Cumulated total agg gas extraction to 1995. | share conv gas vs tot agg[scenarios]= 1-share unconv gas vs tot agg[scenarios] ~ Dmnl ~ | share RURR tot agg gas to leave underground[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F128') ~~| share RURR tot agg gas to leave underground[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F128') ~~| share RURR tot agg gas to leave underground[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F128') ~~| share RURR tot agg gas to leave underground[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F128') ~~| share RURR tot agg gas to leave underground[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F128') ~~| share RURR tot agg gas to leave underground[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F128') ~ Dmnl ~ RURR's total aggregated natural gas to be left in the ground as a share of \ the RURR in the year 2015. | share unconv gas vs tot agg[scenarios]= IF THEN ELSE(Time>2012, MIN(evolution share unconv gas vs tot agg[scenarios], 1), Historic unconv gas\ /"PED nat. gas EJ"[scenarios]) ~ Dmnl ~ Evolution of the share of unconventional gas vs total aggregated gas. | RURR tot agg gas[scenarios]= INTEG ( -extraction tot agg gas EJ[scenarios]-Flow tot agg gas left in ground[scenarios], URR tot agg gas[scenarios]-cumulated tot agg gas extraction to 1995) ~ EJ ~ RURR total aggregated natural gas. | Flow tot agg gas left in ground[scenarios]= IF THEN ELSE(Time=Start policy leave in ground tot agg gas[scenarios]+1,0, tot agg gas to leave underground\ [scenarios])) ~ EJ ~ Flow of total aggregated natural gas left in the ground. We assume that \ this amount is removed from the stock of conventional natural gas \ available in 1 year. | Tot RURR tot agg gas[scenarios]= RURR tot agg gas[scenarios]+Total agg gas left in ground[scenarios] ~ EJ ~ Total RURR of total aggregated natural gas considering the available RURR \ and the eventual amount of RURR left in the ground as a policy. | URR total agg gas unlimited= URR total gas Mohr12 BG*10000 ~ EJ ~ | Start policy leave in ground tot agg gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F126') ~~| Start policy leave in ground tot agg gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F126') ~~| Start policy leave in ground tot agg gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F126') ~~| Start policy leave in ground tot agg gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F126') ~~| Start policy leave in ground tot agg gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F126') ~~| Start policy leave in ground tot agg gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F126') ~ Year ~ Year when the policy to leave in the ground an amount of total aggregated \ gas RURR enters into force. | "extraction unconv gas - tot agg"[scenarios]= extraction tot agg gas EJ[scenarios]*share unconv gas vs tot agg[scenarios] ~ EJ ~ | Total agg gas left in ground[scenarios]= INTEG ( Flow tot agg gas left in ground[scenarios], 0) ~ EJ ~ Total amount of aggregated natural gas left in the ground due to policies. | evolution share unconv gas vs tot agg[scenarios]= (share unconv gas vs tot agg in 2050[scenarios]-0.1082)/(2050-2012)*Time+(share unconv gas vs tot agg in 2050\ [scenarios]-((share unconv gas vs tot agg in 2050[scenarios]-0.1082)/(2050-2012))*2050\ ) ~ Dmnl ~ Linear relation of the evolution of the share of unconventional gas vs \ total aggregated gas. | real extraction conv gas EJ[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1, extraction conv gas EJ[scenarios\ ], "extraction conv gas - tot agg" [scenarios]) ~ EJ ~ | URR tot agg gas[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1,0, IF THEN ELSE("unlimited NRE?"[scenarios]=1,URR total agg gas unlimited, IF THEN ELSE("unlimited gas?"[scenarios]=1,URR total agg gas unlimited, IF THEN ELSE(choose extraction tot agg gas curve[scenarios]=1, URR total gas Laherrère10\ , IF THEN ELSE(choose extraction tot agg gas curve[scenarios]=2, URR total gas Mohr12 BG\ , URR total gas User defined))))) ~ EJ ~ Ultimately Recoverable Resources (URR) associated to the selected \ depletion curve. | cumulated tot agg gas extraction[scenarios]= INTEG ( extraction tot agg gas EJ[scenarios], cumulated tot agg gas extraction to 1995) ~ EJ ~ Cumulated total aggregated gas extraction. | "extraction conv gas - tot agg"[scenarios]= extraction tot agg gas EJ[scenarios]*share conv gas vs tot agg[scenarios] ~ EJ ~ | real extraction unconv gas EJ[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1, extraction unconv gas EJ[\ scenarios], "extraction unconv gas - tot agg"[scenarios]) ~ EJ ~ | max extraction tot agg gas EJ[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=0, IF THEN ELSE(choose extraction tot agg gas curve[scenarios]=1, table max extraction total gas Laherrère10\ (Tot RURR tot agg gas[scenarios]), IF THEN ELSE(choose extraction tot agg gas curve[scenarios]=2, table max extraction total gas BG Mohr12\ (Tot RURR tot agg gas [scenarios]), table max extraction total gas User defined(Tot RURR tot agg gas[scenarios\ ]))),0) ~ EJ/Year ~ Maximum extraction curve selected for the simulations. | extraction tot agg gas EJ[scenarios]= IF THEN ELSE(RURR tot agg gas[scenarios]<0,0, IF THEN ELSE("unlimited NRE?"[scenarios]=1,"PED nat. gas EJ"[scenarios], IF THEN ELSE("unlimited gas?"[scenarios]=1, "PED nat. gas EJ"[scenarios], MIN("PED nat. gas EJ"[scenarios], max extraction tot agg gas EJ[scenarios])))) ~ EJ/Year ~ Annual extraction of total aggregated natural gas. | "real extraction conv oil Mb/d"[scenarios]= real extraction conv oil EJ[scenarios]*"Mb/d per EJ/year" ~ Mb/d ~ | share unconv oil vs tot agg[scenarios]= IF THEN ELSE(Time>2012, MIN(evolution share unconv oil vs tot agg[scenarios], 1), Historic unconv oil\ /PED total oil EJ[scenarios]) ~ Dmnl ~ Evolution of the share of unconventional oil vs total aggregated oil. | evolution share unconv oil vs tot agg[scenarios]= (share unconv oil vs tot agg in 2050[scenarios]-0.059)/(2050-2012)*Time+(share unconv oil vs tot agg in 2050\ [scenarios]-((share unconv oil vs tot agg in 2050[scenarios]-0.059)/(2050-2012))*2050\ ) ~ Dmnl ~ Linear relation of the evolution of the share of unconventional oil vs \ total aggregated oil. | share unconv oil vs tot agg in 2050[scenarios]= IF THEN ELSE(choose extraction curve tot agg oil[scenarios]=1, share unconv oil vs tot agg in 2050 Lahèrrere2006\ , share unconv oil vs tot agg in 2050 User defined) ~ Dmnl ~ Share of unconventional oil vs total aggregated oil in 2050 depending on \ the maximum extraction curve selected for total aggregated oil. | share unconv oil vs tot agg in 2050 Lahèrrere2006= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'B138') ~ Dmnl ~ | share unconv oil vs tot agg in 2050 User defined= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B143') ~ Dmnl ~ | "extraction conv oil - tot agg"[scenarios]= extraction tot agg oil EJ[scenarios]*share conv oil vs tot agg[scenarios] ~ EJ ~ | "extraction unconv oil - tot agg"[scenarios]= extraction tot agg oil EJ[scenarios]*share unconv oil vs tot agg[scenarios] ~ EJ ~ | share conv oil vs tot agg[scenarios]= 1-share unconv oil vs tot agg[scenarios] ~ Dmnl ~ | RURR tot agg oil[scenarios]= INTEG ( -extraction tot agg oil EJ[scenarios]-Flow tot agg oil left in ground[scenarios], URR tot agg oil[scenarios]-cumulated tot agg extraction to 1995) ~ EJ ~ RURR total aggregated oil. | PES oil EJ[scenarios]= real extraction conv oil EJ[scenarios]+real extraction unconv oil EJ[scenarios] ~ EJ/Year ~ Total oil (conventional + unconventional) extraction. | extraction tot agg oil EJ[scenarios]= IF THEN ELSE(RURR tot agg oil[scenarios]<0,0, IF THEN ELSE("unlimited NRE?"[scenarios]=1, PED total oil EJ[scenarios], IF THEN ELSE("unlimited oil?"[scenarios]=1, PED total oil EJ[scenarios], MIN(PED total oil EJ\ [scenarios], max extraction tot agg oil EJ[scenarios])))) ~ EJ/Year ~ Annual extraction of total aggregated oil. | real extraction conv oil EJ[scenarios]= IF THEN ELSE("separate conv and unconv oil?"[scenarios]=1, extraction conv oil EJ[scenarios\ ], "extraction conv oil - tot agg"[scenarios]) ~ EJ ~ | max extraction tot agg oil EJ[scenarios]= IF THEN ELSE("separate conv and unconv oil?"[scenarios]=0, IF THEN ELSE(choose extraction curve tot agg oil[scenarios]=1, table max extraction tot agg oil Lahèrrere 2006\ (Tot RURR tot agg oil[scenarios]), table max extraction tot agg oil User defined(Tot RURR tot agg oil\ [scenarios])), 0) ~ EJ/Year ~ Maximum extraction curve for total aggregated oil selected for the \ simulations. | gCH4 per MJ conv gas= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C97') ~ GtCO2/MToe ~ CH4 emissions associated to the extraction of conventional gas. Ref: Fig. \ 2 Howarth (2015). | Total agg oil left in ground[scenarios]= INTEG ( Flow tot agg oil left in ground[scenarios], 0) ~ EJ ~ Total amount of aggregated oil left in the ground due to policies. | cumulated tot agg oil extraction[scenarios]= INTEG ( extraction tot agg oil EJ[scenarios], cumulated tot agg extraction to 1995) ~ EJ ~ Cumulated total aggregated oil extraction. | cumulated tot agg extraction to 1995= cumulated conv oil extraction to 1995+cumulated unconv oil extraction to 1995 ~ EJ ~ Cumulated total aggregated oil extraction to 1995. | URR tot agg oil[scenarios]= IF THEN ELSE("separate conv and unconv oil?"[scenarios]=1, 0, IF THEN ELSE("unlimited oil?"[scenarios]=1,URR tot agg oil unlimited, IF THEN ELSE("unlimited NRE?"[scenarios]=1,URR tot agg oil unlimited, IF THEN ELSE(choose extraction curve tot agg oil[scenarios]=1, URR tot agg oil Laherrère 2006\ , URR tot agg oil User defined)))) ~ EJ ~ Ultimately Recoverable Resources (URR) associated to the selected \ depletion curve. | URR tot agg oil unlimited= URR tot agg oil Laherrère 2006*10000 ~ EJ ~ We assume that the URR for the unlimited scenario is 10000 times the \ highest estimate. | Tot RURR tot agg oil [scenarios]= RURR tot agg oil[scenarios]+Total agg oil left in ground[scenarios] ~ EJ ~ Total RURR of total aggregated oil considering the available RURR and the \ eventual amount of RURR left in the ground as a policy. | Start policy leave in ground tot agg oil[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F122') ~~| Start policy leave in ground tot agg oil[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F122') ~~| Start policy leave in ground tot agg oil[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F122') ~~| Start policy leave in ground tot agg oil[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F122') ~~| Start policy leave in ground tot agg oil[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F122') ~~| Start policy leave in ground tot agg oil[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F122') ~ Year ~ Year when the policy to leave in the ground an amount of total aggregated \ oil RURR enters into force. | Flow tot agg oil left in ground[scenarios]= IF THEN ELSE(Time=Start policy leave in ground tot agg oil[scenarios]+1,0, tot agg oil to leave underground\ [scenarios])) ~ EJ ~ Flow of total aggregated oil left in the ground. We assume that this \ amount is removed from the stock of total aggregated oil available in 1 \ year. | g per Mt= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'G23') ~ Dmnl ~ 1e12 grams = 1 Mtonne. | share RURR tot agg oil to leave underground[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F124') ~~| share RURR tot agg oil to leave underground[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F124') ~~| share RURR tot agg oil to leave underground[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F124') ~~| share RURR tot agg oil to leave underground[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F124') ~~| share RURR tot agg oil to leave underground[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F124') ~~| share RURR tot agg oil to leave underground[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F124') ~ Dmnl ~ RURR's total aggregatoid oil to be left in the ground as a share of the \ RURR in the year 2015. | gCH4 per MJ unconv gas= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C98') ~ GtCO2/MToe ~ CH4 emissions associated to the extraction of unconventional gas (shale \ gas). Ref: Fig. 2 Howarth (2015). | Tot RURR unconv gas[scenarios]= RURR unconv gas[scenarios]+Total unconv gas left in ground[scenarios] ~ EJ ~ Total RURR of unconventional natural gas considering the available RURR \ and the eventual amount of RURR left in the ground as a policy. | Start policy leave in ground coal[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C130') ~~| Start policy leave in ground coal[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C130') ~~| Start policy leave in ground coal[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C130') ~~| Start policy leave in ground coal[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C130') ~~| Start policy leave in ground coal[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C130') ~~| Start policy leave in ground coal[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C130') ~ Year ~ Year when the policy to leave in the ground an amount of coal RURR enters \ into force. | Total unconv gas left in ground[scenarios]= INTEG ( Flow unconv gas left in ground[scenarios], 0) ~ EJ ~ Total amount of unconventional natural gas left in the ground due to \ policies. | Flow coal left in ground[scenarios]= IF THEN ELSE(Time=Start policy leave in ground coal[scenarios]+1,0, coal to leave underground\ [scenarios])) ~ EJ ~ Flow of coal left in the ground. We assume that this amount is removed \ from the stock of coal available in 1 year. | Flow conv gas left in ground[scenarios]= IF THEN ELSE(Time=Start policy leave in ground conv gas[scenarios]+1,0, conv gas to leave underground\ [scenarios])) ~ EJ ~ Flow of conventional natural gas left in the ground. We assume that this \ amount is removed from the stock of conventional natural gas available in \ 1 year. | Flow conv oil left in ground[scenarios]= IF THEN ELSE(Time=Start policy leave in ground conv oil[scenarios]+1,0, conv oil to leave underground\ [scenarios])) ~ EJ ~ Flow of conventional oil left in the ground. We assume that this amount is \ removed from the stock of conventional oil available in 1 year. | Flow unconv oil left in ground[scenarios]= IF THEN ELSE(Time=Start policy leave in ground unconv oil[scenarios]+1,0, unconv oil to leave underground\ [scenarios])) ~ EJ ~ Flow of unconventional oil left in the ground. We assume that this amount \ is removed from the stock of unconventional oil available in 1 year. | share RURR unconv gas to leave underground[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C129') ~~| share RURR unconv gas to leave underground[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C129') ~~| share RURR unconv gas to leave underground[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C129') ~~| share RURR unconv gas to leave underground[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C129') ~~| share RURR unconv gas to leave underground[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C129') ~~| share RURR unconv gas to leave underground[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C129') ~ Dmnl ~ RURR's unconventional natural gas to be left in the ground as a share of \ the RURR in the year 2015. | share RURR unconv oil to leave underground[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C125') ~~| share RURR unconv oil to leave underground[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C125') ~~| share RURR unconv oil to leave underground[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C125') ~~| share RURR unconv oil to leave underground[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C125') ~~| share RURR unconv oil to leave underground[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C125') ~~| share RURR unconv oil to leave underground[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C125') ~ Dmnl ~ RURR's unconventional oil to be left in the ground as a share of the RURR \ in the year 2015. | extraction unconv gas EJ[scenarios]= IF THEN ELSE(RURR unconv gas[scenarios]<0,0, IF THEN ELSE(Time<2013, Historic unconv gas, IF THEN ELSE("separate conv and unconv gas?"\ [scenarios]=1, MIN(max extraction unconv gas [scenarios],max unconv gas growth extraction EJ[scenarios]), 0))) ~ EJ/Year ~ Annual extraction of unconventional gas. IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1, IF THEN ELSE(Time<2011, \ Historic unconv gas[scenarios](Time), MIN(max extraction unconv \ gas[scenarios],max unconv gas growth extraction EJ [scenarios])), 0) | Tot RURR coal[scenarios]= RURR coal[scenarios]+Total coal left in ground[scenarios] ~ EJ ~ Total RURR of coal considering the available RURR and the eventual amount \ of RURR left in the ground as a policy. | Tot RURR conv gas[scenarios]= RURR conv gas[scenarios]+Total conv gas left in ground[scenarios] ~ EJ ~ Total RURR of conventional natural gas considering the available RURR and \ the eventual amount of RURR left in the ground as a policy. | Tot RURR conv oil[scenarios]= RURR conv oil[scenarios]+Total conv oil left in ground[scenarios] ~ EJ ~ Total RURR of conventional oil considering the available RURR and the \ eventual amount of RURR left in the ground as a policy. | share RURR conv oil to leave underground[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C123') ~~| share RURR conv oil to leave underground[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C123') ~~| share RURR conv oil to leave underground[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C123') ~~| share RURR conv oil to leave underground[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C123') ~~| share RURR conv oil to leave underground[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C123') ~~| share RURR conv oil to leave underground[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C123') ~ Dmnl ~ RURR's conventional oil to be left in the ground as a share of the RURR in \ the year 2015. | Tot RURR unconv oil[scenarios]= RURR unconv oil EJ[scenarios]+Total unconv oil left in ground[scenarios] ~ EJ ~ Total RURR of unconventional oil considering the available RURR and the \ eventual amount of RURR left in the ground as a policy. | Total unconv oil left in ground[scenarios]= INTEG ( Flow unconv oil left in ground[scenarios], 0) ~ EJ ~ Total amount of unconventional oil left in the ground due to policies. | Total coal left in ground[scenarios]= INTEG ( Flow coal left in ground[scenarios], 0) ~ EJ ~ | Total conv gas left in ground[scenarios]= INTEG ( Flow conv gas left in ground[scenarios], 0) ~ EJ ~ Total amount of conventional natural gas left in the ground due to \ policies. | Total conv oil left in ground[scenarios]= INTEG ( Flow conv oil left in ground[scenarios], 0) ~ EJ ~ Total amount of conventional oil left in the ground due to policies. | extraction conv oil EJ[scenarios]= IF THEN ELSE(RURR conv oil[scenarios]<0,0, IF THEN ELSE("unlimited NRE?"[scenarios]=1, Demand conv oil EJ[scenarios], IF THEN ELSE("unlimited oil?"[scenarios]=1, Demand conv oil EJ[scenarios], MIN(Demand conv oil EJ[scenarios], max extraction conv oil EJ[scenarios])))) ~ EJ/Year ~ Annual extraction of conventional oil. | extraction coal EJ[scenarios]= IF THEN ELSE(RURR coal[scenarios]<0,0, IF THEN ELSE("unlimited NRE?"[scenarios]=1, PED coal EJ[scenarios], IF THEN ELSE("unlimited coal?"[scenarios]=1, PED coal EJ[scenarios],MIN(PED coal EJ[\ scenarios], max extraction coal EJ[scenarios])))) ~ EJ/Year ~ Annual extraction of coal. | RURR coal[scenarios]= INTEG ( -extraction coal EJ[scenarios]-Flow coal left in ground[scenarios], URR coal[scenarios]-cumulated coal extraction to 1995) ~ EJ ~ RURR coal. 4400 EJ extracted before 1990. | max extraction conv oil EJ[scenarios]= IF THEN ELSE("separate conv and unconv oil?"[scenarios]=1, IF THEN ELSE(choose extraction curve conv oil[scenarios]=1, table max extraction Maggio12middle conv oil EJ\ (Tot RURR conv oil[scenarios]), IF THEN ELSE(choose extraction curve conv oil[scenarios]=2, table max extraction Maggio12 High conv oil EJ\ (Tot RURR conv oil[scenarios]), IF THEN ELSE(choose extraction curve conv oil[scenarios]=3, table max extraction Maggio12 Low con oil EJ\ (Tot RURR conv oil[scenarios]), table max conv oil extraction User defined(Tot RURR conv oil\ [scenarios])))), 0) ~ EJ/Year ~ Maximum extraction curve selected for the simulations. | Start policy leave in ground unconv gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C128') ~~| Start policy leave in ground unconv gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C128') ~~| Start policy leave in ground unconv gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C128') ~~| Start policy leave in ground unconv gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C128') ~~| Start policy leave in ground unconv gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C128') ~~| Start policy leave in ground unconv gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C128') ~ Year ~ Year when the policy to leave in the ground an amount of unconventional \ gas RURR enters into force. | Flow unconv gas left in ground[scenarios]= IF THEN ELSE(Time=Start policy leave in ground unconv gas[scenarios]+1,0, unconv gas to leave underground\ [scenarios])) ~ EJ ~ Flow of unconventional natural gas left in the ground. We assume that this \ amount is removed from the stock of unconventional natural gas available \ in 1 year. | Start policy leave in ground unconv oil[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C124') ~~| Start policy leave in ground unconv oil[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C124') ~~| Start policy leave in ground unconv oil[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C124') ~~| Start policy leave in ground unconv oil[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C124') ~~| Start policy leave in ground unconv oil[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C124') ~~| Start policy leave in ground unconv oil[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C124') ~ Year ~ Year when the policy to leave in the ground an amount of unconventional \ oil RURR enters into force. | Start policy leave in ground conv oil[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C122') ~~| Start policy leave in ground conv oil[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C122') ~~| Start policy leave in ground conv oil[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C122') ~~| Start policy leave in ground conv oil[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C122') ~~| Start policy leave in ground conv oil[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C122') ~~| Start policy leave in ground conv oil[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C122') ~ Year ~ Year when the policy to leave in the ground an amount of conventional oil \ RURR enters into force. | share RURR coal to leave underground[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C131') ~~| share RURR coal to leave underground[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C131') ~~| share RURR coal to leave underground[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C131') ~~| share RURR coal to leave underground[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C131') ~~| share RURR coal to leave underground[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C131') ~~| share RURR coal to leave underground[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C131') ~ Dmnl ~ RURR's coal to be left in the ground as a share of the RURR in the year \ 2015. | "PES oil Mb/d"[scenarios]= PES oil EJ[scenarios]*"Mb/d per EJ/year" ~ Mb/d ~ Total oil (conventional + unconventional) extraction. | current mineral reserves Mt[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV5') ~~| current mineral reserves Mt[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV6') ~~| current mineral reserves Mt[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV7') ~~| current mineral reserves Mt[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV8') ~~| current mineral reserves Mt[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV9') ~~| current mineral reserves Mt[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV10') ~~| current mineral reserves Mt[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV11') ~~| current mineral reserves Mt[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV12') ~~| current mineral reserves Mt[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV13') ~~| current mineral reserves Mt[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV14') ~~| current mineral reserves Mt["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV15') ~~| current mineral reserves Mt[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV16') ~~| current mineral reserves Mt[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV17') ~~| current mineral reserves Mt[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV18') ~~| current mineral reserves Mt[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV19') ~~| current mineral reserves Mt[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV20') ~~| current mineral reserves Mt[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV21') ~~| current mineral reserves Mt[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV22') ~~| current mineral reserves Mt[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV23') ~~| current mineral reserves Mt[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV24') ~~| current mineral reserves Mt[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV25') ~~| current mineral reserves Mt[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV26') ~~| current mineral reserves Mt[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV27') ~~| current mineral reserves Mt[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV28') ~~| current mineral reserves Mt[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV29') ~~| current mineral reserves Mt[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV30') ~~| current mineral reserves Mt[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV31') ~~| current mineral reserves Mt[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV32') ~~| current mineral reserves Mt[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV33') ~~| current mineral reserves Mt[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV34') ~~| current mineral reserves Mt[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV35') ~~| current mineral reserves Mt[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV36') ~~| current mineral reserves Mt[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV37') ~~| current mineral reserves Mt[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV38') ~~| current mineral reserves Mt[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV39') ~~| current mineral reserves Mt["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV40') ~~| current mineral reserves Mt["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV41') ~~| current mineral reserves Mt[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV42') ~~| current mineral reserves Mt[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV43') ~~| current mineral reserves Mt[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV44') ~~| current mineral reserves Mt[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV45') ~~| current mineral reserves Mt[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV46') ~~| current mineral reserves Mt[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV47') ~~| current mineral reserves Mt[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV48') ~~| current mineral reserves Mt[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV49') ~~| current mineral reserves Mt[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV50') ~~| current mineral reserves Mt[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV51') ~~| current mineral reserves Mt[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV52') ~~| current mineral reserves Mt[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV53') ~~| current mineral reserves Mt[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV54') ~~| current mineral reserves Mt[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV55') ~~| current mineral reserves Mt[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV56') ~~| current mineral reserves Mt[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV57') ~~| current mineral reserves Mt[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV58') ~~| current mineral reserves Mt[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV59') ~~| current mineral reserves Mt[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV60') ~~| current mineral reserves Mt[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV61') ~~| current mineral reserves Mt[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AV62') ~ Mt ~ Current mineral reserves. | Losses in charcoal plants EJ:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Constants', '216', 'B229') ~ EJ ~ Losses of energy (EJ) produced in charcoal plants. | share RURR conv gas to leave underground[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C127') ~~| share RURR conv gas to leave underground[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C127') ~~| share RURR conv gas to leave underground[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C127') ~~| share RURR conv gas to leave underground[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C127') ~~| share RURR conv gas to leave underground[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C127') ~~| share RURR conv gas to leave underground[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C127') ~ Dmnl ~ RURR's conventional gas to be left in the ground as a share of the RURR in \ the year 2015. | Start policy leave in ground conv gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C126') ~~| Start policy leave in ground conv gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C126') ~~| Start policy leave in ground conv gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C126') ~~| Start policy leave in ground conv gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C126') ~~| Start policy leave in ground conv gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C126') ~~| Start policy leave in ground conv gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C126') ~ Year ~ Year when the policy to leave in the ground an amount of conventional gas \ RURR enters into force. | extraction conv gas EJ[scenarios]= IF THEN ELSE(RURR conv gas[scenarios]<0,0, IF THEN ELSE("unlimited NRE?"[scenarios]=1,Demand conv gas[scenarios], IF THEN ELSE("unlimited gas?"[scenarios]=1, Demand conv gas[scenarios], MIN(Demand conv gas[scenarios], max extraction conv gas EJ[scenarios])))) ~ EJ/Year ~ Annual extraction of conventional gas. | check gases[scenarios]= ZIDZ( PED gases[scenarios]-PES gases[scenarios] , PES gases[scenarios] ) ~ Dmnl ~ Variable to avoid energy oversupply caused by exogenously driven policies. | abundance gases[scenarios]= IF THEN ELSE(PED gases[scenarios]PED solids[scenarios], 1, 1 - ZIDZ(PED solids[scenarios\ ]-PES solids[scenarios] , PED solids[scenarios] )) ~ Dmnl ~ The parameter abundance varies between (1;0). Abundance=1 while the supply \ covers the demand; the closest to 0 indicates a higher divergence between \ supply and demand. | GDP[scenarios]= Real demand[scenarios]/1e+006 ~ T$ ~ Global GDP in T1995T$. | demand Elec gas and coal TWh[scenarios]= demand Elec plants fossil fuels TWh[scenarios]-FE demand oil Elec plants TWh[scenarios\ ] ~ ~ | FE demand coal Elec plants TWh[scenarios]= share coal for Elec[scenarios]*demand Elec gas and coal TWh[scenarios] ~ TWh/Year ~ Final energy demand of coal for electricity consumption (TWh). | FE demand gas Elec plants TWh[scenarios]= "share gas/(coal +gas) for Elec"[scenarios]*demand Elec gas and coal TWh[scenarios] ~ TWh/Year ~ Final energy demand of natural gas for electricity consumption (TWh). | "FED Heat gas+coal EJ"[scenarios]= "FED Heat-com plants fossil fuels EJ"[scenarios]-FED Heat liquids plants EJ[scenarios\ ] ~ ~ | PE demand oil Elec plants EJ[scenarios]= (FE demand oil Elec plants TWh[scenarios]/efficiency liquids for electricity)*EJ per TWh ~ EJ/Year ~ Primary energy demand of oil (EJ) for electric generation (including \ generation losses). | FE demand oil Elec plants TWh[scenarios]= share oil for Elec[scenarios]*Total FE Elec demand TWh[scenarios] ~ TWh/Year ~ Final energy demand of oil to produce electricity. | share coal for Elec[scenarios]= 1-"share gas/(coal +gas) for Elec"[scenarios] ~ Dmnl ~ Coal is assumed to cover the rest of the electricity demand after RES, \ nuclear, oil and gas. | current mineral resources Mt[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY5') ~~| current mineral resources Mt[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY6') ~~| current mineral resources Mt[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY7') ~~| current mineral resources Mt[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY8') ~~| current mineral resources Mt[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY9') ~~| current mineral resources Mt[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY10') ~~| current mineral resources Mt[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY11') ~~| current mineral resources Mt[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY12') ~~| current mineral resources Mt[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY13') ~~| current mineral resources Mt[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY14') ~~| current mineral resources Mt["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY15') ~~| current mineral resources Mt[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY16') ~~| current mineral resources Mt[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY17') ~~| current mineral resources Mt[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY18') ~~| current mineral resources Mt[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY19') ~~| current mineral resources Mt[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY20') ~~| current mineral resources Mt[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY21') ~~| current mineral resources Mt[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY22') ~~| current mineral resources Mt[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY23') ~~| current mineral resources Mt[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY24') ~~| current mineral resources Mt[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY25') ~~| current mineral resources Mt[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY26') ~~| current mineral resources Mt[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY27') ~~| current mineral resources Mt[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY28') ~~| current mineral resources Mt[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY29') ~~| current mineral resources Mt[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY30') ~~| current mineral resources Mt[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY31') ~~| current mineral resources Mt[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY32') ~~| current mineral resources Mt[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY33') ~~| current mineral resources Mt[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY34') ~~| current mineral resources Mt[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY35') ~~| current mineral resources Mt[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY36') ~~| current mineral resources Mt[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY37') ~~| current mineral resources Mt[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY38') ~~| current mineral resources Mt[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY39') ~~| current mineral resources Mt["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY40') ~~| current mineral resources Mt["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY41') ~~| current mineral resources Mt[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY42') ~~| current mineral resources Mt[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY43') ~~| current mineral resources Mt[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY44') ~~| current mineral resources Mt[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY45') ~~| current mineral resources Mt[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY46') ~~| current mineral resources Mt[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY47') ~~| current mineral resources Mt[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY48') ~~| current mineral resources Mt[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY49') ~~| current mineral resources Mt[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY50') ~~| current mineral resources Mt[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY51') ~~| current mineral resources Mt[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY52') ~~| current mineral resources Mt[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY53') ~~| current mineral resources Mt[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY54') ~~| current mineral resources Mt[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY55') ~~| current mineral resources Mt[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY56') ~~| current mineral resources Mt[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY57') ~~| current mineral resources Mt[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY58') ~~| current mineral resources Mt[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY59') ~~| current mineral resources Mt[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY60') ~~| current mineral resources Mt[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY61') ~~| current mineral resources Mt[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'AY62') ~ Mt ~ Current mineral resources. | share CHP plants oil= MAX(IF THEN ELSE(Time>2014, -0.002985*(Time)+6.04554, historic share CHP plants oil)\ ,0) ~ Dmnl ~ Oil share of heat demand. Since this share has been falling globally since \ the first oil shock, and given the difficulties to substitute oil in other \ sectors (e.g. Transportation) and that there are many more resources that \ can supply heat, we assume an exogenous linear decreasing trend for the \ oil share of heat demand to reach 0% around 2025. | historic share CHP plants gas:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Constants', '25', 'H30') ~ Dmnl ~ Historic share of natural gas for electricity in relation to the total \ fossil fuels for CHP plants | share CHP plants coal= 1-historic share CHP plants gas-share CHP plants oil ~ Dmnl ~ Coal is assumed to cover the rest of the CHP plants demand after RES, \ nuclear, oil and gas. | Historic share liquids for heat plants:= GET XLS DATA('inputs.xlsx', 'Constants', '25', 'H75') ~ Dmnl ~ Historic share liquids for heat plants | "share coal(coal+gas) for heat plants"= 1-"share gas/(coal+gas) for heat plants" ~ Dmnl ~ Coal is assumed to cover the rest of the heat demand after RES, nuclear, \ oil and gas. | historic share CHP plants oil:= GET XLS DATA('inputs.xlsx', 'Constants', '25', 'H32') ~ Dmnl ~ historic share CHP plants oil | output elec over lifetime RES elec for allocation2[RES elec, scenarios]= "'static' EROIgrid RES elec"[RES elec,scenarios]*FEI over lifetime RES elec for allocation\ [RES elec,scenarios]*quality of electricity[scenarios] ~ ~ | demand storage capacity[scenarios]= "share capacity storage/RES elec var"[scenarios]*Total installed capacity RES elec var\ [scenarios] ~ TW ~ Required storage capacity to install to deal with the variability of RES \ for electricity. | "share capacity storage/RES elec var"[scenarios]= 0.099+0.1132*share Elec demand covered by RES[scenarios] ~ Dmnl ~ Share installed capacity of storage vs installed capacity of variable RES \ for electricity. Estimation from NREL (2012). | "static/dynamic quality of electricity?"= 0 ~ Dmnl ~ This variable controls the method of calculation of the parameter "quality of \ electricity" from static (2015 value) or dynamic (MEDEAS endogenous \ calculation: 1. Static EROI calculation (2015 value) 0. Dynamic EROI calculation (endogenous MEDEAS) | "'static' EROIgrid tot-effective for allocation RES elec"[scenarios]= ZIDZ( SUM(output elec over lifetime RES elec for allocation2[RES elec!,scenarios]) ,\ SUM(FEI over lifetime RES elec for allocation[RES elec!,scenarios]) ) ~ Dmnl ~ EROI of the aggregated outputs and inputs of RES for generating \ electricity. | "ratio EROIgrid vs EROI (static)"[RES elec, scenarios]= IF THEN ELSE("'static' EROI RES elec"[RES elec,scenarios]<=0,0,"'static' EROIgrid RES elec"\ [RES elec,scenarios]/"'static' EROI RES elec"[RES elec,scenarios]) ~ Dmnl ~ | "ratio EROI per techn vs EROItot (static)"[RES elec, scenarios]= XIDZ( "'static' EROIgrid RES elec"[RES elec,scenarios] , "'static' EROIgrid tot-effective for allocation RES elec"\ [scenarios] , 0 ) ~ Dmnl ~ | Total installed capacity RES elec var[scenarios]= installed capacity RES elec TW[wind onshore,scenarios]+installed capacity RES elec TW\ [wind offshore,scenarios]+installed capacity RES elec TW[solar PV,scenarios]+installed capacity RES elec TW\ [CSP,scenarios] ~ TW ~ Total installed capacity of RES variables for electricity generation. | "share RES elec generation curtailed&stored"[hydro, scenarios]= 0 ~~| "share RES elec generation curtailed&stored"["geot-elec", scenarios]= 0 ~~| "share RES elec generation curtailed&stored"["solid bioE-elec", scenarios]= 0 ~~| "share RES elec generation curtailed&stored"[oceanic, scenarios]= 0 ~~| "share RES elec generation curtailed&stored"[wind onshore, scenarios]= 0.2 ~~| "share RES elec generation curtailed&stored"[wind offshore, scenarios]= 0.2 ~~| "share RES elec generation curtailed&stored"[solar PV, scenarios]= 0.2 ~~| "share RES elec generation curtailed&stored"[CSP, scenarios]= 0.2 ~ Dmnl ~ Share of the generation of electricity from RES technologies curtailed or \ stored. | rt storage efficiency PHS= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G51') ~ Dmnl ~ Round-trip storage efficiency. | Cp baseload reduction[RES elec, scenarios]= Cp RES elec[RES elec,scenarios]/"Cp-ini RES elec"[RES elec] ~ Dmnl ~ | "ratio = 1"= 1 ~ Dmnl ~ | FEI over lifetime RES elec[hydro, scenarios]= FEI over lifetime RES elec dispatch[hydro,scenarios] ~~| FEI over lifetime RES elec["geot-elec", scenarios]= FEI over lifetime RES elec dispatch["geot-elec",scenarios] ~~| FEI over lifetime RES elec["solid bioE-elec", scenarios]= FEI over lifetime RES elec dispatch["solid bioE-elec",scenarios] ~~| FEI over lifetime RES elec[oceanic, scenarios]= FEI over lifetime RES elec dispatch[oceanic,scenarios] ~~| FEI over lifetime RES elec[wind onshore, scenarios]= FEI over lifetime RES elec var[wind onshore,scenarios] ~~| FEI over lifetime RES elec[wind offshore, scenarios]= FEI over lifetime RES elec var[wind offshore,scenarios] ~~| FEI over lifetime RES elec[solar PV, scenarios]= FEI over lifetime RES elec var[solar PV,scenarios] ~~| FEI over lifetime RES elec[CSP, scenarios]= FEI over lifetime RES elec var[CSP,scenarios] ~ EJ ~ Final energy investments over lifetime for RES elec technologies. | real Cp RES elec[RES elec, scenarios]= IF THEN ELSE(Time<2015,Cp RES elec[RES elec,scenarios], IF THEN ELSE(installed capacity RES elec TW[RES elec,scenarios]=0,0, real generation RES elec TWh\ [RES elec,scenarios]*TWe per TWh/installed capacity RES elec TW[RES elec,scenarios]\ )) ~ Dmnl ~ | FEI over lifetime RES elec for allocation[RES elec, scenarios]= FEI over lifetime RES elec[RES elec,scenarios]*remaining potential RES elec switch[RES elec\ ,scenarios] ~ EJ ~ Final energy investments over lifetime for RES elec technologies. Adapted \ for allocating technologies. | remaining potential RES elec after intermitt[RES elec,scenarios]= IF THEN ELSE(potential RES elec after intermitt TWh[RES elec,scenarios] > potential generation RES elec TWh\ [RES elec,scenarios], ZIDZ( potential RES elec after intermitt TWh[RES elec,scenarios\ ]-potential generation RES elec TWh[RES elec,scenarios] , potential RES elec after intermitt TWh\ [RES elec,scenarios] ), 0) ~ Dmnl ~ | remaining potential RES elec switch[RES elec, scenarios]= IF THEN ELSE(remaining potential RES elec after intermitt[RES elec,scenarios]<0.025,\ 0,1) ~ Dmnl ~ This variable detects when a RES elec technology has (almost, 97.5%) \ reached its full potential so this technology is not taken into account in \ the estimation of the total EROI aggregated for the calculation of the mix \ allocation. | output elec over lifetime RES elec for allocation[RES elec,scenarios]= output elec over lifetime RES elec[RES elec,scenarios]*remaining potential RES elec switch\ [RES elec,scenarios] ~ EJ ~ | potential RES elec after intermitt TWh[RES elec, scenarios]= max potential RES elec TWe[RES elec,scenarios]*Cp baseload reduction[RES elec,scenarios\ ]/TWe per TWh ~ TWh ~ Potential of RES for electricity per technology after accounting for the \ reduction of the maximal potential given the reduction of the Cp. | replacement rate RES elec[RES elec, scenarios]= IF THEN ELSE(potential generation RES elec TWh[RES elec,scenarios]2014, -0.0125*(Time)+25.3125, Historic PES peat EJ),0) ~ EJ ~ | FEI over lifetime RES elec dispatch[RES elec, scenarios]= CEDtot per TW over lifetime RES elec dispatch[RES elec,scenarios]*RES elec capacity under construction TW\ [RES elec,scenarios] ~ EJ ~ Final energy invested over lifetime per RES elec dispatchable technology \ (equivalent to the denominator of the EROI (=CED*g). | activate EROI allocation rule= 1 ~ Dmnl ~ Activate/Deactivate EROI allocation rule for the RES elec technologies: 1. Activated 0. Deactivated | EROI allocation rule per RES elec[RES elec, scenarios]= IF THEN ELSE(Time<2015, 1, IF THEN ELSE("ratio EROI per techn vs EROItot (static)"[RES elec,scenarios]=0,0, IF THEN ELSE("ratio EROI per techn vs EROItot (static)"[RES elec,scenarios]<0.1,0, 0.434294\ *LN("ratio EROI per techn vs EROItot (static)"[RES elec,scenarios])+1))) ~ Dmnl ~ Allocation rule for the RES elec technologies based on their EROI. | "'dynamic' EROI RES elec var"[RES elec, scenarios]= IF THEN ELSE(FEI RES elec var[RES elec,scenarios]=0, 0, real generation RES elec EJ[\ RES elec,scenarios]/FEI RES elec var [RES elec,scenarios]) ~ Dmnl ~ Evolution of EROI over time per RES variable technology, considering CED \ dynamic over time. | "EROI-ini RES elec dispatch"[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'W13') ~~| "EROI-ini RES elec dispatch"["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'W7') ~~| "EROI-ini RES elec dispatch"["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'W8') ~~| "EROI-ini RES elec dispatch"[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'W9') ~~| "EROI-ini RES elec dispatch"[wind onshore]= 0 ~~| "EROI-ini RES elec dispatch"[wind offshore]= 0 ~~| "EROI-ini RES elec dispatch"[solar PV]= 0 ~~| "EROI-ini RES elec dispatch"[CSP]= 0 ~ Dmnl ~ Energy return on energy invested of RES technologies for generating \ electricity dispatchables at the initial Cp level. | RES elec capacity under construction TW[RES elec, scenarios]= RES elec planned capacity TW[RES elec, scenarios]/time construction RES elec[RES elec\ ] ~ TW/Year ~ RES infraestructure for electricity generation capacity under construction. | real generation solar PV EJ[scenarios]= real generation RES elec EJ[solar PV,scenarios] ~ EJ ~ | materials required for new CSP Mt[materials, scenarios]= materials required for new RES elec Mt[CSP,materials,scenarios] ~ Mt ~ Annual materials required for the installation of new capacity of solar \ CSP. | materials required for new PV Mt[materials, scenarios]= materials required for new RES elec Mt[solar PV,materials,scenarios] ~ Mt ~ Annual materials required for the installation of new capacity of solar PV. | materials required for new wind offshore Mt[materials, scenarios]= materials required for new RES elec Mt[wind offshore,materials,scenarios] ~ Mt ~ Annual materials required for the installation of new capacity of wind \ offshore. | materials required for new wind onshore Mt[materials, scenarios]= materials required for new RES elec Mt[wind onshore,materials,scenarios] ~ Mt ~ Annual materials required for the installation of new capacity of wind \ oshore. | "materials required for O&M CSP Mt"[materials, scenarios]= "materials required for O&M RES elec Mt"[CSP,materials,scenarios] ~ Mt ~ Annual materials required for the operation and maintenance of solar CSP. | "materials required for O&M PV Mt"[materials, scenarios]= "materials required for O&M RES elec Mt"[solar PV,materials,scenarios] ~ Mt ~ Annual materials required for the operation and maintenance of solar PV. | "materials required for O&M wind offshore Mt"[materials, scenarios]= "materials required for O&M RES elec Mt"[wind offshore,materials,scenarios] ~ Mt ~ Annual materials required for the operation and maintenance of wind \ offshore. | "materials required for O&M wind onshore Mt"[materials, scenarios]= "materials required for O&M RES elec Mt"[wind onshore,materials,scenarios] ~ Mt ~ Annual materials required for the operation and maintenance of wind \ onshore. | real generation RES elec EJ[RES elec, scenarios]= real generation RES elec TWh[RES elec,scenarios]*EJ per TWh ~ EJ ~ Electricity generation by RES technology. | "energy own-use constant 830 Mtoe in 2013"= 830 ~ ~ | CEDtot solar PV[scenarios]= FEI RES elec var[solar PV,scenarios] ~ EJ ~ | Total materials required for new RES elec Mt[materials, scenarios]= SUM(materials required for new RES elec Mt[RES elec!,materials,scenarios]) ~ Mt ~ Total annual materials requirements per new installed capacity of RES for \ electricity generation. | "Total materials required for O&M RES elec Mt"[materials, scenarios]= SUM("materials required for O&M RES elec Mt"[RES elec!,materials,scenarios]) ~ Mt ~ Total annual materials required for the operation and maintenance of the \ capacity of RES for electricity in operation by technology. | "EROI=1"= 1 ~ Dmnl ~ | Electrical distribution losses TWh[scenarios]= Total FE Elec demand TWh[scenarios]*"share transm&distr elec losses"[scenarios] ~ TWh ~ Electrical transmission and distribution losses. | "Max share transm&distr elec losses"= "share transm&distr elec losses initial"*(1+0.0115*EXP(4.2297*1)-0.00251) ~ Dnml ~ Assumed maximum share of transmission and distribution electric losses \ (when RES supply 100% of the total consumption). | "Heat-com distribution losses"[scenarios]= "FED Heat-com EJ"[scenarios]*Share heat distribution losses ~ EJ/Year ~ Distribution losses associated to heat commercial. | potential generation RES elec TWh[RES elec, scenarios]= installed capacity RES elec TW[RES elec,scenarios]*Cp RES elec[RES elec,scenarios]/TWe per TWh ~ TWh ~ Potential generation of electricity by RES technology given the installed \ capacity. | output elec over lifetime RES elec[RES elec,scenarios]= real Cp RES elec[RES elec,scenarios]*RES elec capacity under construction TW[RES elec\ ,scenarios]*(1/TWe per TWh)*lifetime RES elec[RES elec]*EJ per TWh ~ EJ ~ Total electricity output generated over the full operation of the \ infrastructure of the new capacity installed. | "variation share transm&distr elec losses"[scenarios]= IF THEN ELSE(Time<2015, 0, "variation share transm&distr losses elec"[scenarios]*"remaining share transm&distr elec losses"\ [scenarios]) ~ Dmnl ~ Annual variation of the share of transmission and distribution losses of \ electricity. | "remaining share transm&distr elec losses"[scenarios]= ("Max share transm&distr elec losses"-"share transm&distr elec losses"[scenarios])/"Max share transm&distr elec losses" ~ Dmnl ~ Remaining share in relation to the assumed maximum transmission and \ distribution losses. | "share transm&distr elec losses"[scenarios]= INTEG ( "variation share transm&distr elec losses"[scenarios], "share transm&distr elec losses initial") ~ Dmnl ~ Evolution over time of the share of transmission and distribution losses \ of electricity. It is assumed that these losses increase over time as the \ share of RES increase in the electricity mix. | Total gen losses demand for Elec plants EJ[scenarios]= PE demand gas Elec plants EJ[scenarios]*(1-efficiency gas for electricity)+PE demand coal Elec plants EJ\ [scenarios]*(1-efficiency coal for electricity)+PE demand oil Elec plants EJ[scenarios\ ]*(1-efficiency liquids for electricity)+PE losses uranium for Elec EJ[scenarios]+PE losses BioE for Elec EJ\ [scenarios] ~ EJ/Year ~ Total generation losses associated to electricity demand. | PE losses BioE for Elec EJ[scenarios]= PE real generation RES elec["solid bioE-elec",scenarios]-FE Elec generation from bioE TWh\ [scenarios]*EJ per TWh ~ EJ/Year ~ (Primary energy) losses due to the production of electricity from solid \ bioenergy. | "water for O&M - wind offshore"["clean, pumped water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E114') ~~| "water for O&M - wind offshore"["distilled, deionized water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E115') ~ kg/MW ~ | Total materials required for RES elec Mt[materials,scenarios]= Total materials required for new RES elec Mt[materials,scenarios]+"Total materials required for O&M RES elec Mt"\ [materials,scenarios] ~ Mt/Year ~ Total annual materials requirements for the installation and O&M of RES \ for electricity generation. | share energy for material consumption for alt techn vs TFEC[scenarios]= TFE required for total material consumption for alt techn[scenarios]/Real TFEC[scenarios\ ] ~ Dmnl ~ Share of energy requirements for alternative technologies (RES elec & EV \ Batteries) vs TFES. | water0: "clean, pumped water", "distilled, deionized water" ~ ~ Two types of water considering the energy requirements to make them \ available. | "water for O&M - PV"["clean, pumped water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C114') ~~| "water for O&M - PV"["distilled, deionized water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C115') ~ kg/MW ~ | "water for O&M - wind onshore"["clean, pumped water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D114') ~~| "water for O&M - wind onshore"["distilled, deionized water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D115') ~ kg/MW ~ | "materials for O&M per capacity installed - wind offshore"[Adhesive]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E99') ~~| "materials for O&M per capacity installed - wind offshore"[Aluminium mirrors]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Cadmium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E100') ~~| "materials for O&M per capacity installed - wind offshore"[Cement]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Chromium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E101') ~~| "materials for O&M per capacity installed - wind offshore"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E102') ~~| "materials for O&M per capacity installed - wind offshore"[Dy]= 0 ~~| "materials for O&M per capacity installed - wind offshore"["Electric/electronic components"\ ]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Evacuation lines]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E103') ~~| "materials for O&M per capacity installed - wind offshore"[Foam glass]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Galium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E104') ~~| "materials for O&M per capacity installed - wind offshore"[Glass reinforcing plastic]\ = GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E105') ~~| "materials for O&M per capacity installed - wind offshore"[gravel]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Indium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Iron]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[KNO3 mined]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Asphalt]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E106') ~~| "materials for O&M per capacity installed - wind offshore"[Limestone]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Lithium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E107') ~~| "materials for O&M per capacity installed - wind offshore"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E108') ~~| "materials for O&M per capacity installed - wind offshore"[Manganese]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Heavy equipment]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Concrete]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Molybdenum]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[NaNO3 mined]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[NaNO3 synthetic]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Neodymium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Nickel]= 0 ~~| "materials for O&M per capacity installed - wind offshore"["Over grid (15%)"]= 0 ~~| "materials for O&M per capacity installed - wind offshore"["Over grid (5%)"]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Paint]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Lead]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E109') ~~| "materials for O&M per capacity installed - wind offshore"[Polypropylene]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Rock]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Rock wool]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Sand]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E110') ~~| "materials for O&M per capacity installed - wind offshore"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E111') ~~| "materials for O&M per capacity installed - wind offshore"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E112') ~~| "materials for O&M per capacity installed - wind offshore"[Site preparation]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[Tin]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[soda ash]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[steel]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E113') ~~| "materials for O&M per capacity installed - wind offshore"[tellurium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[titanium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[titanium dioxide]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[vanadium]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[wires]= 0 ~~| "materials for O&M per capacity installed - wind offshore"[zinc]= 0 ~ kg/MW ~ Materials requirements for operation and maintenance per unit of new \ installed capacity of wind offshore. | "materials for O&M per capacity installed - wind onshore"[Adhesive]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D99') ~~| "materials for O&M per capacity installed - wind onshore"[Aluminium mirrors]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Cadmium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D100') ~~| "materials for O&M per capacity installed - wind onshore"[Cement]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Chromium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D101') ~~| "materials for O&M per capacity installed - wind onshore"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D102') ~~| "materials for O&M per capacity installed - wind onshore"[Dy]= 0 ~~| "materials for O&M per capacity installed - wind onshore"["Electric/electronic components"\ ]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Evacuation lines]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D103') ~~| "materials for O&M per capacity installed - wind onshore"[Foam glass]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Galium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D104') ~~| "materials for O&M per capacity installed - wind onshore"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D105') ~~| "materials for O&M per capacity installed - wind onshore"[gravel]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Indium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Iron]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[KNO3 mined]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Asphalt]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D106') ~~| "materials for O&M per capacity installed - wind onshore"[Limestone]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Lithium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D107') ~~| "materials for O&M per capacity installed - wind onshore"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D108') ~~| "materials for O&M per capacity installed - wind onshore"[Manganese]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Heavy equipment]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Concrete]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Molybdenum]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[NaNO3 mined]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[NaNO3 synthetic]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Neodymium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Nickel]= 0 ~~| "materials for O&M per capacity installed - wind onshore"["Over grid (15%)"]= 0 ~~| "materials for O&M per capacity installed - wind onshore"["Over grid (5%)"]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Paint]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Lead]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D109') ~~| "materials for O&M per capacity installed - wind onshore"[Polypropylene]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Rock]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Rock wool]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Sand]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D110') ~~| "materials for O&M per capacity installed - wind onshore"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D111') ~~| "materials for O&M per capacity installed - wind onshore"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D112') ~~| "materials for O&M per capacity installed - wind onshore"[Site preparation]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[Tin]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[soda ash]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[steel]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D113') ~~| "materials for O&M per capacity installed - wind onshore"[tellurium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[titanium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[titanium dioxide]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[vanadium]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[wires]= 0 ~~| "materials for O&M per capacity installed - wind onshore"[zinc]= 0 ~ kg/MW ~ Materials requirements for operation and maintenance per unit of new \ installed capacity of wind onshore. | "materials for O&M per capacity installed - PV"[Adhesive]= 0 ~~| "materials for O&M per capacity installed - PV"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C99') ~~| "materials for O&M per capacity installed - PV"[Aluminium mirrors]= 0 ~~| "materials for O&M per capacity installed - PV"[Cadmium]= 0 ~~| "materials for O&M per capacity installed - PV"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C100') ~~| "materials for O&M per capacity installed - PV"[Cement]= 0 ~~| "materials for O&M per capacity installed - PV"[Chromium]= 0 ~~| "materials for O&M per capacity installed - PV"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C101') ~~| "materials for O&M per capacity installed - PV"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C102') ~~| "materials for O&M per capacity installed - PV"[Dy]= 0 ~~| "materials for O&M per capacity installed - PV"["Electric/electronic components"]= 0 ~~| "materials for O&M per capacity installed - PV"[Evacuation lines]= 0 ~~| "materials for O&M per capacity installed - PV"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C103') ~~| "materials for O&M per capacity installed - PV"[Foam glass]= 0 ~~| "materials for O&M per capacity installed - PV"[Galium]= 0 ~~| "materials for O&M per capacity installed - PV"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C104') ~~| "materials for O&M per capacity installed - PV"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C105') ~~| "materials for O&M per capacity installed - PV"[gravel]= 0 ~~| "materials for O&M per capacity installed - PV"[Indium]= 0 ~~| "materials for O&M per capacity installed - PV"[Iron]= 0 ~~| "materials for O&M per capacity installed - PV"[KNO3 mined]= 0 ~~| "materials for O&M per capacity installed - PV"[Asphalt]= 0 ~~| "materials for O&M per capacity installed - PV"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C106') ~~| "materials for O&M per capacity installed - PV"[Limestone]= 0 ~~| "materials for O&M per capacity installed - PV"[Lithium]= 0 ~~| "materials for O&M per capacity installed - PV"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C107') ~~| "materials for O&M per capacity installed - PV"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C108') ~~| "materials for O&M per capacity installed - PV"[Manganese]= 0 ~~| "materials for O&M per capacity installed - PV"[Heavy equipment]= 0 ~~| "materials for O&M per capacity installed - PV"[Concrete]= 0 ~~| "materials for O&M per capacity installed - PV"[Molybdenum]= 0 ~~| "materials for O&M per capacity installed - PV"[NaNO3 mined]= 0 ~~| "materials for O&M per capacity installed - PV"[NaNO3 synthetic]= 0 ~~| "materials for O&M per capacity installed - PV"[Neodymium]= 0 ~~| "materials for O&M per capacity installed - PV"[Nickel]= 0 ~~| "materials for O&M per capacity installed - PV"["Over grid (15%)"]= 0 ~~| "materials for O&M per capacity installed - PV"["Over grid (5%)"]= 0 ~~| "materials for O&M per capacity installed - PV"[Paint]= 0 ~~| "materials for O&M per capacity installed - PV"[Lead]= 0 ~~| "materials for O&M per capacity installed - PV"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C109') ~~| "materials for O&M per capacity installed - PV"[Polypropylene]= 0 ~~| "materials for O&M per capacity installed - PV"[Rock]= 0 ~~| "materials for O&M per capacity installed - PV"[Rock wool]= 0 ~~| "materials for O&M per capacity installed - PV"[Sand]= 0 ~~| "materials for O&M per capacity installed - PV"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C110') ~~| "materials for O&M per capacity installed - PV"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C111') ~~| "materials for O&M per capacity installed - PV"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C112') ~~| "materials for O&M per capacity installed - PV"[Site preparation]= 0 ~~| "materials for O&M per capacity installed - PV"[Tin]= 0 ~~| "materials for O&M per capacity installed - PV"[soda ash]= 0 ~~| "materials for O&M per capacity installed - PV"[steel]= 0 ~~| "materials for O&M per capacity installed - PV"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C113') ~~| "materials for O&M per capacity installed - PV"[tellurium]= 0 ~~| "materials for O&M per capacity installed - PV"[titanium]= 0 ~~| "materials for O&M per capacity installed - PV"[titanium dioxide]= 0 ~~| "materials for O&M per capacity installed - PV"[vanadium]= 0 ~~| "materials for O&M per capacity installed - PV"[wires]= 0 ~~| "materials for O&M per capacity installed - PV"[zinc]= 0 ~ kg/MW ~ Materials requirements for operation and maintenance per unit of new \ installed capacity of solar PV. | "water for O&M - CSP"["clean, pumped water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B114') ~~| "water for O&M - CSP"["distilled, deionized water"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B115') ~ kg/MW ~ | "materials per capacity installed - PV 0"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C5') ~~| "materials per capacity installed - PV 0"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C6') ~~| "materials per capacity installed - PV 0"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C7') ~~| "materials per capacity installed - PV 0"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C8') ~~| "materials per capacity installed - PV 0"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C9') ~~| "materials per capacity installed - PV 0"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C10') ~~| "materials per capacity installed - PV 0"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C11') ~~| "materials per capacity installed - PV 0"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C12') ~~| "materials per capacity installed - PV 0"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C13') ~~| "materials per capacity installed - PV 0"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C14') ~~| "materials per capacity installed - PV 0"["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C15') ~~| "materials per capacity installed - PV 0"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C16') ~~| "materials per capacity installed - PV 0"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C17') ~~| "materials per capacity installed - PV 0"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C18') ~~| "materials per capacity installed - PV 0"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C19') ~~| "materials per capacity installed - PV 0"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C20') ~~| "materials per capacity installed - PV 0"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C21') ~~| "materials per capacity installed - PV 0"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C22') ~~| "materials per capacity installed - PV 0"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C23') ~~| "materials per capacity installed - PV 0"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C24') ~~| "materials per capacity installed - PV 0"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C25') ~~| "materials per capacity installed - PV 0"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C26') ~~| "materials per capacity installed - PV 0"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C27') ~~| "materials per capacity installed - PV 0"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C28') ~~| "materials per capacity installed - PV 0"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C29') ~~| "materials per capacity installed - PV 0"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C30') ~~| "materials per capacity installed - PV 0"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C31') ~~| "materials per capacity installed - PV 0"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C32') ~~| "materials per capacity installed - PV 0"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C33') ~~| "materials per capacity installed - PV 0"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C34') ~~| "materials per capacity installed - PV 0"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C35') ~~| "materials per capacity installed - PV 0"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C36') ~~| "materials per capacity installed - PV 0"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C37') ~~| "materials per capacity installed - PV 0"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C38') ~~| "materials per capacity installed - PV 0"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C39') ~~| "materials per capacity installed - PV 0"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C40') ~~| "materials per capacity installed - PV 0"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C41') ~~| "materials per capacity installed - PV 0"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C42') ~~| "materials per capacity installed - PV 0"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C43') ~~| "materials per capacity installed - PV 0"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C44') ~~| "materials per capacity installed - PV 0"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C45') ~~| "materials per capacity installed - PV 0"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C46') ~~| "materials per capacity installed - PV 0"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C47') ~~| "materials per capacity installed - PV 0"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C48') ~~| "materials per capacity installed - PV 0"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C49') ~~| "materials per capacity installed - PV 0"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C50') ~~| "materials per capacity installed - PV 0"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C51') ~~| "materials per capacity installed - PV 0"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C52') ~~| "materials per capacity installed - PV 0"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C53') ~~| "materials per capacity installed - PV 0"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C54') ~~| "materials per capacity installed - PV 0"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C55') ~~| "materials per capacity installed - PV 0"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C56') ~~| "materials per capacity installed - PV 0"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C57') ~~| "materials per capacity installed - PV 0"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C58') ~~| "materials per capacity installed - PV 0"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C59') ~~| "materials per capacity installed - PV 0"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C60') ~~| "materials per capacity installed - PV 0"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C61') ~~| "materials per capacity installed - PV 0"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C62') ~ kg/MW ~ | cum materials requirements for RES elec[materials, scenarios]= INTEG ( Total materials required for RES elec Mt[materials,scenarios], initial cumulated material requirements for RES elec 1995) ~ Mt ~ Total cumulative materials requirements for the installation and O&M of \ RES for electricity generation. | MJ per EJ= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'G22') ~ Dmnl ~ | "Initial energy cons per unit of material cons (virgin)"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y5') ~~| "Initial energy cons per unit of material cons (virgin)"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y6') ~~| "Initial energy cons per unit of material cons (virgin)"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y7') ~~| "Initial energy cons per unit of material cons (virgin)"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y8') ~~| "Initial energy cons per unit of material cons (virgin)"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y9') ~~| "Initial energy cons per unit of material cons (virgin)"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y10') ~~| "Initial energy cons per unit of material cons (virgin)"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y11') ~~| "Initial energy cons per unit of material cons (virgin)"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y12') ~~| "Initial energy cons per unit of material cons (virgin)"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y13') ~~| "Initial energy cons per unit of material cons (virgin)"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y14') ~~| "Initial energy cons per unit of material cons (virgin)"["Electric/electronic components"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y15') ~~| "Initial energy cons per unit of material cons (virgin)"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y16') ~~| "Initial energy cons per unit of material cons (virgin)"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y17') ~~| "Initial energy cons per unit of material cons (virgin)"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y18') ~~| "Initial energy cons per unit of material cons (virgin)"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y19') ~~| "Initial energy cons per unit of material cons (virgin)"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y20') ~~| "Initial energy cons per unit of material cons (virgin)"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y21') ~~| "Initial energy cons per unit of material cons (virgin)"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y22') ~~| "Initial energy cons per unit of material cons (virgin)"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y23') ~~| "Initial energy cons per unit of material cons (virgin)"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y24') ~~| "Initial energy cons per unit of material cons (virgin)"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y25') ~~| "Initial energy cons per unit of material cons (virgin)"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y26') ~~| "Initial energy cons per unit of material cons (virgin)"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y27') ~~| "Initial energy cons per unit of material cons (virgin)"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y28') ~~| "Initial energy cons per unit of material cons (virgin)"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y29') ~~| "Initial energy cons per unit of material cons (virgin)"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y30') ~~| "Initial energy cons per unit of material cons (virgin)"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y31') ~~| "Initial energy cons per unit of material cons (virgin)"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y32') ~~| "Initial energy cons per unit of material cons (virgin)"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y33') ~~| "Initial energy cons per unit of material cons (virgin)"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y34') ~~| "Initial energy cons per unit of material cons (virgin)"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y35') ~~| "Initial energy cons per unit of material cons (virgin)"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y36') ~~| "Initial energy cons per unit of material cons (virgin)"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y37') ~~| "Initial energy cons per unit of material cons (virgin)"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y38') ~~| "Initial energy cons per unit of material cons (virgin)"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y39') ~~| "Initial energy cons per unit of material cons (virgin)"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y40') ~~| "Initial energy cons per unit of material cons (virgin)"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y41') ~~| "Initial energy cons per unit of material cons (virgin)"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y42') ~~| "Initial energy cons per unit of material cons (virgin)"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y43') ~~| "Initial energy cons per unit of material cons (virgin)"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y44') ~~| "Initial energy cons per unit of material cons (virgin)"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y45') ~~| "Initial energy cons per unit of material cons (virgin)"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y46') ~~| "Initial energy cons per unit of material cons (virgin)"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y47') ~~| "Initial energy cons per unit of material cons (virgin)"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y48') ~~| "Initial energy cons per unit of material cons (virgin)"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y49') ~~| "Initial energy cons per unit of material cons (virgin)"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y50') ~~| "Initial energy cons per unit of material cons (virgin)"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y51') ~~| "Initial energy cons per unit of material cons (virgin)"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y52') ~~| "Initial energy cons per unit of material cons (virgin)"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y53') ~~| "Initial energy cons per unit of material cons (virgin)"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y54') ~~| "Initial energy cons per unit of material cons (virgin)"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y55') ~~| "Initial energy cons per unit of material cons (virgin)"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y56') ~~| "Initial energy cons per unit of material cons (virgin)"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y57') ~~| "Initial energy cons per unit of material cons (virgin)"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y58') ~~| "Initial energy cons per unit of material cons (virgin)"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y59') ~~| "Initial energy cons per unit of material cons (virgin)"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y60') ~~| "Initial energy cons per unit of material cons (virgin)"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y61') ~~| "Initial energy cons per unit of material cons (virgin)"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'Y62') ~ MJ/kg ~ Energy consumption required to extract and use virgin materials per unit \ of material consumption. | "materials per new capacity installed - CSP"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B5') ~~| "materials per new capacity installed - CSP"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B6') ~~| "materials per new capacity installed - CSP"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B7') ~~| "materials per new capacity installed - CSP"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B8') ~~| "materials per new capacity installed - CSP"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B9') ~~| "materials per new capacity installed - CSP"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B10') ~~| "materials per new capacity installed - CSP"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B11') ~~| "materials per new capacity installed - CSP"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B12') ~~| "materials per new capacity installed - CSP"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B13') ~~| "materials per new capacity installed - CSP"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B14') ~~| "materials per new capacity installed - CSP"["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B15') ~~| "materials per new capacity installed - CSP"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B16') ~~| "materials per new capacity installed - CSP"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B17') ~~| "materials per new capacity installed - CSP"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B18') ~~| "materials per new capacity installed - CSP"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B19') ~~| "materials per new capacity installed - CSP"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B20') ~~| "materials per new capacity installed - CSP"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B21') ~~| "materials per new capacity installed - CSP"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B22') ~~| "materials per new capacity installed - CSP"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B23') ~~| "materials per new capacity installed - CSP"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B24') ~~| "materials per new capacity installed - CSP"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B25') ~~| "materials per new capacity installed - CSP"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B26') ~~| "materials per new capacity installed - CSP"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B27') ~~| "materials per new capacity installed - CSP"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B28') ~~| "materials per new capacity installed - CSP"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B29') ~~| "materials per new capacity installed - CSP"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B30') ~~| "materials per new capacity installed - CSP"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B31') ~~| "materials per new capacity installed - CSP"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B32') ~~| "materials per new capacity installed - CSP"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B33') ~~| "materials per new capacity installed - CSP"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B34') ~~| "materials per new capacity installed - CSP"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B35') ~~| "materials per new capacity installed - CSP"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B36') ~~| "materials per new capacity installed - CSP"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B37') ~~| "materials per new capacity installed - CSP"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B38') ~~| "materials per new capacity installed - CSP"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B39') ~~| "materials per new capacity installed - CSP"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B40') ~~| "materials per new capacity installed - CSP"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B41') ~~| "materials per new capacity installed - CSP"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B42') ~~| "materials per new capacity installed - CSP"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B43') ~~| "materials per new capacity installed - CSP"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B44') ~~| "materials per new capacity installed - CSP"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B45') ~~| "materials per new capacity installed - CSP"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B46') ~~| "materials per new capacity installed - CSP"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B47') ~~| "materials per new capacity installed - CSP"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B48') ~~| "materials per new capacity installed - CSP"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B49') ~~| "materials per new capacity installed - CSP"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B50') ~~| "materials per new capacity installed - CSP"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B51') ~~| "materials per new capacity installed - CSP"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B52') ~~| "materials per new capacity installed - CSP"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B53') ~~| "materials per new capacity installed - CSP"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B54') ~~| "materials per new capacity installed - CSP"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B55') ~~| "materials per new capacity installed - CSP"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B56') ~~| "materials per new capacity installed - CSP"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B57') ~~| "materials per new capacity installed - CSP"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B58') ~~| "materials per new capacity installed - CSP"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B59') ~~| "materials per new capacity installed - CSP"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B60') ~~| "materials per new capacity installed - CSP"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B61') ~~| "materials per new capacity installed - CSP"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'B62') ~ kg/MW ~ Materials requirements per unit of new installed capacity of solar CSP. | "materials per new capacity installed - wind offshore"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E5') ~~| "materials per new capacity installed - wind offshore"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E6') ~~| "materials per new capacity installed - wind offshore"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E7') ~~| "materials per new capacity installed - wind offshore"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E8') ~~| "materials per new capacity installed - wind offshore"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E9') ~~| "materials per new capacity installed - wind offshore"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E10') ~~| "materials per new capacity installed - wind offshore"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E11') ~~| "materials per new capacity installed - wind offshore"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E12') ~~| "materials per new capacity installed - wind offshore"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E13') ~~| "materials per new capacity installed - wind offshore"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E14') ~~| "materials per new capacity installed - wind offshore"["Electric/electronic components"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E15') ~~| "materials per new capacity installed - wind offshore"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E16') ~~| "materials per new capacity installed - wind offshore"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E17') ~~| "materials per new capacity installed - wind offshore"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E18') ~~| "materials per new capacity installed - wind offshore"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E19') ~~| "materials per new capacity installed - wind offshore"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E20') ~~| "materials per new capacity installed - wind offshore"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E21') ~~| "materials per new capacity installed - wind offshore"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E22') ~~| "materials per new capacity installed - wind offshore"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E23') ~~| "materials per new capacity installed - wind offshore"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E24') ~~| "materials per new capacity installed - wind offshore"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E25') ~~| "materials per new capacity installed - wind offshore"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E26') ~~| "materials per new capacity installed - wind offshore"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E27') ~~| "materials per new capacity installed - wind offshore"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E28') ~~| "materials per new capacity installed - wind offshore"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E29') ~~| "materials per new capacity installed - wind offshore"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E30') ~~| "materials per new capacity installed - wind offshore"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E31') ~~| "materials per new capacity installed - wind offshore"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E32') ~~| "materials per new capacity installed - wind offshore"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E33') ~~| "materials per new capacity installed - wind offshore"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E34') ~~| "materials per new capacity installed - wind offshore"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E35') ~~| "materials per new capacity installed - wind offshore"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E36') ~~| "materials per new capacity installed - wind offshore"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E37') ~~| "materials per new capacity installed - wind offshore"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E38') ~~| "materials per new capacity installed - wind offshore"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E39') ~~| "materials per new capacity installed - wind offshore"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E40') ~~| "materials per new capacity installed - wind offshore"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E41') ~~| "materials per new capacity installed - wind offshore"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E42') ~~| "materials per new capacity installed - wind offshore"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E43') ~~| "materials per new capacity installed - wind offshore"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E44') ~~| "materials per new capacity installed - wind offshore"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E45') ~~| "materials per new capacity installed - wind offshore"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E46') ~~| "materials per new capacity installed - wind offshore"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E47') ~~| "materials per new capacity installed - wind offshore"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E48') ~~| "materials per new capacity installed - wind offshore"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E49') ~~| "materials per new capacity installed - wind offshore"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E50') ~~| "materials per new capacity installed - wind offshore"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E51') ~~| "materials per new capacity installed - wind offshore"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E52') ~~| "materials per new capacity installed - wind offshore"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E53') ~~| "materials per new capacity installed - wind offshore"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E54') ~~| "materials per new capacity installed - wind offshore"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E55') ~~| "materials per new capacity installed - wind offshore"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E56') ~~| "materials per new capacity installed - wind offshore"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E57') ~~| "materials per new capacity installed - wind offshore"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E58') ~~| "materials per new capacity installed - wind offshore"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E59') ~~| "materials per new capacity installed - wind offshore"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E60') ~~| "materials per new capacity installed - wind offshore"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E61') ~~| "materials per new capacity installed - wind offshore"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'E62') ~ kg/MW ~ Materials requirements per unit of new installed capacity of wind offshore. | "materials per new capacity installed - wind onshore"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D5') ~~| "materials per new capacity installed - wind onshore"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D6') ~~| "materials per new capacity installed - wind onshore"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D7') ~~| "materials per new capacity installed - wind onshore"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D8') ~~| "materials per new capacity installed - wind onshore"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D9') ~~| "materials per new capacity installed - wind onshore"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D10') ~~| "materials per new capacity installed - wind onshore"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D11') ~~| "materials per new capacity installed - wind onshore"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D12') ~~| "materials per new capacity installed - wind onshore"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D13') ~~| "materials per new capacity installed - wind onshore"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D14') ~~| "materials per new capacity installed - wind onshore"["Electric/electronic components"\ ]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D15') ~~| "materials per new capacity installed - wind onshore"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D16') ~~| "materials per new capacity installed - wind onshore"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D17') ~~| "materials per new capacity installed - wind onshore"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D18') ~~| "materials per new capacity installed - wind onshore"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D19') ~~| "materials per new capacity installed - wind onshore"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D20') ~~| "materials per new capacity installed - wind onshore"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D21') ~~| "materials per new capacity installed - wind onshore"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D22') ~~| "materials per new capacity installed - wind onshore"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D23') ~~| "materials per new capacity installed - wind onshore"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D24') ~~| "materials per new capacity installed - wind onshore"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D25') ~~| "materials per new capacity installed - wind onshore"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D26') ~~| "materials per new capacity installed - wind onshore"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D27') ~~| "materials per new capacity installed - wind onshore"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D28') ~~| "materials per new capacity installed - wind onshore"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D29') ~~| "materials per new capacity installed - wind onshore"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D30') ~~| "materials per new capacity installed - wind onshore"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D31') ~~| "materials per new capacity installed - wind onshore"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D32') ~~| "materials per new capacity installed - wind onshore"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D33') ~~| "materials per new capacity installed - wind onshore"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D34') ~~| "materials per new capacity installed - wind onshore"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D35') ~~| "materials per new capacity installed - wind onshore"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D36') ~~| "materials per new capacity installed - wind onshore"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D37') ~~| "materials per new capacity installed - wind onshore"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D38') ~~| "materials per new capacity installed - wind onshore"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D39') ~~| "materials per new capacity installed - wind onshore"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D40') ~~| "materials per new capacity installed - wind onshore"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D41') ~~| "materials per new capacity installed - wind onshore"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D42') ~~| "materials per new capacity installed - wind onshore"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D43') ~~| "materials per new capacity installed - wind onshore"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D44') ~~| "materials per new capacity installed - wind onshore"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D45') ~~| "materials per new capacity installed - wind onshore"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D46') ~~| "materials per new capacity installed - wind onshore"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D47') ~~| "materials per new capacity installed - wind onshore"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D48') ~~| "materials per new capacity installed - wind onshore"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D49') ~~| "materials per new capacity installed - wind onshore"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D50') ~~| "materials per new capacity installed - wind onshore"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D51') ~~| "materials per new capacity installed - wind onshore"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D52') ~~| "materials per new capacity installed - wind onshore"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D53') ~~| "materials per new capacity installed - wind onshore"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D54') ~~| "materials per new capacity installed - wind onshore"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D55') ~~| "materials per new capacity installed - wind onshore"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D56') ~~| "materials per new capacity installed - wind onshore"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D57') ~~| "materials per new capacity installed - wind onshore"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D58') ~~| "materials per new capacity installed - wind onshore"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D59') ~~| "materials per new capacity installed - wind onshore"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D60') ~~| "materials per new capacity installed - wind onshore"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D61') ~~| "materials per new capacity installed - wind onshore"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'D62') ~ kg/MW ~ Materials requirements per unit of new installed capacity of wind onshore. | initial cumulated material requirements for RES elec 1995= 0 ~ Mt ~ | "materials per new capacity installed - PV"[Adhesive]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C5') ~~| "materials per new capacity installed - PV"[Aluminium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C6') ~~| "materials per new capacity installed - PV"[Aluminium mirrors]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C7') ~~| "materials per new capacity installed - PV"[Cadmium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C8') ~~| "materials per new capacity installed - PV"[Carbon fiber]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C9') ~~| "materials per new capacity installed - PV"[Cement]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C10') ~~| "materials per new capacity installed - PV"[Chromium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C11') ~~| "materials per new capacity installed - PV"[Copper]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C12') ~~| "materials per new capacity installed - PV"[diesel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C13') ~~| "materials per new capacity installed - PV"[Dy]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C14') ~~| "materials per new capacity installed - PV"["Electric/electronic components"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C15') ~~| "materials per new capacity installed - PV"[Evacuation lines]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C16') ~~| "materials per new capacity installed - PV"[Fiberglass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C17') ~~| "materials per new capacity installed - PV"[Foam glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C18') ~~| "materials per new capacity installed - PV"[Galium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C19') ~~| "materials per new capacity installed - PV"[Glass]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C20') ~~| "materials per new capacity installed - PV"[Glass reinforcing plastic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C21') ~~| "materials per new capacity installed - PV"[gravel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C22') ~~| "materials per new capacity installed - PV"[Indium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C23') ~~| "materials per new capacity installed - PV"[Iron]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C24') ~~| "materials per new capacity installed - PV"[KNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C25') ~~| "materials per new capacity installed - PV"[Asphalt]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C26') ~~| "materials per new capacity installed - PV"[Lime]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C27') ~~| "materials per new capacity installed - PV"[Limestone]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C28') ~~| "materials per new capacity installed - PV"[Lithium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C29') ~~| "materials per new capacity installed - PV"[Lubricant]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C30') ~~| "materials per new capacity installed - PV"[Magnesium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C31') ~~| "materials per new capacity installed - PV"[Manganese]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C32') ~~| "materials per new capacity installed - PV"[Heavy equipment]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C33') ~~| "materials per new capacity installed - PV"[Concrete]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C34') ~~| "materials per new capacity installed - PV"[Molybdenum]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C35') ~~| "materials per new capacity installed - PV"[NaNO3 mined]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C36') ~~| "materials per new capacity installed - PV"[NaNO3 synthetic]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C37') ~~| "materials per new capacity installed - PV"[Neodymium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C38') ~~| "materials per new capacity installed - PV"[Nickel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C39') ~~| "materials per new capacity installed - PV"["Over grid (15%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C40') ~~| "materials per new capacity installed - PV"["Over grid (5%)"]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C41') ~~| "materials per new capacity installed - PV"[Paint]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C42') ~~| "materials per new capacity installed - PV"[Lead]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C43') ~~| "materials per new capacity installed - PV"[Plastics]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C44') ~~| "materials per new capacity installed - PV"[Polypropylene]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C45') ~~| "materials per new capacity installed - PV"[Rock]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C46') ~~| "materials per new capacity installed - PV"[Rock wool]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C47') ~~| "materials per new capacity installed - PV"[Sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C48') ~~| "materials per new capacity installed - PV"[Silicon sand]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C49') ~~| "materials per new capacity installed - PV"[Silicon wafer modules]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C50') ~~| "materials per new capacity installed - PV"[Silver]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C51') ~~| "materials per new capacity installed - PV"[Site preparation]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C52') ~~| "materials per new capacity installed - PV"[Tin]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C53') ~~| "materials per new capacity installed - PV"[soda ash]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C54') ~~| "materials per new capacity installed - PV"[steel]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C55') ~~| "materials per new capacity installed - PV"[synthetic oil]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C56') ~~| "materials per new capacity installed - PV"[tellurium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C57') ~~| "materials per new capacity installed - PV"[titanium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C58') ~~| "materials per new capacity installed - PV"[titanium dioxide]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C59') ~~| "materials per new capacity installed - PV"[vanadium]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C60') ~~| "materials per new capacity installed - PV"[wires]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C61') ~~| "materials per new capacity installed - PV"[zinc]= GET XLS CONSTANTS('inputs.xlsx', 'Materials', 'C62') ~ kg/MW ~ Materials requirements per unit of new installed capacity of solar PV. | materials: Adhesive, Aluminium, Aluminium mirrors, Cadmium, Carbon fiber, Cement, Chromium, Copper\ , diesel, Dy, "Electric/electronic components", Evacuation lines, Fiberglass, Foam glass\ , Galium, Glass, Glass reinforcing plastic, gravel, Indium, Iron, KNO3 mined, Asphalt\ , Lime, Limestone, Lithium, Lubricant, Magnesium, Manganese, Heavy equipment, Concrete\ , Molybdenum, NaNO3 mined, NaNO3 synthetic, Neodymium, Nickel, "Over grid (15%)", "Over grid (5%)"\ , Paint, Lead, Plastics, Polypropylene, Rock, Rock wool, Sand, Silicon sand, Silicon wafer modules\ , Silver, Site preparation, Tin, soda ash, steel, synthetic oil, tellurium, titanium\ , titanium dioxide, vanadium, wires, zinc ~ ~ List of materials explicitely modelled in MEDEAS. | kg per Mt= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C24') ~ Dmnl ~ Conversion factor from Mt to kg. | M per T= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C23') ~ Dmnl ~ Conversion factor from Tera (T, 1e12) to Mega (M, 1e6). | Elec generation variable from RES TWh[scenarios]= FE Elec generation from solar PV TWh[scenarios]+FE Elec generation from CSP TWh[scenarios\ ]+FE Elec generation from onshore wind TWh[scenarios]+FE Elec generation from offshore wind TWh\ [scenarios] ~ TWh/Year ~ Variable electricity generation from RES. | Total gen losses demand for Heat plants EJ[scenarios]= PED gases for Heat plants EJ[scenarios]*(1-efficiency gases for heat plants)+PED oil for Heat plants EJ\ [scenarios]*(1-efficiency liquids for heat plants)+PED coal for Heat plants EJ[scenarios\ ]*(1-efficiency coal for heat plants) ~ EJ ~ Total generation losses associated to heat plants. | Total gen losses demand for CHP plants EJ[scenarios]= PED gas for CHP plants EJ[scenarios]*(1-efficiency Elec gas CHP plants-efficiency Heat gas CHP plants\ )+PED oil for CHP plants EJ[scenarios]*(1-efficiency Elec oil CHP plants-efficiency Heat oil CHP plants\ )+PED coal for CHP plants EJ[scenarios]*(1-efficiency Heat coal CHP plants-efficiency Elec coal CHP plants\ ) ~ EJ ~ Total generation losses associated to CHP plants. | new required capacity nuclear[scenarios]= MAX(0, IF THEN ELSE(Time<2014, 0, IF THEN ELSE(Demand Elec NRE TWh[scenarios]=0, 0, installed capacity nuclear TW[scenarios\ ]*P nuclear elec gen [scenarios])))*effects shortage uranium[scenarios]*Cp limit nuclear[scenarios] ~ TW ~ New required capacity of nuclear power plants. | "replacement RES for heat-com"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D17') ~~| "replacement RES for heat-com"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D18') ~~| "replacement RES for heat-com"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D19') ~ Dmnl ~ If =1, we asume that all the power that reaches the end of its lifetime is \ replaced. | Losses solar for heat= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G42') ~ Dmnl ~ | "Cp-ini RES for heat"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F17') ~~| "Cp-ini RES for heat"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F18') ~~| "Cp-ini RES for heat"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F19') ~ Dmnl ~ | Efficiency geothermal for heat= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G43') ~ Dmnl ~ | Efficiency solar panels for heat= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'G41') ~ Dmnl ~ | RES heat: "solar-heat", "geot-heat", "solid bioE-heat" ~ ~ Technologies for heat generation based on renewable energy sources. | Max FE potential RES for heat["solar-heat", scenarios]= Max PE potential RES for heat["solar-heat", scenarios]+Efficiency RES heat["solar-heat"\ ]*0 ~~| Max FE potential RES for heat["geot-heat", scenarios]= Max PE potential RES for heat["geot-heat",scenarios]*Efficiency RES heat["geot-heat"\ ] ~~| Max FE potential RES for heat["solid bioE-heat",scenarios]= Max PE potential RES for heat["solid bioE-heat",scenarios]*Efficiency RES heat["solid bioE-heat"\ ] ~ EJ ~ Potential (final energy) for producing heat from renewables. | P geothermal for heat[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F58') ~~| P geothermal for heat[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F58') ~~| P geothermal for heat[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F58') ~~| P geothermal for heat[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F58') ~~| P geothermal for heat[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F58') ~~| P geothermal for heat[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F58') ~ 1/Year ~ Annual growth in relation to the existing installed capacity. | "past RES growth for heat-com"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C101') ~~| "past RES growth for heat-com"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C102') ~~| "past RES growth for heat-com"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C103') ~ 1/Year ~ Historic annual average growth. | "installed capacity RES heat-com TW"[RES heat,scenarios]= INTEG ( "new RES capacity for heat-com TW"[RES heat,scenarios]+"replacement RES for heat-com TW"\ [RES heat,scenarios]-"wear RES capacity for heat-com TW"[RES heat,scenarios], "initial value RES for heat-com"[RES heat]) ~ TW ~ Installed capacity of RES for commercial heat. | "initial value RES for heat-com"["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H66') ~~| "initial value RES for heat-com"["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H67') ~~| "initial value RES for heat-com"["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H65') ~ TW ~ RES supply by technology for commercial heat in the year 1995. | P solar for heat[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F57') ~~| P solar for heat[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F57') ~~| P solar for heat[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F57') ~~| P solar for heat[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F57') ~~| P solar for heat[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F57') ~~| P solar for heat[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F57') ~ 1/Year ~ Annual growth in relation to the existing installed capacity. | life time RES for heat["solar-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C17') ~~| life time RES for heat["geot-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C18') ~~| life time RES for heat["solid bioE-heat"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C19') ~ Year ~ Lifetime RES thermal technologies and plants. | "wear RES capacity for heat-com TW"[RES heat, scenarios]= "installed capacity RES heat-com TW"[RES heat,scenarios]/life time RES for heat[RES heat\ ] ~ TW/Year ~ Decommission of the capacity that reachs the end of its lifetime. | Potential FE gen Elec fossil fuel CHP plants EJ[scenarios]= (Potential FE gen Elec coal CHP plants EJ[scenarios]+Potential FE gen Elec gas CHP plants EJ\ [scenarios]+Potential FE gen Elec liquids CHP plants EJ[scenarios]) ~ EJ/Year ~ Potential electricity generation from CHP plants burning fossil fuels. | efficiency Heat oil CHP plants:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Constants', '219', 'B228') ~ Dmnl ~ Efficiency of heat in oil CHP plants. We assume constant last data IEA. | FED heat liquids CHP plants EJ[scenarios]= FED heat fossil fuels CHP plants EJ[scenarios]*share CHP plants oil ~ EJ ~ Final energy demand of oil to produce heat in CHP plants. | Potential FE gen Elec liquids CHP plants EJ[scenarios]= PED oil for CHP plants EJ[scenarios]*efficiency Elec oil CHP plants ~ EJ ~ Potential electricity generation from CHP plants burning oil liquids. | efficiency Elec coal CHP plants:= GET XLS DATA('inputs.xlsx', 'Constants', '219', 'B224') ~ Dmnl ~ Efficiency of elec in coal CHP plants. We assume constant last data IEA. | efficiency Elec gas CHP plants:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Constants', '219', 'B221') ~ Dmnl ~ Efficiency of elec in gas CHP plants. We assume constant last data IEA. | efficiency Elec oil CHP plants:= GET XLS DATA('inputs.xlsx', 'Constants', '219', 'B227') ~ Dmnl ~ Efficiency of liquids in gas CHP plants. We assume constant last data IEA. | Potential FE gen Elec coal CHP plants EJ[scenarios]= PED coal for CHP plants EJ[scenarios]*efficiency Elec coal CHP plants ~ EJ ~ Potential electricity generation from CHP plants burning coal. | Potential FE gen Elec gas CHP plants EJ[scenarios]= PED gas for CHP plants EJ[scenarios]*efficiency Elec gas CHP plants ~ EJ ~ Potential electricity generation from CHP plants burning natural gas. | FED heat gas CHP plants EJ[scenarios]= FED heat fossil fuels CHP plants EJ[scenarios]*historic share CHP plants gas ~ EJ ~ Final energy demand of gas to produce heat in CHP plants. | efficiency Heat gas CHP plants:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Constants', '219', 'B222') ~ Dmnl ~ Efficiency of heat in gas CHP plants. We assume constant last data IEA. | PED oil for CHP plants EJ[scenarios]= FED heat liquids CHP plants EJ[scenarios]/efficiency Heat oil CHP plants ~ EJ/Year ~ Primary energy demand of oil (EJ) for CHP plants. | "Share heat-com CHP plants NRE vs NRE tot heat-com generation":INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Constants', '25', 'H29') ~ Dmnl ~ Share of commercial heat produced in CHP plants from non-renewable \ energies vs. total commercial heat generation from NRE. | efficiency Heat coal CHP plants:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Constants', '219', 'B225') ~ Dmnl ~ Efficiency of heat in gas CHP plants. We assume constant last data IEA. | FED heat coal CHP plants EJ[scenarios]= FED heat fossil fuels CHP plants EJ[scenarios]*share CHP plants coal ~ EJ ~ Final energy demand of coal to produce heat in CHP plants. | PED gas for CHP plants EJ[scenarios]= FED heat gas CHP plants EJ[scenarios]/efficiency Heat gas CHP plants ~ EJ/Year ~ Primary energy demand of gas (EJ) for CHP plants. | PED coal for CHP plants EJ[scenarios]= FED heat coal CHP plants EJ[scenarios]/efficiency Heat coal CHP plants ~ EJ/Year ~ Primary energy demand of coal (EJ) for CHP plants. | remaining potential CSP[scenarios]= IF THEN ELSE(max potential RES elec TWh[CSP,scenarios] > real generation RES elec TWh\ [CSP,scenarios], (max potential RES elec TWh[CSP,scenarios]-real generation RES elec TWh[CSP,scenarios\ ])/max potential RES elec TWh[CSP,scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | PE CSP for Elec generation EJ[scenarios]= PE real generation RES elec[CSP,scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | Invest RES for Elec[scenarios]= MAX(invest bioW Tdolar[scenarios]+"invest geot-elec Tdolar"[scenarios]+invest hydro Tdolar\ [scenarios]+invest oceanic Tdolar[scenarios]+invest solar Tdolar[scenarios]+invest onshore wind Tdolar\ [scenarios]+invest offshore wind Tdolar[scenarios]+invest CSP Tdolar[scenarios], 0) ~ Tdollars/Year ~ Annual investment for the installation of RES capacity for electricity . | power density CSP= "power density RES elec TWe/Mha"[CSP] ~ TWe/MHa ~ Power density of CSP power plants. | max potential RES elec TWe[hydro, scenarios]= max hydro TWe[scenarios] ~~| max potential RES elec TWe["geot-elec",scenarios]= "max geot-elec TWe"[scenarios] ~~| max potential RES elec TWe["solid bioE-elec",scenarios]= max BioE TWe[scenarios] ~~| max potential RES elec TWe[oceanic,scenarios]= max oceanic TWe[scenarios] ~~| max potential RES elec TWe[wind onshore,scenarios]= max onshore wind TWe[scenarios] ~~| max potential RES elec TWe[wind offshore,scenarios]= max offshore wind TWe[scenarios] ~~| max potential RES elec TWe[solar PV,scenarios]= max solar PV on land TWe[scenarios] ~~| max potential RES elec TWe[CSP,scenarios]= max CSP TWe[scenarios] ~ TWe ~ Maximum potential of RES for electricity per technology considering an \ optimal Cp. | surface CSP Mha[scenarios]= surface RES elec[CSP, scenarios] ~ MHa ~ Area required for CSP. | FE Elec generation from CSP TWh[scenarios]= real generation RES elec TWh[CSP, scenarios] ~ TWh ~ Annual electricity generation. | invest CSP Tdolar[scenarios]= invest RES elec Tdolar[CSP,scenarios] ~ Tdollars/Year ~ Investment costs. | Cp limit nuclear[scenarios]= IF THEN ELSE(Cp nuclear[scenarios]>min Cp nuclear, 1, 0) ~ Dmnl ~ | invest nuclear Tdolar[scenarios]= MAX(0, IF THEN ELSE(Nuclear capacity under construction[scenarios]<0,0,(Nuclear capacity under construction\ [scenarios]+replacement nuclear capacity[scenarios])*invest cost nuclear/1000)) ~ Tdollars/Year ~ | Cp nuclear[scenarios]= Cp nuclear initial*Cp exogenous RES elec dispatch reduction[scenarios] ~ Dmnl ~ Capacity factor of nuclear power centrals. | installed capacity nuclear TW[scenarios]= INTEG ( Nuclear capacity under construction[scenarios]-"nuclear capacity phase-out"[scenarios\ ]-wear nuclear[scenarios], initial capacity installed nuclear) ~ TW ~ Annual installed capacity of nuclear power. | "nuclear capacity phase-out"[scenarios]= IF THEN ELSE(selection of nuclear scenario[scenarios]=4, IF THEN ELSE(Time<"start year nuclear growth scen3-4"[scenarios], 0 , "P nuclear scen3-4"\ [scenarios]*installed capacity nuclear TW[scenarios]), 0) ~ TW ~ Annual nuclear capacity phase-out (Scenario 4 for nuclear evolution). | min Cp nuclear= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V15') ~ Dmnl ~ Assumption of minimum Cp for nuclear given the high inertia of nuclear \ reactors. | replacement nuclear capacity[scenarios]= IF THEN ELSE(Time<2013,Nuclear capacity under construction[scenarios], IF THEN ELSE(selection of nuclear scenario[scenarios]=2, 0, IF THEN ELSE(selection of nuclear scenario[scenarios]=4, 0, replacement rate nuclear\ *wear nuclear[scenarios]*(1-nuclear overcapacity[scenarios]))))*Cp limit nuclear[scenarios\ ] ~ TW ~ It is assumed that the step of planning of replaced infraestructure can be \ done while the infraestructure to be replaced is still under operation. | min Cp baseload RES[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V13') ~~| min Cp baseload RES["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V7') ~~| min Cp baseload RES["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V8') ~~| min Cp baseload RES[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V9') ~~| min Cp baseload RES[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V10') ~~| min Cp baseload RES[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V12') ~~| min Cp baseload RES[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V11') ~~| min Cp baseload RES[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'V16') ~ Dmnl ~ Assumption of minimum Cp for baseload RES plants. | abundance uranium[scenarios]= IF THEN ELSE(PE demand uranium EJ[scenarios]=0, 1, IF THEN ELSE(extraction uranium EJ\ [scenarios]>PE demand uranium EJ [scenarios], 1, 1-((PE demand uranium EJ[scenarios]-extraction uranium EJ[scenarios]\ )/PE demand uranium EJ[scenarios]))) ~ Dmnl ~ The parameter abundance varies between (1;0). Abundance=1 while the supply \ covers the demand; the closest to 0 indicates a higher divergence between \ supply and demand. | nuclear overcapacity[scenarios]= IF THEN ELSE(potential generation nuclear elec TWh[scenarios]=0,0, (potential generation nuclear elec TWh[scenarios]-FE nuclear Elec generation TWh[scenarios\ ])/potential generation nuclear elec TWh[scenarios]) ~ Dmnl ~ Overcapacity of nuclear power taking into account the installed capacity \ and the real generation. | "P nuclear scen3-4"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'F22') ~~| "P nuclear scen3-4"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'F22') ~~| "P nuclear scen3-4"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'F22') ~~| "P nuclear scen3-4"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'F22') ~~| "P nuclear scen3-4"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'F22') ~~| "P nuclear scen3-4"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'F22') ~ 1/Year ~ Annual variation (growth or phase-out) of new nuclear power plants \ (scenarios 3 and 4 of nuclear evolution) from the year "start year nuclear \ growth scen3-4". | "start year nuclear growth scen3-4"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'H22') ~~| "start year nuclear growth scen3-4"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'H22') ~~| "start year nuclear growth scen3-4"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'H22') ~~| "start year nuclear growth scen3-4"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'H22') ~~| "start year nuclear growth scen3-4"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'H22') ~~| "start year nuclear growth scen3-4"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'H22') ~ Year ~ Start year of increase/phase-out of nuclear power plants (Nuclear \ scenarios 3 and 4). | P nuclear elec gen[scenarios]= IF THEN ELSE(selection of nuclear scenario[scenarios]=1, 0, IF THEN ELSE(selection of nuclear scenario[scenarios]=2,0, IF THEN ELSE(selection of nuclear scenario[scenarios]=4,0, IF THEN ELSE(selection of nuclear scenario[scenarios]=3, IF THEN ELSE(Time<"start year nuclear growth scen3-4"[scenarios], 0 , "P nuclear scen3-4"\ [scenarios]) ,0)))) ~ 1/Year ~ Annual increase of new planned nuclear capacity. | required capacity nuclear TW[scenarios]= INTEG ( new required capacity nuclear[scenarios]-new nuclear capacity under planning[scenarios\ ], initial required capacity nuclear) ~ TW ~ Required capacity of nuclear power plants. | time planification nuclear= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S15') ~ Year ~ Average planification time for nuclear power plants. | time construction nuclear= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T15') ~ Time ~ Average construction time for nuclear power plants. | initial capacity installed nuclear= initial gen nuclear*TWe per TWh/Cp nuclear initial ~ TW ~ Initial capacity installed of nuclear power. | Nuclear capacity under construction[scenarios]= IF THEN ELSE(Time<2013, (Historic nuclear generation TWh(Time+1)-Historic nuclear generation TWh\ (Time)) *TWe per TWh/Cp nuclear[scenarios], Planned nuclear capacity TW[scenarios]/time construction nuclear\ ) ~ TW ~ Nuclear capacity under construction. | new nuclear capacity under planning[scenarios]= MAX(0,required capacity nuclear TW[scenarios]/time planification nuclear) ~ TW ~ New nuclear capacity under planning. | selection of nuclear scenario[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D19') ~~| selection of nuclear scenario[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D19') ~~| selection of nuclear scenario[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D19') ~~| selection of nuclear scenario[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D19') ~~| selection of nuclear scenario[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D19') ~~| selection of nuclear scenario[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D19') ~ Dmnl ~ If = 1: Constant power capacity at current levels, If = 2: No more nuclear installed, current capacity depreciates, If = 3: Growth of nuclear power. | initial gen nuclear= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H69') ~ TWh ~ Electric generation from nuclear in the initial year 1995. | initial capacity in construction nuclear= 0 ~ TW ~ Initial capacity in construction of nuclear (year 1995). | initial required capacity nuclear= 0 ~ TW ~ Initial required capacity of nuclear (year 1995). | Planned nuclear capacity TW[scenarios]= INTEG ( new nuclear capacity under planning[scenarios]+replacement nuclear capacity[scenarios\ ]-Nuclear capacity under construction [scenarios], initial capacity in construction nuclear) ~ TW ~ Planned nuclear capacity. | wear nuclear[scenarios]= IF THEN ELSE(Time<2012, 0, installed capacity nuclear TW[scenarios]/life time nuclear\ ) ~ TW ~ Depreciation of nuclear power plants. | effects shortage uranium[scenarios]= IF THEN ELSE(extraction uranium EJ[scenarios]=0, 0, IF THEN ELSE(abundance uranium[scenarios]>0.8, ((abundance uranium[scenarios]-0.8)*5\ )^2, 0)) ~ Dmnl ~ The eventual scarcity of coal would likely constrain the development of \ CTL. The proposed relationship avoids an abrupt limitation by introducing \ a range (1;0.8) in the gas abundance that constrains the development of \ CTL. | TPES intensity EJ T$[scenarios]= ZIDZ( TPES EJ[scenarios] , GDP[scenarios] ) ~ EJ/Tdollars ~ Total primary energy intensity. | real PED intensity of Electricity[scenarios]= ZIDZ( (Total FE Elec demand EJ[scenarios]+Elec gen related losses EJ[scenarios]) , GDP\ [scenarios] ) ~ EJ/Tdollars ~ Primary energy demand intensity of the electricity sector. Note that the \ parameter "'a' I-ELEC projection" refers to final energy while here we \ refer to primary energy. The "real PED intensity of electricity" may thus \ decrease with the penetration of RES in the electricity generation (see \ "share RES vs NRE electricity generation"). | Annual GDP growth rate[scenarios]= -1+ZIDZ( GDP[scenarios] , GDP delayed 1yr[scenarios] ) ~ Dmnl ~ Annual GDP growth rate. | GDP delayed 1yr[scenarios]= DELAY FIXED ( GDP[scenarios], 1, 29.16) ~ Tdollars/Year ~ GDP projection delayed 1 year. | share tot monet invest Elec RES vs GDP[scenarios]= ZIDZ( Total monet invest RES for elec Tdolar[scenarios] , GDP[scenarios] ) ~ 1/Year ~ Annual total monetary investment for RES for electricity as a share of the \ annual GDP. | GDPpc[scenarios]= GDP[scenarios]*dollars to Tdollars/Population[scenarios] ~ $/people ~ GDP per capita (1995T$ per capita). | "unlimited coal?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E99') ~~| "unlimited coal?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E99') ~~| "unlimited coal?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E99') ~~| "unlimited coal?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E99') ~~| "unlimited coal?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E99') ~~| "unlimited coal?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E99') ~ Dmnl ~ Switch to consider if coal is unlimited (1), or if it is limited (0). If \ limited then the available depletion curves are considered. | Real TFEC[scenarios]= SUM(real FE consumption by fuel[scenarios,final sources!]) ~ EJ ~ Real total final energy consumption. | "unlimited uranium?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E104') ~~| "unlimited uranium?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E104') ~~| "unlimited uranium?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E104') ~~| "unlimited uranium?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E104') ~~| "unlimited uranium?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E104') ~~| "unlimited uranium?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E104') ~ Dmnl ~ Switch to consider if uranium is unlimited (1), or if it is limited (0). \ If limited then the available depletion curves are considered. | URR coal unlimited= URR coal High15*10000 ~ EJ ~ We assume that the URR for the unlimited scenario is 10000 times the \ highest estimate. | URR uranium unlimited= URR uranium EWG13*10000 ~ EJ ~ We assume that the URR for the unlimited scenario is 10000 times the \ highest estimate. | URR conv gas unlimited= URR conv gas High Mohr15*10000 ~ EJ ~ We assume that the URR for the unlimited scenario is 10000 times the \ highest estimate. | "unlimited gas?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E83') ~~| "unlimited gas?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E83') ~~| "unlimited gas?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E83') ~~| "unlimited gas?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E83') ~~| "unlimited gas?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E83') ~~| "unlimited gas?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E83') ~ Dmnl ~ Switch to consider if gas is unlimited (1), or if it is limited (0). If \ limited then the available depletion curves are considered. | "unlimited oil?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'E67') ~~| "unlimited oil?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'E67') ~~| "unlimited oil?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'E67') ~~| "unlimited oil?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'E67') ~~| "unlimited oil?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'E67') ~~| "unlimited oil?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'E67') ~ Dmnl ~ Switch to consider if oil is unlimited (1), or if it is limited (0). If \ limited then the available depletion curves are considered. | URR conv oil unlimited= URR conv oil Maggio12 High*10000 ~ EJ ~ We assume that the URR for the unlimited scenario is 10000 times the \ highest estimate. | b logistic= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'H112') ~ Dmnl ~ Value of parameter "b" in the logistic equation. | a logistic= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'H111') ~ Dmnl ~ Value of parameter "a" in the logistic equation. | "activate ELF by scen?"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C119') ~~| "activate ELF by scen?"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C119') ~~| "activate ELF by scen?"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C119') ~~| "activate ELF by scen?"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C119') ~~| "activate ELF by scen?"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C119') ~~| "activate ELF by scen?"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C119') ~ Dmnl ~ Active/deactivate the energy loss function by scenario: 1: activate 0: not active | "Total demand liquids mb/d"[scenarios]= PED liquids EJ[scenarios]*"Mb/d per EJ/year" ~ Mb/d ~ Total demand of liquids. | PED coal without CTL[scenarios]= PED coal EJ[scenarios]-PED coal for CTL EJ[scenarios] ~ EJ ~ Total demand of coal without CTL. | surface hydro Mha[scenarios]= surface RES elec[hydro, scenarios] ~ MHa ~ Surface required by hydropower plants. | remaining potential hydro[scenarios]= IF THEN ELSE(max potential RES elec TWh[hydro,scenarios] > real generation RES elec TWh\ [hydro,scenarios], (max potential RES elec TWh[hydro,scenarios]-real generation RES elec TWh[hydro,scenarios\ ])/max potential RES elec TWh[hydro,scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | Grid reinforcement costs Tdollar[scenarios]= Grid reinforcement costs*new capacity installed onshore wind TW[scenarios]/G per T ~ Tdollar ~ 1995 US$. | remaining potential onshore wind[scenarios]= IF THEN ELSE(max potential RES elec TWh[wind onshore,scenarios] > real generation RES elec TWh\ [wind onshore,scenarios], (max potential RES elec TWh[wind onshore,scenarios]-real generation RES elec TWh[wind onshore\ ,scenarios])/max potential RES elec TWh[wind onshore,scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | remaining potential offshore wind[scenarios]= IF THEN ELSE(max potential RES elec TWh[wind offshore,scenarios] > real generation RES elec TWh\ [wind offshore,scenarios], (max potential RES elec TWh[wind offshore,scenarios]-real generation RES elec TWh[wind offshore\ ,scenarios])/max potential RES elec TWh[wind offshore,scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | remaining potential BioE[scenarios]= IF THEN ELSE(max potential RES elec TWh["solid bioE-elec",scenarios] > real generation RES elec TWh\ ["solid bioE-elec",scenarios], (max potential RES elec TWh["solid bioE-elec",scenarios]-real generation RES elec TWh\ ["solid bioE-elec",scenarios])/max potential RES elec TWh["solid bioE-elec",scenarios\ ], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | remaining potential oceanic[scenarios]= IF THEN ELSE(max potential RES elec TWh[oceanic,scenarios] > real generation RES elec TWh\ [oceanic,scenarios], (max potential RES elec TWh[oceanic,scenarios]-real generation RES elec TWh[oceanic,\ scenarios])/max potential RES elec TWh[oceanic,scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | "remaining potential geot-elec"[scenarios]= IF THEN ELSE(max potential RES elec TWh["geot-elec",scenarios] > real generation RES elec TWh\ ["geot-elec",scenarios], (max potential RES elec TWh["geot-elec",scenarios]-real generation RES elec TWh["geot-elec"\ ,scenarios])/max potential RES elec TWh["geot-elec",scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | "remaining potential solar-elec PV"[scenarios]= IF THEN ELSE(max potential RES elec TWh[solar PV,scenarios] > real generation RES elec TWh\ [solar PV,scenarios], (max potential RES elec TWh[solar PV,scenarios]-real generation RES elec TWh[solar PV\ ,scenarios])/max potential RES elec TWh[solar PV,scenarios], 0) ~ Dmnl ~ Remaining potential available as a fraction of unity. | "Historic non-energy use"[liquids]= GET XLS LOOKUPS('inputs.xlsx', 'Constants', '189', 'C191') ~~| "Historic non-energy use"[solids]= GET XLS LOOKUPS('inputs.xlsx', 'Constants', '189', 'C190') ~~| "Historic non-energy use"[gases]= GET XLS LOOKUPS('inputs.xlsx', 'Constants', '189', 'C192') ~~| "Historic non-energy use"[electricity]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '189', 'C193')) ~~| "Historic non-energy use"[heat]( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '189', 'C193')) ~ EJ ~ Historic data non-energy use by final fuel. | "initial non-energy use"[solids]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C190') ~~| "initial non-energy use"[liquids]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C191') ~~| "initial non-energy use"[gases]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C192') ~~| "initial non-energy use"[electricity]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C193') ~~| "initial non-energy use"[heat]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C193') ~ EJ ~ Non-energy use consumption in the year 1995. | Real total output[scenarios]= SUM(Real total output by sector[scenarios,sectors!]) ~ Mdollars ~ Total output (1995$). | Real demand[scenarios]= SUM(Real demand by sector[scenarios,sectors!]) ~ Mdollars ~ Total demand | max potential RES elec TWh[RES elec, scenarios]= max potential RES elec TWe[RES elec,scenarios]/TWe per TWh ~ TWh ~ Maximum potential of RES for electricity per technology considering an \ optimal Cp. | PE onshore wind for Elec generation EJ[scenarios]= PE real generation RES elec[wind onshore,scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | FE Elec generation from solar PV TWh[scenarios]= real generation RES elec TWh[solar PV, scenarios] ~ TWh/Year ~ Annual electricity generation. | power density solar PV= "power density RES elec TWe/Mha"[solar PV] ~ TWe/MHa ~ Power density: 3.3 We/m2 (de Castro et al., 2013b; Smil, 2015) | PE hydro for Elec generation EJ[scenarios]= PE real generation RES elec[hydro,scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | invest bioW Tdolar[scenarios]= invest RES elec Tdolar["solid bioE-elec",scenarios] ~ Tdollars/Year ~ Investment costs. | FE Elec generation from hydro TWh[scenarios]= real generation RES elec TWh[hydro,scenarios] ~ TWh/Year ~ Annual electricity generation. | "invest geot-elec Tdolar"[scenarios]= invest RES elec Tdolar["geot-elec",scenarios] ~ Tdollars/Year ~ Investment costs. | invest hydro Tdolar[scenarios]= invest RES elec Tdolar[hydro,scenarios] ~ Tdollars/Year ~ Investment costs. | FE Elec generation from onshore wind TWh[scenarios]= real generation RES elec TWh[wind onshore,scenarios] ~ TWh/Year ~ Annual electricity generation. | invest oceanic Tdolar[scenarios]= invest RES elec Tdolar[oceanic,scenarios] ~ Tdollars/Year ~ Investment costs. | invest onshore wind Tdolar[scenarios]= invest RES elec Tdolar[wind onshore,scenarios] ~ Tdollars/Year ~ Investment costs. | invest offshore wind Tdolar[scenarios]= invest RES elec Tdolar[wind offshore,scenarios] ~ Tdollars/Year ~ Investment costs. | "FE Elec generation from geot-elec TWh"[scenarios]= real generation RES elec TWh["geot-elec",scenarios] ~ TWh/Year ~ Annual electricity generation. | "PE geot-elec for Elec generation EJ"[scenarios]= PE real generation RES elec["geot-elec",scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | PE solar PV for Elec generation EJ[scenarios]= PE real generation RES elec[solar PV,scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | FE Elec generation from bioE TWh[scenarios]= real generation RES elec TWh["solid bioE-elec",scenarios] ~ TWh/Year ~ Annual electricity generation. | PE oceanic for Elec generation EJ[scenarios]= PE real generation RES elec[oceanic,scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | PE bioE for Elec generation EJ[scenarios]= PE real generation RES elec["solid bioE-elec",scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | FE Elec generation from offshore wind TWh[scenarios]= real generation RES elec TWh[wind offshore,scenarios] ~ TWh/Year ~ Annual electricity generation. | FE Elec generation from oceanic TWh[scenarios]= real generation RES elec TWh[oceanic,scenarios] ~ TWh/Year ~ Annual electricity generation. | PE offshore wind for Elec generation EJ[scenarios]= PE real generation RES elec[wind offshore,scenarios] ~ EJ/Year ~ Annual primary energy to generate electricity (Direct Equivalent Method). | invest solar Tdolar[scenarios]= invest RES elec Tdolar[solar PV,scenarios] ~ Tdollars/Year ~ Investment costs. | initial value land compet biofuels 2gen Mha= initial value land compet biofuels 2gen ktoe*EJ per ktoe ~ EJ/Year ~ Initial value of land occupation by biofuels of second generation. | initial value land compet biofuels 2gen ktoe= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H56') ~ EJ/Year ~ Initial value in 1995 derived from (BP 2016). | abundance coal[scenarios]= IF THEN ELSE(extraction coal EJ[scenarios]>PED coal EJ[scenarios], 1, 1-ZIDZ( (PED coal EJ\ [scenarios]-extraction coal EJ[scenarios]), PED coal EJ[scenarios])) ~ Dmnl ~ The parameter abundance varies between (1;0). Abundance=1 while the supply \ covers the demand; the closest to 0 indicates a higher divergence between \ supply and demand. | abundance liquids[scenarios]= IF THEN ELSE(PED liquids EJ[scenarios]1, demand>supply. If<0, demand FE real tot generation RES elec TWh\ [scenarios], (potential tot RES elec after intermitt[scenarios]-FE real tot generation RES elec TWh\ [scenarios])/potential tot RES elec after intermitt[scenarios], 0) ~ ~ | invest cost RES elec[hydro]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G14') ~~| invest cost RES elec["geot-elec"]:= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G7') ~~| invest cost RES elec["solid bioE-elec"]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G8') ~~| invest cost RES elec[oceanic]:= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G9') ~~| invest cost RES elec[wind onshore]:= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G10') ~~| invest cost RES elec[wind offshore]:= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G12') ~~| invest cost RES elec[solar PV]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G11') ~~| invest cost RES elec[CSP]:= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G16') ~ T$/TW ~ Input assumption on installation cost of new RES capacity for electricity. | "power density RES elec TWe/Mha"[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'B13') ~~| "power density RES elec TWe/Mha"["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'B7') ~~| "power density RES elec TWe/Mha"["solid bioE-elec"]= 0 ~~| "power density RES elec TWe/Mha"[oceanic]= 0 ~~| "power density RES elec TWe/Mha"[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'B10') ~~| "power density RES elec TWe/Mha"[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'B12') ~~| "power density RES elec TWe/Mha"[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'B11') ~~| "power density RES elec TWe/Mha"[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'B16') ~ TWe/MHa ~ Input parameter: power density per RES technology for delivering \ electricity. | "power density RES elec TW/Mha"[RES elec]= "power density RES elec TWe/Mha"[RES elec]/"Cp-ini RES elec"[RES elec] ~ TW/MHa ~ | Time 95pc TS potential RES elec[RES elec, scenarios]= IF THEN ELSE(remaining potential RES elec after intermitt[RES elec,scenarios]>0.05, \ 0, Time) ~ ~ Time when the remaining resource availability falls bellow 5% of the \ techno-ecological potential, i.e. when the 95% of the techno-ecological \ potential is reached. | surface RES elec[RES elec, scenarios]= IF THEN ELSE("power density RES elec TW/Mha"[RES elec]=0, 0, installed capacity RES elec TW\ [RES elec,scenarios]/"power density RES elec TW/Mha"[RES elec]) ~ MHa ~ | "max geot-elec TWe"[scenarios]= "max PE geot-elec TWth"[scenarios]*Efficiency conversion geot PE to Elec ~ TWe ~ Techno-ecological potential of electric geothermal (1 TWe = 8760 TWh in \ one year). We assume that the global potential of 0.2 TWe. | "max PE geot-elec TWth"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C25') ~~| "max PE geot-elec TWth"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C25') ~~| "max PE geot-elec TWth"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C25') ~~| "max PE geot-elec TWth"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C25') ~~| "max PE geot-elec TWth"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C25') ~~| "max PE geot-elec TWth"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C25') ~ TWe ~ Primary energy of geothermal for electricity. | Efficiency conversion geot PE to Elec= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C42') ~ Dmnl ~ Efficiency of the transformation from geothermal (primary energy) to \ electricity. | Geot PE potential for heat EJ[scenarios]= Geot PE potential for heat TWth[scenarios]*EJ per TWh/TWe per TWh ~ EJ/Year ~ Geothermal potential (primary energy) for producing heat. | Historic final energy intensity by sector and fuel[electricity,sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C48') ~~| Historic final energy intensity by sector and fuel[heat,sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C84') ~~| Historic final energy intensity by sector and fuel[liquids,sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C120') ~~| Historic final energy intensity by sector and fuel[gases,sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C156') ~~| Historic final energy intensity by sector and fuel[solids,sectors]= GET XLS LOOKUPS('inputs.xlsx', 'Economy', '47', 'C192') ~ EJ/Tdollars ~ Energy intensity. (35 WIOD sectors & final sources). US$1995 | final sources: electricity, heat, liquids, gases, solids ~ ~ 5 final energy sources considered in MEDEAS. | sectors1: Agriculture Hunting Forestry and Fishing,Mining and Quarrying, Food Beverages and Tobacco\ , Textiles and Textile Products, Leather Leather and Footwear, Wood and Products of Woood and Cork\ , Pulp Paper Printing and Publishing, Coke Refined Petroleum and Nuclear Fuel, Chemicals and Chemical products\ , Rubber and Plastics, Other Non Metalic Mineral, Basic Metals and Fabricated Metal\ , Machinery Nec, Electrical and Optical Equipment, Transport Equipment, Manufacturing Nec Recycling\ , Electricity Gas and Water Supply, Construction, Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ , Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles, Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ , Hotels and Restaurants, Inland Transport, Water Transport, Air Transport, Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ , Post and Telecommunications, Financial Intermedation, Real Estate Activities, Renting od MEq and Other Business Activities\ , Public Admin and Defence Compulsory Social Security, Education, Health and Social Work\ , Other Community Social and Persona Services, Private Households with Employed Persons ~ ~ | sectors: Agriculture Hunting Forestry and Fishing,Mining and Quarrying, Food Beverages and Tobacco\ , Textiles and Textile Products, Leather Leather and Footwear, Wood and Products of Woood and Cork\ , Pulp Paper Printing and Publishing, Coke Refined Petroleum and Nuclear Fuel, Chemicals and Chemical products\ , Rubber and Plastics, Other Non Metalic Mineral, Basic Metals and Fabricated Metal\ , Machinery Nec, Electrical and Optical Equipment, Transport Equipment, Manufacturing Nec Recycling\ , Electricity Gas and Water Supply, Construction, Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ , Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles, Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ , Hotels and Restaurants, Inland Transport, Water Transport, Air Transport, Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ , Post and Telecommunications, Financial Intermedation, Real Estate Activities, Renting od MEq and Other Business Activities\ , Public Admin and Defence Compulsory Social Security, Education, Health and Social Work\ , Other Community Social and Persona Services, Private Households with Employed Persons ~ ~ 35 economic sectors from WIOD input-output database. | initial instal cap RES elec[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H174') ~~| initial instal cap RES elec["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H175') ~~| initial instal cap RES elec["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H176') ~~| initial instal cap RES elec[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H177') ~~| initial instal cap RES elec[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H178') ~~| initial instal cap RES elec[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H179') ~~| initial instal cap RES elec[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H180') ~~| initial instal cap RES elec[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H181') ~ TW ~ Installed capacity per RES elec by technology in the initial year 1995. | abundance RES elec2[scenarios]= SQRT (abundance RES elec[scenarios]) ~ Dmnl ~ Adaptation of the parameter abundance for better behaviour of the model. | potential tot generation RES elec TWh[scenarios]= SUM(potential generation RES elec TWh[RES elec!,scenarios]) ~ TWh ~ Total potential generation of electricity from RES given the installed \ capacity. | RES elec tot overcapacity[scenarios]= IF THEN ELSE(potential tot generation RES elec TWh[scenarios]=0,0, (potential tot generation RES elec TWh[scenarios]-FE real tot generation RES elec TWh\ [scenarios])/potential tot generation RES elec TWh[scenarios]) ~ Dmnl ~ Overcapacity for each technology RES for electricity taking into account \ the installed capacity and the real generation. | wear RES elec[RES elec, scenarios]= IF THEN ELSE(Time<2015, 0, installed capacity RES elec TW[RES elec,scenarios]/lifetime RES elec\ [RES elec]) ~ TW/Year ~ Depreciation of RES infraestructures. | "Cp-ini RES elec"[hydro]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Parameters', '6', 'G13') ~~| "Cp-ini RES elec"["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F7') ~~| "Cp-ini RES elec"["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F8') ~~| "Cp-ini RES elec"[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F9') ~~| "Cp-ini RES elec"[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F10') ~~| "Cp-ini RES elec"[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F12') ~~| "Cp-ini RES elec"[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F11') ~~| "Cp-ini RES elec"[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'F16') ~ Dmnl ~ Initial capacity factor (before accounting for the reduction of Cp of the \ base-load plants with the penetration of the intermittent RES (solar and \ wind) in the electricity generation mix). | G per T= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C22') ~ Dmnl ~ | time construction RES elec[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T13') ~~| time construction RES elec["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T7') ~~| time construction RES elec["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T8') ~~| time construction RES elec[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T9') ~~| time construction RES elec[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T10') ~~| time construction RES elec[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T12') ~~| time construction RES elec[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T11') ~~| time construction RES elec[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'T16') ~ Year ~ Average construction time for each RES generating electricity. For replaced infraestructures, the construction time should be smaller \ than for new infaestructures, however we compensate for this assuming that \ the demantling time is included in onstruction time for replaced \ infrastructure. | time planification RES elec[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S13') ~~| time planification RES elec["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S7') ~~| time planification RES elec["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S8') ~~| time planification RES elec[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S9') ~~| time planification RES elec[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S10') ~~| time planification RES elec[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S12') ~~| time planification RES elec[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S11') ~~| time planification RES elec[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'S16') ~ Year ~ Average planification time for each RES generating electricity. | initial required capacity RES elec[RES elec]= table hist capacity RES elec[RES elec](1996)-table hist capacity RES elec[RES elec](\ 1995) ~ TW ~ Initial required capacity of RES by technology (year 1995). We assume that \ it is the same than the additional installed capacity between 1995 and \ 1996. | new RES elec capacity under planning[RES elec, scenarios]= MAX(0, required capacity RES elec TW[RES elec,scenarios]/time planification RES elec\ [RES elec]) ~ TW/Year ~ New RES infraestructure for electricity generation capacity under planning. | lifetime RES elec[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C13') ~~| lifetime RES elec["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C7') ~~| lifetime RES elec["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C8') ~~| lifetime RES elec[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C9') ~~| lifetime RES elec[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C10') ~~| lifetime RES elec[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C12') ~~| lifetime RES elec[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C11') ~~| lifetime RES elec[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C16') ~ Years ~ Lifetime of each RES technology for electricity generation. | past RES elec capacity growth[hydro]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C85') ~~| past RES elec capacity growth["geot-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C86') ~~| past RES elec capacity growth["solid bioE-elec"]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C87') ~~| past RES elec capacity growth[oceanic]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C88') ~~| past RES elec capacity growth[wind onshore]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C89') ~~| past RES elec capacity growth[wind offshore]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C90') ~~| past RES elec capacity growth[solar PV]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C91') ~~| past RES elec capacity growth[CSP]= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C92') ~ 1/Year ~ Current growth levels. | RES elec: hydro, "geot-elec", "solid bioE-elec", oceanic, wind onshore, wind offshore, solar PV\ , CSP ~ ~ Technologies for electricity generation based on renewable energy sources. | Afforestation program 2020 GtCO2[scenarios]= Afforestation program 2020*activate Affores program[scenarios]/(C per CO2*Mt per Gt) ~ GtCO2/Year ~ Annual emissions captured by the afforestation program. | Mt per Gt= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C21') ~ ~ Conversion from Mega to Giga (1000 M = 1 G). | GTL efficiency= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C50') ~ Dmnl ~ Efficiency of GTL plants. Source: IEA balances (see Technical Report). | CTL efficiency= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C49') ~ Dmnl ~ Efficiency of CTL plants. Source: IEA balances (see Technical Report). | "CTL+GTL Gb"[scenarios]= "FES CTL+GTL EJ"[scenarios]/Gboe per EJ ~ Gboe/Year ~ CTL and GTL production. | "Mb/d per EJ/year"= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C17') ~ Mb*Year/(EJ*d) ~ Conversion between Mb/d to EJ/year. | max extraction uranium EJ[scenarios]= IF THEN ELSE(Choose extraction uranium curve[scenarios]=1, table max extraction uranium EWG13 EJ\ (RURR uranium[scenarios ]), IF THEN ELSE(Choose extraction uranium curve[scenarios]=2, table max extraction uranium Zittel12\ (RURR uranium[scenarios]), table max extraction uranium user defined(RURR uranium[scenarios\ ]))) ~ EJ/Year ~ Maximum extraction curve selected for the simulations. | Hist growth CTL= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C82') ~ 1/Year ~ Historic growth of CTL 1990-2014 (IEA Balances). | Gboe per EJ= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C18') ~ EJ/Gboe ~ Unit conversion (1 EJ = 5.582 Gb). | table max extraction uranium user defined= GET XLS LOOKUPS('inputs.xlsx', 'User defined', '156', 'E157') ~ EJ/Year ~ | "User-defined extraction growth unconv gas"( GET XLS LOOKUPS('inputs.xlsx', 'User defined', '163', 'D164')) ~ Dmnl ~ User-defined annual extraction growth constraint path as a function of \ time for unconventional gas. | "User-defined extraction growth unconv oil"( GET XLS LOOKUPS('inputs.xlsx', 'User defined', '161', 'D162') ) ~ Dmnl ~ User-defined annual extraction growth constraint path as a function of \ time for unconventional oil. | Hist growth GTL= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C83') ~ 1/Year ~ Historic growth of GTL 2000-2014 (IEA Balances). | URR uranium User defined= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C156') ~ EJ ~ | replacement rate nuclear= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'D15') ~ Dmnl ~ If =1, we asume that all the power that reaches the end of its lifetime is \ replaced. | demand gas for oil refinery gains[scenarios]= Oil refinery gains EJ[scenarios]*Efficiency gas for oil refinery gains ~ EJ/Year ~ Demand of natural gas to be used as input in the refineries to obtain the \ so-called "oil refinery gains". | share RES vs TPES[scenarios]= TPE from RES EJ[scenarios]/TPES EJ[scenarios] ~ Dmnl ~ Share of primary energy from RES in the TPES. | TPES Mtoe[scenarios]= TPES EJ[scenarios]*MToe per EJ ~ MToe/Year ~ Total Primary Energy Supply. | FE Elec generation from NRE TWh[scenarios]= FE Elec generation from fossil fuels TWh[scenarios]+FE nuclear Elec generation TWh[scenarios\ ] ~ TWh/Year ~ Electricity generation from non-renewable resources (fossil fuels and \ uranium). | PEpc consumption people depending on trad biomass= PE consumption trad biomass ref/People relying trad biomass ref ~ MToe/people ~ Primary energy per capita consumption of people currently depending on \ trad biomass. | share gas for oil refinery gains[scenarios]= IF THEN ELSE("PED nat. gas without GTL"[scenarios]>0, demand gas for oil refinery gains\ [scenarios]/"PED nat. gas without GTL"[scenarios], 0.5) ~ Dmnl ~ Share of gas to cover oil refinery gains. Condition to avoid error when \ the total demand of gas without GTL falls to zero (0.5 is an arbitrary \ value). | People relying trad biomass ref= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C58') ~ people ~ People relying on traditional biomass in 2008. WEO 2010 reportad that in \ 2008, 2.5 billion people consumed 724 Mtoe of traditional biomass. | PE consumption trad biomass ref= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C57') ~ EJ/Year ~ Primary energy consumption of trad biomass. From IEA balances, 39.626 EJ \ were consumed as primary solids biofuels for TFC in 2008. | TPEFpc threshold high development= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C75') ~ GJ/people ~ Energy use threshold (in terms of total primary energy footprint) found by \ Arto et al., (2016) to reach high development (HDI>0.8). | TPED acceptable standard living= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C76') ~ GJ/people ~ Approximative energy use value to fulfill the aceptable standard of living \ (in terms of total primary energy use). Source: (Goldemberg, 2011; Rao et \ al, 2014, WBGU,2003) cited in Arto et al., (2016). | Pop not dependent on trad biomass[scenarios]= Population[scenarios]-Population dependent on trad biomass[scenarios] ~ people ~ Global population not dependent on traditional biomass. | "Carbon footprint tCO2/person"[scenarios]= Total CO2 emissions GTCO2[scenarios]*t per Gt/Population[scenarios] ~ tCO2/person ~ CO2 emissions per capita. | "Average TPESpc (without trad biomass)"[scenarios]= "TPES (without trad biomass)"[scenarios]*GJ per EJ/Pop not dependent on trad biomass\ [scenarios] ~ GJ/people ~ Average per capita TPES without accounting for the energy supplied by \ traditional biomass. The population considered for estimating the average \ is not the global population, but the share of the population not relying \ on traditional biomass for covering their energy uses. | "TPES (without trad biomass)"[scenarios]= TPES EJ[scenarios]-PE traditional biomass EJ delayed 1yr[scenarios] ~ EJ ~ TPES without accounting for traditional biomass. | Max NPP potential BioE residues for heat and elec[scenarios]= Max NPP potential bioE residues[scenarios]*(1-share cellulosic biofuels vs BioE residues\ [scenarios]) ~ EJ/Year ~ Share of bioE for heat and electricity. | Max NPP potential BioE residues for cellulosic biofuels[scenarios]= Max NPP potential bioE residues[scenarios]*share cellulosic biofuels vs BioE residues\ [scenarios] ~ EJ/Year ~ Potential assigned to the cellulosic biofuels from bioE residues. | Total cumulative emissions GtCO2[scenarios]= Total cumulative emissions GtC[scenarios]/C per CO2 ~ GtCO2 ~ Total cumulative emissions. | GtCO2 historic emissions RCPs[scenarios]= GtC historic emissions RCPs[scenarios](Time)/C per CO2 ~ GTCO2e ~ | Carbon emissions GtC[scenarios]= Total CO2 emissions GTCO2[scenarios]*C per CO2 ~ GtC/Year ~ Total anual carbon emissions. | Historic unconv oil:INTERPOLATE::= GET XLS DATA( 'inputs.xlsx', 'Constants', '25' , 'C34') ~ EJ/Year ~ Historic unconventional extraction from Mohr et al (2015). | gCO2 per MJ unconv gas= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C94') ~ gCO2/MJ ~ CO2 emission factor of unconventional gas. | gCO2 per MJ unconv oil= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C95') ~ gCO2/MJ ~ Emission factor unconventional oil (tar sands/extra heavy oil). | CO2 emissions CTL[scenarios]= gCO2 per MJ CTL*extraction coal for CTL EJ[scenarios]*MJ per EJ/g per Gt ~ GtCO2/Year ~ CO2 emissions associated to CTL production. | gCO2 per MJ conv gas= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C92') ~ gCO2/MJ ~ CO2 emission factor conventional natural gas. | gCO2 per MJ CTL= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C89') ~ gCO2/MJ ~ CO2 emissions coefficient of CTL. | gCO2 per MJ GTL= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C90') ~ gCO2/MJ ~ CO2 emissions coefficient of GTL. | Historic unconv gas:INTERPOLATE::= GET XLS DATA( 'inputs.xlsx', 'Constants', '25' , 'C35') ~ EJ/Year ~ Historic unconventional extraction from Mohr et al (2015). | gCO2 per MJ coal= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C91') ~ gCO2/MJ ~ CO2 emission factor coal. | gCO2 per MJ conv oil= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C93') ~ gCO2/MJ ~ CO2 emission factor conventional oil. | gCO2 per MJ shale oil= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C96') ~ gCO2/MJ ~ CO2 emission factor shale oil. | dollars to Tdollars= GET XLS CONSTANTS( 'inputs.xlsx', 'Constants', 'C15') ~ Dmnl ~ Conversion from dollars to Tdollars (1 T$ = 1e12 $). | variation historic pop= IF THEN ELSE(Time<2014, Historic pop(Time+1)-Historic pop(Time), 0) ~ people/Year ~ Population historic variation. | Historic pop( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H28')) ~ people ~ Historic population (1995-2015). Ref: World bank. | land compet 2gen vs total land compet[scenarios]= Land compet biofuels 2gen Mha[scenarios]/Land compet required dedicated crops for biofuels\ [scenarios] ~ ~ Land dedicated to 2nd generation biofuels vs total land competition for \ biofuels [to prevent stock "Land compet biofuels 2gen Mha" goes negative]. | GJ per EJ= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C14') ~ Dmnl ~ Conversion from GJ to EJ (1 EJ = 1e9 GJ). | Land shifted to biofuels 3gen[scenarios]= IF THEN ELSE(Time-0.01 ,1 ,check gases[scenarios]) ~ Dmnl ~ If negative, there is oversupply of gas. This variable is used to \ constrain the exogenous growth of exogenously-driven policies. | "constrain liquids exogenous growth? delayed 1yr"[scenarios]= DELAY FIXED ( "constrain liquids exogenous growth?"[scenarios], 1, 1) ~ Dmnl ~ | check liquids delayed 1yr[scenarios]= DELAY FIXED ( check liquids[scenarios], 1, 1) ~ Dmnl ~ Variable to avoid energy oversupply caused by exogenously driven policies. | check gas delayed 1yr[scenarios]= DELAY FIXED ( check gases[scenarios], 1, 1) ~ Dmnl ~ Variable to avoid energy oversupply caused by exogenously driven policies. | "constrain liquids exogenous growth?"[scenarios]= IF THEN ELSE(check liquids[scenarios]>0 ,1 ,check liquids[scenarios]) ~ Dmnl ~ If negative, there is oversupply of liquids. This variable is used to \ constrain the exogenous growth of exogenously-driven policies. | Share variable RES elec vs total generation delayed 1yr[scenarios]= DELAY FIXED ( Share variable RES elec generation vs total[scenarios], 1, 0.0071) ~ Dmnl ~ "Share variable RES elec generation vs total" delayed 1 year. | "overcapacity vs. intermittent RES penetration 0"[scenarios]= MAX(1, 0.9599*EXP(0.8938*Share variable RES elec vs total generation delayed 1yr[scenarios\ ])) ~ Dmnl ~ Total overcapacity vs. intermittent RES penetration in electricity \ generation. | Total electrical losses EJ[scenarios]= Elec gen related losses EJ[scenarios]+Electrical distribution losses EJ[scenarios] ~ EJ/Year ~ Total losses from electricity generation (generation + distribution). | Gen losses vs PE for elec[scenarios]= Elec gen related losses EJ[scenarios]/Total PE for electricity consumption EJ[scenarios\ ] ~ Dmnl ~ Generation losses as a share of the total PE for electricity. | initial GTL production= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H37') ~ EJ/Year ~ GTL production in the initial year 1995 (IEA balances). | variation CTL[scenarios]= IF THEN ELSE(Time<2013, Historic CTL production(Time+1)-Historic CTL production(Time\ ), IF THEN ELSE(check liquids[scenarios]<0, "constrain liquids exogenous growth?"[scenarios\ ]*CTL potential production[scenarios], CTL potential production[scenarios]*real growth CTL[scenarios])) ~ EJ/Year ~ New annual CTL production. | variation GTL[scenarios]= IF THEN ELSE(Time<2013, Historic GTL production(Time+1)-Historic GTL production(Time\ ), IF THEN ELSE(check liquids[scenarios]<0, "constrain liquids exogenous growth?"[scenarios\ ]*GTL potential production[scenarios], GTL potential production[scenarios]*real growth GTL[scenarios])) ~ EJ/Year ~ New annual GTL production. | Historic GTL production= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '25' , 'C37') ~ EJ/Year ~ Historic generation of GTL 1990-2014 (IEA Balances). | initial CTL production= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H36') ~ EJ/Year ~ CTL production in the initial year 1995 (IEA balances). | Historic CTL production= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '25' , 'C36') ~ EJ/Year ~ Historic generation of CTL 1990-2014 (IEA Balances). | improvement efficiency gas for electricity= IF THEN ELSE(Time<2013, (Historic efficiency gas for electricity(Time+1)-Historic efficiency gas for electricity\ (Time))*percent to share, efficiency gas for electricity*remaining efficiency improv gas for electricity\ *Efficiency improv gas for electricity) ~ Dmnl ~ Annual efficiency improvement of the gas power centrals. | PE demand gas Elec plants EJ[scenarios]= (FE demand gas Elec plants TWh[scenarios]/efficiency gas for electricity)*EJ per TWh ~ EJ/Year ~ Primary energy demand of natural gas (EJ) for electricity consumption \ (including generation losses). | PE demand coal Elec plants EJ[scenarios]= (FE demand coal Elec plants TWh[scenarios]/efficiency coal for electricity)*EJ per TWh ~ EJ/Year ~ Primary energy demand of coal (EJ) for electricity consumption (including \ generation losses). | Max efficiency gas power plants= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C48') ~ Dnml ~ Assumed maximum efficiency level for gas power centrals. | Total PE for electricity consumption EJ[scenarios]= Total FE Elec demand EJ[scenarios]+Elec gen related losses EJ[scenarios] ~ EJ/Year ~ Total primary energy for electricity consumption (EJ). | initial efficiency gas for electricity= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'H70') ~ percent ~ Efficiency of gas power centrals in the initial year 1995 (IEA balances). | remaining efficiency improv gas for electricity= (Max efficiency gas power plants-efficiency gas for electricity)/Max efficiency gas power plants ~ Dmnl ~ Remaining efficiency improvement for gas power centrals. | Efficiency improv gas for electricity= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C52') ~ Dmnl ~ Annual efficiency improvement in percentage of the gas power centrals for \ electricity production. | efficiency gas for electricity= INTEG ( improvement efficiency gas for electricity, initial efficiency gas for electricity*percent to share) ~ Dmnl ~ Efficiency of the gas power centrals. | percent to share= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C12') ~ Dmnl ~ Conversion of percent to share. | "Additional PE production of CTL+GTL for liquids"[scenarios]= PED coal for CTL EJ[scenarios]+"PED nat. gas for GTL EJ"[scenarios]-"FES CTL+GTL EJ"\ [scenarios] ~ EJ/Year ~ Additional primary energy production of CTL and GTL for liquids. We need \ to account for this difference since the oil replaced by CTL liquids is \ accounted for primary energy in WoLiM, while there are additional losses \ to process coal to obtain CTL (required to balance the TPES with the TPED). | Annual additional historic product biofuels 2gen= IF THEN ELSE(Time<2015, Historic produc biofuels 2gen(Time+1)-Historic produc biofuels 2gen\ (Time), 0) ~ ktoe/Year ~ Annual additional historic production of liquids from biofuels ethanol and \ biodiesel, ktoe/Year (1990-2015). Ref: BP 2016. | Historic produc biofuels 2gen( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'C56')) ~ ktoe/Year ~ Historic production of biofuels 2nd generation (1990-2015). | carbon budget= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C122') ~ GtC ~ Carbon budget, the amount of carbon dioxide emissions we can emit while \ still having a likely chance of limiting global temperature rise to 2 \ degrees Celsius above pre-industrial levels (IPCC 2014). | Cumulative emissions to 1995= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C108') ~ GtC ~ Cumulative emissions 1751-1995 due to carbon emissions from fossil fuel \ consumption, cement production and land-use changes. Data from CDIAC and \ World Resources Institute. | FE solar potential for heat[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C55') ~~| FE solar potential for heat[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C55') ~~| FE solar potential for heat[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C55') ~~| FE solar potential for heat[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C55') ~~| FE solar potential for heat[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C55') ~~| FE solar potential for heat[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C55') ~ EJ/Year ~ Global solar thermal potential. We assume that the primary energy \ coincides with the final energy. See Technical Report Appendix D. | "start year BioE residues for heat+elec"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C47') ~~| "start year BioE residues for heat+elec"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C47') ~~| "start year BioE residues for heat+elec"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C47') ~~| "start year BioE residues for heat+elec"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C47') ~~| "start year BioE residues for heat+elec"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C47') ~~| "start year BioE residues for heat+elec"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C47') ~ Year ~ First year when the technology is available. | CO2 fossil fuel emissions[scenarios]= CO2 emissions conv gas without GTL[scenarios]+CO2 emissions unconv gas[scenarios]+CO2 emissions GTL\ [scenarios]+CO2 emissions conv oil[scenarios]+CO2 emissions unconv oil[scenarios]+CO2 emissions coal without CTL\ [scenarios]+CO2 emissions CTL[scenarios] ~ GtCO2/Year ~ Total CO2 emissions from fossil fuels. | t per Gt= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C13') ~ TonC/GtC ~ Conversion from tones to Gigatonnes of carbon. | Share land compet biofuels[scenarios]= Land compet required dedicated crops for biofuels[scenarios]/Global arable land ~ ~ Share of global arable land required by dedicated crops for biofuels (in \ land competition). | share land total RES vs arable[scenarios]= Total land requirements renew Mha[scenarios]/Global arable land ~ MHa ~ Land requirements for all RES as a share of the global arable land. | share land RES land compet vs arable[scenarios]= (Land compet required dedicated crops for biofuels[scenarios]+surface solar PV Mha[scenarios\ ])/Global arable land ~ Dmnl ~ Land requirements for RES that compete with other land-uses (solar on land \ and biofuels on land competition) as a share of the global arable land. | Year scarcity oil[scenarios]= IF THEN ELSE(abundance total oil[scenarios]>0.95, 0, Time) ~ Dmnl ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | "share gas/(coal +gas) for Elec"[scenarios]= IF THEN ELSE(Time>2014, "future share gas/(coal+gas) for Elec","Hist share gas/(coal +gas) Elec"\ ) ~ Dmnl ~ Share of natural gas for electricity in relation to the total fossil fuels \ for electricity. | "future share gas/(coal+gas) for Elec"= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C39') ~ Dmnl ~ Assumption for the future share of gas vs. fossil fuels for electricity \ generation. Since this share has remained fairly constant since 1990, we \ assume that the value for the last year (2013) is maintained in the future. | cumulated conv gas extraction[scenarios]= INTEG ( extraction conv gas EJ[scenarios], cumulated conv gas extraction to 1995) ~ EJ ~ Cumulated conventional gas extraction. | cumulated conv gas extraction to 1995= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C96') ~ EJ ~ Cumulated conventional gas extraction to 1995 (Mohr et al., 2015). | Cumulated unconv gas extraction[scenarios]= INTEG ( extraction unconv gas EJ[scenarios], cumulated unconv gas extraction to 1995) ~ EJ ~ Cumulated unconventional gas extraction. | cumulated unconv gas extraction to 1995= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C97') ~ EJ ~ Cumulated unconventional gas extraction to 1995 (Mohr et al., 2015). | RURR uranium[scenarios]= INTEG ( -extraction uranium EJ[scenarios], URR uranium[scenarios]-cumulated uranium extraction to 1995) ~ EJ ~ RURR uranium. 720 EJ extracted before 1990. | cumulated uranium extraction to 1995= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C99') ~ EJ ~ Cumulated coal extraction to 1995 (EWG 2006). | cumulated conv oil extraction[scenarios]= INTEG ( extraction conv oil EJ[scenarios], cumulated conv oil extraction to 1995) ~ EJ ~ Cumulated conventional oil extraction. | cumulated conv oil extraction to 1995= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C94') ~ EJ ~ Cumulated conventional oil extraction to 1995 (Mohr et al., 2015). | cumulated unconv oil extraction[scenarios]= INTEG ( extraction unconv oil EJ[scenarios], cumulated unconv oil extraction to 1995) ~ EJ ~ Cumulated unconventional oil extracted. | Cumulated coal extraction[scenarios]= INTEG ( extraction coal EJ[scenarios], cumulated coal extraction to 1995) ~ EJ ~ Cumulated coal extraction. | cumulated coal extraction to 1995= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C98') ~ EJ ~ Cumulated coal extraction to 1995 (Mohr et al., 2015). | cumulated unconv oil extraction to 1995= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C95') ~ EJ ~ Cumulated unconventional oil extraction to 1995 (Mohr et al., 2015). | Cumulated uranium extraction[scenarios]= INTEG ( extraction uranium EJ[scenarios], cumulated uranium extraction to 1995) ~ EJ ~ Cumulated uranium extraction. | Oil refinery gains EJ[scenarios]= Oil refinery gains share*PES oil EJ delayed[scenarios] ~ EJ/Year ~ Oil refinery gains. | Oil refinery gains share= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C74') ~ Dmnl ~ We assume these energy gains are reached by applying natural gas as energy \ input. Historically, their share has been growing in the last decades \ (1.9% in 1980). WEO (2010) gives a 2.8% for the year 2009 and BP (2007) \ 2.6%. The value 2.7% is taken. | Efficiency gas for oil refinery gains= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C51') ~ Dmnl ~ We assume a 100% efficiency as first approximation. | PES Liquids EJ[scenarios]= PES oil EJ[scenarios]+Other liquids supply EJ[scenarios] ~ EJ/Year ~ Total primary supply of liquids. | one year= 1 ~ Year ~ | Land compet required dedicated crops for biofuels[scenarios]= Land compet biofuels 2gen Mha[scenarios]+Land compet biofuels 3gen Mha[scenarios] ~ MHa ~ Land requirements for crops for biofuels 2nd and 3rd generation (in land \ competing with other uses). | new biofuels 2gen land compet[scenarios]= IF THEN ELSE(check liquids[scenarios]<0, "constrain liquids exogenous growth?"[scenarios\ ]*Land compet biofuels 2gen Mha[scenarios], MAX(Annual additional historic land use biofuels 2gen[scenarios]+adapt growth biofuels 2gen\ [scenarios] *Land compet biofuels 2gen Mha[scenarios]*Biofuels land compet available[scenarios],\ 0)) ~ MHa/Year ~ New land dedicated to biofuels 2nd generation in land competing with other \ uses. | Annual shift from 2gen to 3gen[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C44') ~~| Annual shift from 2gen to 3gen[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C44') ~~| Annual shift from 2gen to 3gen[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C44') ~~| Annual shift from 2gen to 3gen[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C44') ~~| Annual shift from 2gen to 3gen[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C44') ~~| Annual shift from 2gen to 3gen[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C44') ~ 1/Year ~ Share of the land dedicated for biofuels from the 2nd generation shifted \ to 3rd generation in the next year. | Land compet biofuels 3gen Mha[scenarios]= INTEG ( Land shifted to biofuels 3gen[scenarios], 0) ~ MHa ~ Land subject to competition dedicated to biofuels 3rd generation as a \ shift of surface previously dedicated to biofuels from the 2nd generation. | "P bioE residues for heat+elec"[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C46') ~~| "P bioE residues for heat+elec"[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C46') ~~| "P bioE residues for heat+elec"[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C46') ~~| "P bioE residues for heat+elec"[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C46') ~~| "P bioE residues for heat+elec"[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C46') ~~| "P bioE residues for heat+elec"[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C46') ~ 1/Year ~ Annual growth in energy output demand depending on the policy of the \ scenario. | Potential PE cellulosic biofuel EJ[scenarios]= INTEG ( new cellulosic biofuels[scenarios], 0) ~ EJ/Year ~ Potential annual primary energy biomass used for cellulosic biofuels. | Cellulosic biofuels available[scenarios]= (Max NPP potential BioE residues for cellulosic biofuels[scenarios]-Potential PE cellulosic biofuel EJ\ [scenarios])/Max NPP potential BioE residues for cellulosic biofuels[scenarios] ~ Dmnl ~ Remaining potential available as given as a fraction of unity. | "BioE residues for heat+elec available"[scenarios]= (Max NPP potential BioE residues for heat and elec[scenarios]-"PE bioE residues for heat+elec EJ"\ [scenarios])/Max NPP potential BioE residues for heat and elec[scenarios] ~ Dmnl ~ Remaining potential available of bioenergy residues for heat and \ electricity as given as a fraction of unity. | "PE bioE residues for heat+elec EJ"[scenarios]= INTEG ( "new BioE residues for heat+elec"[scenarios], 0) ~ EJ/Year ~ Total annual bioE residues production. | P cellulosic biofuels[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C48') ~~| P cellulosic biofuels[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C48') ~~| P cellulosic biofuels[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C48') ~~| P cellulosic biofuels[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C48') ~~| P cellulosic biofuels[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C48') ~~| P cellulosic biofuels[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C48') ~ 1/Year ~ Annual growth in energy output demand depending on the policy of the \ scenario. | share cellulosic biofuels vs BioE residues[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C50') ~~| share cellulosic biofuels vs BioE residues[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C50') ~~| share cellulosic biofuels vs BioE residues[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C50') ~~| share cellulosic biofuels vs BioE residues[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C50') ~~| share cellulosic biofuels vs BioE residues[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C50') ~~| share cellulosic biofuels vs BioE residues[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C50') ~ Dmnl ~ Share bioenergy residues potential allocated to cellulosic biofuels \ production. | start year cellulosic biofuels[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C49') ~~| start year cellulosic biofuels[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C49') ~~| start year cellulosic biofuels[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C49') ~~| start year cellulosic biofuels[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C49') ~~| start year cellulosic biofuels[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C49') ~~| start year cellulosic biofuels[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C49') ~ Year ~ First year when the technology is available. | share land total RES vs urban surface[scenarios]= Total land requirements renew Mha[scenarios]/urban surface 2008 ~ ~ Land requirements for all RES as a share of the global urban land. | Max land compet biofuels 2gen[scenarios]= Additional land compet available for biofuels[scenarios]+Historic land compet available for biofuels 2gen\ [scenarios] ~ MHa/Year ~ Annual potential of biofuels (final energy) 2nd generation competing with \ other land uses. | P biofuels 2gen[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C40') ~~| P biofuels 2gen[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C40') ~~| P biofuels 2gen[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C40') ~~| P biofuels 2gen[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C40') ~~| P biofuels 2gen[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C40') ~~| P biofuels 2gen[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C40') ~ 1/Year ~ Annual growth in energy output demand depending on the policy of the \ scenario. | past biofuels 2gen= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C81') ~ 1/Year ~ Current growth patterns (1990-2015). | EJ per ktoe= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C16') ~ EJ/ktoe ~ 1 ktoe = 0.000041868 EJ. | abundance total oil[scenarios]= IF THEN ELSE(PED total oil EJ[scenarios]0.95, 0, Time) ~ Year ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | Year scarcity uranium[scenarios]= IF THEN ELSE(abundance uranium[scenarios]>0.95, 0, Time) ~ Year ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | Year scarcity coal[scenarios]= IF THEN ELSE(abundance coal[scenarios]>0.95, 0, Time) ~ Year ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | Year scarcity liquids[scenarios]= IF THEN ELSE(abundance liquids[scenarios]>0.95, 0, Time) ~ Year ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | effects shortage gas[scenarios]= IF THEN ELSE(abundance gases[scenarios]>0.8, ((abundance gases[scenarios]-0.8)*5)^2,\ 0) ~ Dmnl ~ The eventual scarcity of gas would likely constrain the development of \ NGVs/GTLs. The proposed relationship avoids an abrupt limitation by \ introducing a range (1;0.8) in the gas abundance that constrains the \ development of NGVs/GTLs. | Year scarcity gases[scenarios]= IF THEN ELSE(abundance gases[scenarios]>0.95, 0, Time) ~ Year ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | max percent of change[scenarios]= 0.448 ~ Dmnl ~ | choose extraction coal curve[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D100') ~~| choose extraction coal curve[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D100') ~~| choose extraction coal curve[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D100') ~~| choose extraction coal curve[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D100') ~~| choose extraction coal curve[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D100') ~~| choose extraction coal curve[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D100') ~ Dmnl ~ 1= Mohr12 2= Other | Selection constraint extraction unconv gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D96') ~~| Selection constraint extraction unconv gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D96') ~~| Selection constraint extraction unconv gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D96') ~~| Selection constraint extraction unconv gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D96') ~~| Selection constraint extraction unconv gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D96') ~~| Selection constraint extraction unconv gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D96') ~ Dmnl ~ Selection of type of constraint to annual growth extraction of unconventional gas: \ 3? 1= Constraint annual growth (%) 2= User defined as a function of time | Year scarcity Elec[scenarios]= IF THEN ELSE(Abundance electricity[scenarios]>0.95, 0, Time) ~ Year ~ Year when the parameter abundance falls below 0.95, i.e. year when \ scarcity starts. | extraction unconv gas delayed[scenarios]= DELAY FIXED ( extraction unconv gas EJ[scenarios], TIME STEP, 0) ~ EJ/Year ~ | max unconv gas growth extraction EJ[scenarios]= IF THEN ELSE(check gas delayed 1yr[scenarios]<-0.01, (1+"constrain gas exogenous growth? delayed 1yr"\ [scenarios])*extraction unconv gas delayed[scenarios], extraction unconv gas delayed[scenarios]*max unconv gas growth extraction[scenarios]\ ) ~ EJ/Year ~ Constrained unconventional gas extraction growth (EJ/Year), i.e. maximum \ annual growth compatible with the constraint selected in the scenario. | P constraint growth extraction unconv gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C96') ~~| P constraint growth extraction unconv gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C96') ~~| P constraint growth extraction unconv gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C96') ~~| P constraint growth extraction unconv gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C96') ~~| P constraint growth extraction unconv gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C96') ~~| P constraint growth extraction unconv gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C96') ~ Dmnl ~ Constant constraint to annual extraction of unconventional gas. | choose extraction curve unconv gas[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D88') ~~| choose extraction curve unconv gas[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D88') ~~| choose extraction curve unconv gas[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D88') ~~| choose extraction curve unconv gas[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D88') ~~| choose extraction curve unconv gas[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D88') ~~| choose extraction curve unconv gas[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D88') ~ Dmnl ~ 1= BG Mohr15 2= Low Mohr15 3= High Mohr15 | choose extraction curve unconv oil[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D72') ~~| choose extraction curve unconv oil[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D72') ~~| choose extraction curve unconv oil[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D72') ~~| choose extraction curve unconv oil[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D72') ~~| choose extraction curve unconv oil[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D72') ~~| choose extraction curve unconv oil[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D72') ~ Dmnl ~ 1=BG Mohr15 2=Low Mohr15 3=Hihg Mohr15 4=User defined | Biofuels land compet available[scenarios]= (Max land compet biofuels 2gen[scenarios]-Land compet biofuels 2gen Mha[scenarios]-Land compet biofuels 3gen Mha\ [scenarios])/Max land compet biofuels 2gen[scenarios] ~ Dmnl ~ Remaining potential land available as given as a fraction of unity. | URR oil ASPO[scenarios]= 12800 ~ EJ ~ | URR gas Mohr High2013[scenarios]= 28500 ~ EJ ~ | URR gas Leherrere2010[scenarios]= 13600 ~ EJ ~ | URR gas Mohr BG2012[scenarios]= 19900 ~ EJ ~ | RES to fossil accounting= 1 ~ Dmnl ~ There are different methods to report primary energy. If=1, it corresponds \ with the direct equivalent method which counts one unit of secondary \ energy provided from non-combustible sources as one unit of primary \ energy, that is, 1 kWh of (useful) electricity or heat is accounted for as \ 1 kWh = 3.6 MJ of primary energy. For more information see Annex II of \ (IPCC, 2011). | new C GtC[scenarios]= Carbon emissions GtC[scenarios] ~ GtC/Year ~ Annual carbon emissions. | year adjust[scenarios]= 1 ~ Year ~ | "TPES de Castro PhD - Scen 'madcoal'"( [(0,0)-(10,10)],(1985,7727.25),(1986,7904.71),(1987,8090.31),(1988,8272.83),(1989,8453.11\ ),(1990,8632.09),(1991,8810.72),(1992,8989.94),(1993,9170.63),(1994,9353.55),(1995,\ 9539.38),(1996,9728.58),(1997,9921.49),(1998,10118.2),(1999,10318.7),(2000,10522.5)\ ,(2001,10729.3),(2002,10938.4),(2003,11148.8),(2004,11359.5),(2005,11569.5),(2006,11786.3\ ),(2007,11999.6),(2008,12211.4),(2009,12420.8),(2010,12626.9),(2011,12829.2),(2012,\ 13027.3),(2013,13221),(2014,13410.5),(2015,13596.1),(2016,13774),(2017,13924.7),(2018\ ,14047.6),(2019,14141.5),(2020,14208.3),(2021,14251.8),(2022,14277.8),(2023,14292.7\ ),(2024,14303.7),(2025,14317.3),(2026,14343.2),(2027,14382.9),(2028,14441.4),(2029,\ 14521.6),(2030,14625.6),(2031,14754.7),(2032,14909.2),(2033,15089.5),(2034,15295.1)\ ,(2035,15525.7),(2036,15768.7),(2037,16021.4),(2038,16282.5),(2039,16551.3),(2040,16827.5\ ),(2041,17111.3),(2042,17402.7),(2043,17701.8),(2044,18008.4),(2045,18322.2),(2046,\ 18642.6),(2047,18968.8),(2048,19299.8),(2049,19634.2),(2050,19970.7),(2051,20218.4)\ ,(2052,20503.9),(2053,20792.3),(2054,21082),(2055,21370.6),(2056,21655.5),(2057,21933.9\ ),(2058,22202.8),(2059,22459.9),(2060,22702.5),(2061,22928.4),(2062,23135.7),(2063,\ 23322.3),(2064,23486.7),(2065,23627.4),(2066,23743.2),(2067,23833.1),(2068,23896.3)\ ,(2069,23932.3),(2070,23940.6),(2071,23921.3),(2072,23874.3),(2073,23810.4),(2074,23774.2\ ),(2075,23753),(2076,23746.1),(2077,23752.7),(2078,23771.8),(2079,23802.3),(2080,23843.3\ ),(2081,23893.7),(2082,23952.6),(2083,24018.9),(2084,24091.6),(2085,24169.7),(2086,\ 24252.2),(2087,24338.1),(2088,24426.4),(2089,24516.1),(2090,24606.1),(2091,24695.4)\ ,(2092,24783),(2093,24868),(2094,24949.3),(2095,25026),(2096,25097.2),(2097,25162),\ (2098,25219.5),(2099,25268.9),(2100,25309.5)) ~ MToe/Year ~ Total primary energy extraction (Add "Energía perdida" to the net energy \ extraction in the original model). | urban surface 2008= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C71') ~ MHa ~ Area occupied by human settlement and infraestructures. This area is \ roughly 200-400MHa (Wackernagel et al., 2002; WWF, 2008; Young, 1999). | C per CO2= GET XLS CONSTANTS('inputs.xlsx', 'Climate', 'K4') ~ GtC/GTCO2e ~ 1 kg of CO2 contains 3/11 of carbon. | GtC historic emissions RCPs[scenarios]( [(0,0)-(10,10)],(1990,6.144),(1995,6.4395),(2000,6.735),(2005,7.971)) ~ GtC ~ RCP database: \ http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=welcome | activate Affores program[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'B65') ~~| activate Affores program[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'B65') ~~| activate Affores program[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'B65') ~~| activate Affores program[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'B65') ~~| activate Affores program[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'B65') ~~| activate Affores program[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'B65') ~ Dmnl ~ 1. Activated. 2. No. | Afforestation program 2020:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'Parameters', '125', 'C126') ~ MtC/Year ~ Afforestation program from 2020 following [Nilsson 1995] (time to inverse \ the deforestation trend). | Global arable land= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C70') ~ MHa ~ Current global arable land: 1526 MHa (FAOSTAT). | choose extraction curve conv oil[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D68') ~~| choose extraction curve conv oil[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D68') ~~| choose extraction curve conv oil[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D68') ~~| choose extraction curve conv oil[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D68') ~~| choose extraction curve conv oil[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D68') ~~| choose extraction curve conv oil[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D68') ~ Dmnl ~ 1= Maggio12 middle 2= Maggio12 High 3= Maggio12 Low 4= User defined | choose extraction conv gas curve[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D84') ~~| choose extraction conv gas curve[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D84') ~~| choose extraction conv gas curve[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D84') ~~| choose extraction conv gas curve[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D84') ~~| choose extraction conv gas curve[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D84') ~~| choose extraction conv gas curve[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D84') ~ Dmnl ~ 1- BG Mohr15 2- Low Mohr15 3- High Mohr15 4- User defined | Cumulated total monet invest RES for Elec[scenarios]= INTEG ( Total monet invest RES for elec Tdolar[scenarios], 0) ~ Tdollars ~ Cumulated total monetary investment in RES for electricity generation from \ 1995 (1995 US$). | efficiency coal for electricity= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C46') ~ Dmnl ~ Efficiency of coal gas power centrals. Stable trend between 1971 and 2014 \ (IEA Balances), average of the period. | Historic efficiency gas for electricity( GET XLS LOOKUPS('inputs.xlsx', 'Constants', '25', 'H70')) ~ percent ~ Historical evolution of efficiency of natural gas power centrals 1995-2013 \ (IEA Balances). | efficiency liquids for electricity= GET XLS CONSTANTS('inputs.xlsx', 'Parameters', 'C45') ~ Dmnl ~ Efficiency of oil in electricity power centrals. Stable trend between 1971 \ and 2014 (IEA Balances), average of the period. | Additional land compet available for biofuels[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C41') ~~| Additional land compet available for biofuels[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C41') ~~| Additional land compet available for biofuels[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C41') ~~| Additional land compet available for biofuels[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C41') ~~| Additional land compet available for biofuels[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C41') ~~| Additional land compet available for biofuels[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C41') ~ MHa/Year ~ Available land for biofuels in competition with other uses depending on \ the scenario. | scenarios: SCEN1, SCEN2, SCEN3, SCEN4, BAU, User defined ~ ~ Scenarios to run in parallel, multiple scenarios. | max hydro TWe[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C24') ~~| max hydro TWe[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C24') ~~| max hydro TWe[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C24') ~~| max hydro TWe[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C24') ~~| max hydro TWe[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C24') ~~| max hydro TWe[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C24') ~ TWe ~ Techno-ecological potential of hydro (1 TWe = 8760 TWh in one year). | max oceanic TWe[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C27') ~~| max oceanic TWe[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C27') ~~| max oceanic TWe[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C27') ~~| max oceanic TWe[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C27') ~~| max oceanic TWe[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C27') ~~| max oceanic TWe[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C27') ~ TWe ~ Techno-ecological potential of oceanic (1 TWe = 8760 TWh in one year). | max onshore wind TWe[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C28') ~~| max onshore wind TWe[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C28') ~~| max onshore wind TWe[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C28') ~~| max onshore wind TWe[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C28') ~~| max onshore wind TWe[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C28') ~~| max onshore wind TWe[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C28') ~ TWe ~ Techno-ecological potential of onshore wind (1 TWe = 8760 TWh in one year). | P timeseries pop growth rate[BAU]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'BAU', '10', 'E11') ~~| P timeseries pop growth rate[SCEN1]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN1', '10', 'E11') ~~| P timeseries pop growth rate[SCEN2]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN2', '10', 'E11') ~~| P timeseries pop growth rate[SCEN3]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN3', '10', 'E11') ~~| P timeseries pop growth rate[SCEN4]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'SCEN4', '10', 'E11') ~~| P timeseries pop growth rate[User defined]:INTERPOLATE::= GET XLS DATA('inputs.xlsx', 'User defined', '10', 'E11') ~ 1/Year ~ Annual population growth from timeseries. UN projections in their medium \ scenario (Medium fertility variant) | P CTL[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C110') ~~| P CTL[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C110') ~~| P CTL[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C110') ~~| P CTL[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C110') ~~| P CTL[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C110') ~~| P CTL[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C110') ~ 1/Year ~ Annual growth in energy output demand depending on the policy of the \ scenario. | P GTL[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C112') ~~| P GTL[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C112') ~~| P GTL[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C112') ~~| P GTL[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C112') ~~| P GTL[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C112') ~~| P GTL[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C112') ~ 1/Year ~ Annual growth in energy output demand depending on the policy of the \ scenario. | start year 3gen[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C43') ~~| start year 3gen[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C43') ~~| start year 3gen[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C43') ~~| start year 3gen[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C43') ~~| start year 3gen[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C43') ~~| start year 3gen[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C43') ~ Year ~ First year when 3rd generation biofuels are available. | Time dmnl[scenarios]( [(1990,1990)-(2100,2100)],(1990,1990),(1991,1991),(1992,1992),(1993,1993),(1994,1994\ ),(1995,1995),(1996,1996),(1997,1997),(1998,1998),(1999,1999),(2000,2000),(2001,2001\ ),(2002,2002),(2003,2003),(2004,2004),(2005,2005),(2006,2006),(2007,2007),(2008,2008\ ),(2009,2009),(2010,2010),(2011,2011),(2012,2012),(2013,2013),(2014,2014),(2015,2015\ ),(2016,2016),(2017,2017),(2018,2018),(2019,2019),(2020,2020),(2021,2021),(2022,2022\ ),(2023,2023),(2024,2024),(2025,2025),(2026,2026),(2027,2027),(2028,2028),(2029,2029\ ),(2030,2030),(2031,2031),(2032,2032),(2033,2033),(2034,2034),(2035,2035),(2036,2036\ ),(2037,2037),(2038,2038),(2039,2039),(2040,2040),(2041,2041),(2042,2042),(2043,2043\ ),(2044,2044),(2045,2045),(2046,2046),(2047,2047),(2048,2048),(2049,2049),(2050,2050\ ),(2051,2051),(2052,2052),(2053,2053),(2054,2054),(2055,2055),(2056,2056),(2057,2057\ ),(2058,2058),(2059,2059),(2060,2060),(2061,2061),(2062,2062),(2063,2063),(2064,2064\ ),(2065,2065),(2066,2066),(2067,2067),(2068,2068),(2069,2069),(2070,2070),(2071,2071\ ),(2072,2072),(2073,2073),(2074,2074),(2075,2075),(2076,2076),(2077,2077),(2078,2078\ ),(2079,2079),(2080,2080),(2081,2081),(2082,2082),(2083,2083),(2084,2084),(2085,2085\ ),(2086,2086),(2087,2087),(2088,2088),(2089,2089),(2090,2090),(2091,2091),(2092,2092\ ),(2093,2093),(2094,2094),(2095,2095),(2096,2096),(2097,2097),(2098,2098),(2099,2099\ ),(2100,2100)) ~ Dmnl ~ Vector that assigns for every year the number of that same year. | Share variable RES elec generation vs total[scenarios]= IF THEN ELSE((FE Elec generation from NRE TWh[scenarios]+Elec generation variable from RES TWh\ [scenarios]+Elec generation dispatch from RES TWh[scenarios])>0, Elec generation variable from RES TWh\ [scenarios]/(FE Elec generation from NRE TWh[scenarios]+Elec generation variable from RES TWh\ [scenarios]+Elec generation dispatch from RES TWh[scenarios]), 0.5) ~ Dmnl ~ Share of variable vs. total electricity generation. Condition to avoid \ error when the denominator is zero (0.5 is an arbitrary value). | table max extraction ASPO oil EJ[scenarios]( [(0,0)-(13200,200)],(0,0),(600,29.9783),(1200,46.7403),(1800,59.4953),(2400,71.3603)\ ,(3000,84.9357),(3600,96.0997),(4200,107.465),(4800,118.46),(5400,127.537),(6000,137.018\ ),(6600,145.888),(7200,152.005),(7800,156.288),(8400,162.47),(9000,166.659),(9600,171.044\ ),(10200,171.044),(10800,171.044),(11400,171.044),(12000,171.044),(12600,171.044),(\ 13200,171.044)) ~ EJ/Year ~ Curva ASPO de extracción de oil hasta 2050. Unidades: EJ. Para los puntos a partir \ del 2050 se ha realizado una exponencial negativa hasta anular las \ reservas en 2100. /*Considera crude y unconvencional oil, así que una vez separado no vale \ esta tabla*/ | table max extraction gas Laherrere2010[scenarios]( [(0,0)-(13000,175)],(0,0),(500,23.8621),(1000,44.631),(1500,62.3067),(2000,77.7729),\ (2500,93.8891),(3000,107.821),(3500,119.752),(4000,129.033),(4500,137.87),(5000,144.16\ ),(5500,148.917),(6000,151.78),(6500,152.895),(7000,152.895),(7500,152.895),(8000,152.895\ ),(8500,152.895),(9000,152.895),(9500,152.895),(10000,152.895),(10500,152.895),(11000\ ,152.895),(11500,152.895),(12000,152.895),(12500,152.895),(13000,152.895)) ~ EJ/Year ~ Curva Laherrere2010 de extracción de gas hasta 2100. Unidades: EJ. Para \ los puntos a partir del 2100 se ha realizado una exponencial negativa \ hasta anular las reservas en 2120. | table max extraction gas Mohr High2012[scenarios]( [(0,0)-(30000,200)],(0,0),(1500,36.4477),(3000,58.3656),(4500,72.8198),(6000,98.5),(\ 7500,130.439),(9000,159.979),(10500,177.268),(12000,190.383),(13500,194.052),(15000\ ,194.197),(16500,194.197),(18000,194.197),(19500,194.197),(21000,194.197),(22500,194.197\ ),(24000,194.197),(25500,194.197),(27000,194.197),(28500,194.197)) ~ EJ/Year ~ Curva Mohr High case 2013 de extracción de gas hasta 2100. Unidades: EJ. | table max extraction gas Mohr BG2012[scenarios]( [(0,0)-(20000,200)],(0,0),(1000,27.4739),(2000,42.1041),(3000,51.2745),(4000,58.1215\ ),(5000,69.3726),(6000,79.5334),(7000,99.1636),(8000,115.575),(9000,128.798),(10000\ ,138.387),(11000,147.465),(12000,150.753),(13000,157.008),(14000,159.247),(15000,159.247\ ),(16000,159.247),(17000,159.247),(18000,159.247),(19000,159.247),(20000,159.247)) ~ EJ/Year ~ Curva MohrBG2012 de extracción de gas hasta 2100. Unidades: EJ. | Total cumulative emissions GtC[scenarios]= INTEG ( new C GtC[scenarios], Cumulative emissions to 1995) ~ GtC ~ Total cumulative emissions. | "TNES de Castro PhD - Scen I"( [(0,0)-(10,10)],(1985,7173.13),(1986,7368.39),(1987,7560.95),(1988,7750.95),(1989,7938.54\ ),(1990,8123.85),(1991,8306.94),(1992,8487.87),(1993,8666.6),(1994,8843.01),(1995,9016.91\ ),(1996,9188),(1997,9355.9),(1998,9520.11),(1999,9680.06),(2000,9835.12),(2001,9984.57\ ),(2002,10127.7),(2003,10263.7),(2004,10391.9),(2005,10511.6),(2006,10622.1),(2007,\ 10723.1),(2008,10814.1),(2009,10894.8),(2010,10965.4),(2011,11025.8),(2012,11076.5)\ ,(2013,11117.8),(2014,11150.3),(2015,11174.8),(2016,11187.2),(2017,11171.3),(2018,11125.6\ ),(2019,11048.7),(2020,10941.3),(2021,10806.3),(2022,10648.5),(2023,10473.6),(2024,\ 10288),(2025,10098.3),(2026,9914.3),(2027,9737.27),(2028,9572.49),(2029,9422.99),(2030\ ,9290.79),(2031,9176.91),(2032,9081.61),(2033,9004.54),(2034,8944.92),(2035,8901.71\ ),(2036,8868.15),(2037,8842.36),(2038,8822.52),(2039,8807.44),(2040,8796.45),(2041,\ 8789.34),(2042,8786.33),(2043,8787.93),(2044,8794.91),(2045,8800.9),(2046,8805.38),\ (2047,8813.47),(2048,8826.89),(2049,8847.13),(2050,8844.22),(2051,8829.3),(2052,8822.62\ ),(2053,8829.47),(2054,8853.12),(2055,8895.31),(2056,8956.7),(2057,9037.27),(2058,9136.56\ ),(2059,9253.94),(2060,9388.68),(2061,9540.13),(2062,9707.65),(2063,9890.73),(2064,\ 10089),(2065,10302),(2066,10529.6),(2067,10771.5),(2068,11027.7),(2069,11298),(2070\ ,11582.2),(2071,11880.5),(2072,12192.5),(2073,12518.4),(2074,12857.9),(2075,13211),\ (2076,13577.5),(2077,13957.4),(2078,14350.4),(2079,14756.5),(2080,15175.4),(2081,15606.9\ ),(2082,16051),(2083,16507.3),(2084,16975.7),(2085,17456),(2086,17947.9),(2087,18451.3\ ),(2088,18965.9),(2089,19491.6),(2090,20028),(2091,20575.1),(2092,21132.7),(2093,21700.6\ ),(2094,22278.8),(2095,22867.1),(2096,23465.6),(2097,24074.2),(2098,24693.1),(2099,\ 25322.3),(2100,25962.1)) ~ MToe/Year ~ Total net energy supply scenario I. | "Net oil extraction de Castro PhD - Scen I"( [(0,0)-(10,10)],(1985,2586.21),(1986,2657.24),(1987,2727.03),(1988,2795.64),(1989,2863.08\ ),(1990,2929.39),(1991,2994.56),(1992,3058.58),(1993,3121.38),(1994,3182.87),(1995,\ 3242.92),(1996,3301.35),(1997,3357.93),(1998,3412.41),(1999,3464.47),(2000,3513.79)\ ,(2001,3559.99),(2002,3602.72),(2003,3641.58),(2004,3676.21),(2005,3706.25),(2006,3731.41\ ),(2007,3751.42),(2008,3766.07),(2009,3775.24),(2010,3778.86),(2011,3776.96),(2012,\ 3769.61),(2013,3756.99),(2014,3739.31),(2015,3716.84),(2016,3688.03),(2017,3646.76)\ ,(2018,3592.8),(2019,3525.96),(2020,3446.96),(2021,3357.36),(2022,3259.3),(2023,3155.32\ ),(2024,3048.04),(2025,2940),(2026,2833.9),(2027,2731.45),(2028,2633.99),(2029,2542.41\ ),(2030,2457.18),(2031,2378.41),(2032,2305.92),(2033,2239.3),(2034,2178.03),(2035,2121.51\ ),(2036,2067.41),(2037,2015.01),(2038,1963.69),(2039,1913.01),(2040,1862.72),(2041,\ 1812.75),(2042,1763.12),(2043,1713.95),(2044,1665.41),(2045,1617.7),(2046,1569.24),\ (2047,1521.33),(2048,1474.43),(2049,1428.88),(2050,1378.91),(2051,1326.44),(2052,1276.28\ ),(2053,1229.49),(2054,1186.64),(2055,1147.86),(2056,1113.07),(2057,1082.06),(2058,\ 1054.53),(2059,1030.2),(2060,1008.79),(2061,990.086),(2062,973.882),(2063,960.031),\ (2064,948.419),(2065,938.964),(2066,931.608),(2067,926.306),(2068,923.025),(2069,921.731\ ),(2070,922.385),(2071,924.939),(2072,929.328),(2073,935.469),(2074,943.259),(2075,\ 952.569),(2076,963.248),(2077,975.123),(2078,987.996),(2079,1001.65),(2080,1015.86)\ ,(2081,1030.38),(2082,1044.96),(2083,1059.33),(2084,1073.23),(2085,1086.43),(2086,1098.65\ ),(2087,1109.67),(2088,1119.27),(2089,1127.24),(2090,1133.4),(2091,1137.59),(2092,1139.68\ ),(2093,1139.56),(2094,1137.17),(2095,1132.46),(2096,1125.41),(2097,1116.04),(2098,\ 1104.39),(2099,1090.55),(2100,1074.6)) ~ MToe/Year ~ | "PE oil extraction de Castro PhD - Scen II"( [(0,0)-(10,10)],(1985,2853.6),(1986,2932.69),(1987,3010.55),(1988,3087.22),(1989,3162.74\ ),(1990,3237.16),(1991,3310.47),(1992,3382.67),(1993,3453.7),(1994,3523.47),(1995,3591.83\ ),(1996,3658.6),(1997,3723.55),(1998,3786.39),(1999,3846.79),(2000,3904.4),(2001,3958.81\ ),(2002,4009.62),(2003,4056.42),(2004,4098.78),(2005,4136.27),(2006,4169.57),(2007,\ 4198.24),(2008,4222.15),(2009,4241.19),(2010,4255.33),(2011,4264.62),(2012,4269.17)\ ,(2013,4269.15),(2014,4264.78),(2015,4256.34),(2016,4242.11),(2017,4215.12),(2018,4174.81\ ),(2019,4120.76),(2020,4053.66),(2021,3975.16),(2022,3887.67),(2023,3794.08),(2024,\ 3697.45),(2025,3600.71),(2026,3506.78),(2027,3417.66),(2028,3334.64),(2029,3258.44)\ ,(2030,3189.17),(2031,3126.44),(2032,3069.5),(2033,3017.29),(2034,2968.65),(2035,2922.37\ ),(2036,2873.74),(2037,2821.48),(2038,2764.72),(2039,2703.17),(2040,2637.04),(2041,\ 2566.93),(2042,2493.69),(2043,2418.33),(2044,2341.94),(2045,2265.58),(2046,2190.28)\ ,(2047,2116.99),(2048,2046.54),(2049,1979.65),(2050,1909.2),(2051,1839.5),(2052,1776.01\ ),(2053,1719.36),(2054,1669.55),(2055,1626.19),(2056,1588.74),(2057,1556.59),(2058,\ 1529.08),(2059,1505.57),(2060,1485.41),(2061,1467.99),(2062,1452.74),(2063,1439.12)\ ,(2064,1426.63),(2065,1414.83),(2066,1403.34),(2067,1391.81),(2068,1379.96),(2069,1367.57\ ),(2070,1354.44),(2071,1340.44),(2072,1325.47),(2073,1309.44),(2074,1293.54),(2075,\ 1278.69),(2076,1264.85),(2077,1251.89),(2078,1239.63),(2079,1227.89),(2080,1216.49)\ ,(2081,1205.3),(2082,1194.17),(2083,1182.97),(2084,1171.6),(2085,1159.95),(2086,1147.95\ ),(2087,1135.52),(2088,1122.6),(2089,1109.14),(2090,1095.1),(2091,1080.45),(2092,1065.16\ ),(2093,1049.24),(2094,1032.67),(2095,1015.47),(2096,997.651),(2097,979.238),(2098,\ 960.264),(2099,940.765),(2100,920.786)) ~ MToe/Year ~ Primary energy (Add "Energía perdida" to the net energy extraction in the \ original model). | "Net oil extraction de Castro PhD - Scen III"( [(0,0)-(10,10)],(1985,2586.21),(1986,2657.24),(1987,2727.03),(1988,2795.64),(1989,2863.08\ ),(1990,2929.39),(1991,2994.56),(1992,3058.58),(1993,3121.38),(1994,3182.87),(1995,\ 3242.92),(1996,3301.35),(1997,3357.93),(1998,3412.41),(1999,3464.47),(2000,3513.79)\ ,(2001,3559.99),(2002,3602.72),(2003,3641.58),(2004,3676.21),(2005,3706.25),(2006,3731.41\ ),(2007,3751.42),(2008,3766.07),(2009,3775.24),(2010,3778.86),(2011,3776.96),(2012,\ 3769.56),(2013,3756.02),(2014,3735.73),(2015,3708.45),(2016,3672.29),(2017,3621.03)\ ,(2018,3554.53),(2019,3472.85),(2020,3377.15),(2021,3269.46),(2022,3152.43),(2023,3029.07\ ),(2024,2902.39),(2025,2775.22),(2026,2649.98),(2027,2528.6),(2028,2412.5),(2029,2302.57\ ),(2030,2199.24),(2031,2102.59),(2032,2012.4),(2033,1928.26),(2034,1849.64),(2035,1775.94\ ),(2036,1705.9),(2037,1639),(2038,1574.79),(2039,1512.89),(2040,1453.04),(2041,1395.04\ ),(2042,1338.77),(2043,1284.12),(2044,1231.05),(2045,1179.51),(2046,1129.49),(2047,\ 1080.95),(2048,1033.89),(2049,988.283),(2050,939.916),(2051,888.983),(2052,838.921)\ ,(2053,790.425),(2054,743.889),(2055,699.498),(2056,657.297),(2057,617.242),(2058,579.24\ ),(2059,543.177),(2060,508.93),(2061,476.381),(2062,445.423),(2063,415.961),(2064,387.915\ ),(2065,361.216),(2066,335.808),(2067,311.643),(2068,288.683),(2069,266.895),(2070,\ 246.251),(2071,226.726),(2072,208.297),(2073,190.943),(2074,174.638),(2075,159.36),\ (2076,145.082),(2077,131.775),(2078,119.409),(2079,107.95),(2080,97.3636),(2081,87.6112\ ),(2082,78.6537),(2083,70.4503),(2084,62.9592),(2085,56.1382),(2086,49.9448),(2087,\ 44.3368),(2088,39.2727),(2089,34.7122),(2090,30.6158),(2091,26.9459),(2092,23.6663)\ ,(2093,20.743),(2094,18.1435),(2095,15.8376),(2096,13.797),(2097,11.9953),(2098,10.4082\ ),(2099,9.01332),(2100,7.79015)) ~ MToe/Year ~ | "PE coal extraction de Castro PhD - Scen II"( [(0,0)-(10,10)],(1985,2081.44),(1986,2135.51),(1987,2188.27),(1988,2239.78),(1989,2290.12\ ),(1990,2339.37),(1991,2387.58),(1992,2434.81),(1993,2481.08),(1994,2526.43),(1995,\ 2570.82),(1996,2614.21),(1997,2656.54),(1998,2697.73),(1999,2737.64),(2000,2776.16)\ ,(2001,2813.12),(2002,2848.39),(2003,2881.79),(2004,2913.19),(2005,2942.43),(2006,2970.14\ ),(2007,2996.14),(2008,3020.47),(2009,3043.2),(2010,3064.45),(2011,3084.36),(2012,3103.16\ ),(2013,3121.08),(2014,3138.41),(2015,3155.49),(2016,3171.11),(2017,3180.04),(2018,\ 3181.73),(2019,3175.59),(2020,3161.8),(2021,3141.21),(2022,3115.28),(2023,3085.91),\ (2024,3055.2),(2025,3025.33),(2026,2998.72),(2027,2977.04),(2028,2961.66),(2029,2953.52\ ),(2030,2953.18),(2031,2960.78),(2032,2976.17),(2033,2998.94),(2034,3028.5),(2035,3064.18\ ),(2036,3101.34),(2037,3138.56),(2038,3174.51),(2039,3208.26),(2040,3239.24),(2041,\ 3267.14),(2042,3291.87),(2043,3313.47),(2044,3332.03),(2045,3347.68),(2046,3360.5),\ (2047,3370.53),(2048,3377.77),(2049,3382.15),(2050,3369.61),(2051,3346.49),(2052,3321.23\ ),(2053,3294.99),(2054,3268.1),(2055,3240.42),(2056,3211.63),(2057,3181.37),(2058,3149.3\ ),(2059,3115.17),(2060,3078.78),(2061,3040.04),(2062,2998.94),(2063,2955.52),(2064,\ 2909.85),(2065,2862.1),(2066,2812.42),(2067,2761.01),(2068,2708.07),(2069,2653.84),\ (2070,2598.53),(2071,2542.37),(2072,2485.58),(2073,2428.5),(2074,2374.08),(2075,2323.46\ ),(2076,2276.45),(2077,2232.72),(2078,2191.9),(2079,2153.67),(2080,2117.71),(2081,2083.74\ ),(2082,2051.52),(2083,2020.82),(2084,1991.45),(2085,1963.21),(2086,1935.96),(2087,\ 1909.56),(2088,1883.85),(2089,1858.74),(2090,1834.13),(2091,1809.91),(2092,1786.01)\ ,(2093,1762.35),(2094,1738.88),(2095,1715.54),(2096,1692.29),(2097,1669.09),(2098,1645.91\ ),(2099,1622.73),(2100,1599.53)) ~ MToe/Year ~ Primary energy (Add "Energía perdida" to the net energy extraction in the \ original model). | "Net gas extraction de Castro PhD - Scen I"( [(0,0)-(10,10)],(1985,1378.15),(1986,1422.43),(1987,1466.37),(1988,1509.97),(1989,1553.27\ ),(1990,1596.27),(1991,1639),(1992,1681.45),(1993,1723.6),(1994,1765.43),(1995,1806.88\ ),(1996,1847.87),(1997,1888.31),(1998,1928.08),(1999,1967.04),(2000,2005.02),(2001,\ 2041.85),(2002,2077.35),(2003,2111.34),(2004,2143.61),(2005,2174.01),(2006,2202.36)\ ,(2007,2228.55),(2008,2252.45),(2009,2274),(2010,2293.18),(2011,2310),(2012,2324.5)\ ,(2013,2336.78),(2014,2346.97),(2015,2355.23),(2016,2360.56),(2017,2358.93),(2018,2349.91\ ),(2019,2333.02),(2020,2308.36),(2021,2276.56),(2022,2238.66),(2023,2196.02),(2024,\ 2150.19),(2025,2102.72),(2026,2055.42),(2027,2009.48),(2028,1965.96),(2029,1925.6),\ (2030,1888.94),(2031,1856.22),(2032,1827.53),(2033,1802.76),(2034,1781.69),(2035,1764.05\ ),(2036,1748.05),(2037,1733.15),(2038,1718.83),(2039,1704.69),(2040,1690.47),(2041,\ 1676.02),(2042,1661.3),(2043,1646.32),(2044,1631.17),(2045,1615.96),(2046,1598.98),\ (2047,1581.36),(2048,1563.41),(2049,1545.42),(2050,1521.06),(2051,1491.54),(2052,1462.02\ ),(2053,1433.79),(2054,1407.58),(2055,1383.71),(2056,1362.23),(2057,1342.98),(2058,\ 1325.69),(2059,1310.03),(2060,1295.68),(2061,1282.28),(2062,1269.52),(2063,1257.12)\ ,(2064,1244.82),(2065,1232.39),(2066,1219.62),(2067,1206.36),(2068,1192.45),(2069,1177.78\ ),(2070,1162.23),(2071,1145.74),(2072,1128.25),(2073,1109.71),(2074,1090.12),(2075,\ 1069.47),(2076,1047.78),(2077,1025.09),(2078,1001.45),(2079,976.929),(2080,951.611)\ ,(2081,925.587),(2082,898.96),(2083,871.837),(2084,844.332),(2085,816.56),(2086,788.637\ ),(2087,760.675),(2088,732.784),(2089,705.067),(2090,677.624),(2091,650.543),(2092,\ 623.906),(2093,597.787),(2094,572.25),(2095,547.351),(2096,523.135),(2097,499.642),\ (2098,476.902),(2099,454.936),(2100,433.76)) ~ MToe/Year ~ | "PE gas extraction de Castro PhD - Scen II"( [(0,0)-(10,10)],(1985,1511.25),(1986,1560.28),(1987,1609),(1988,1657.46),(1989,1705.67\ ),(1990,1753.67),(1991,1801.48),(1992,1849.09),(1993,1896.51),(1994,1943.7),(1995,1990.62\ ),(1996,2037.18),(1997,2083.29),(1998,2128.84),(1999,2173.66),(2000,2217.6),(2001,2260.46\ ),(2002,2302.05),(2003,2342.18),(2004,2380.64),(2005,2417.18),(2006,2452.25),(2007,\ 2485.65),(2008,2517.3),(2009,2547.21),(2010,2575.39),(2011,2601.9),(2012,2626.83),(\ 2013,2650.34),(2014,2672.6),(2015,2693.85),(2016,2713.04),(2017,2725.69),(2018,2731.16\ ),(2019,2728.82),(2020,2718.75),(2021,2701.64),(2022,2678.7),(2023,2651.58),(2024,2622.12\ ),(2025,2592.25),(2026,2564.02),(2027,2538.98),(2028,2518.29),(2029,2502.75),(2030,\ 2492.79),(2031,2488.48),(2032,2489.57),(2033,2495.59),(2034,2505.9),(2035,2519.76),\ (2036,2533.25),(2037,2544.98),(2038,2553.75),(2039,2558.7),(2040,2559.31),(2041,2555.33\ ),(2042,2546.69),(2043,2533.45),(2044,2515.76),(2045,2493.79),(2046,2467.71),(2047,\ 2437.67),(2048,2403.82),(2049,2366.26),(2050,2315.78),(2051,2256.66),(2052,2195.62)\ ,(2053,2133.79),(2054,2071.61),(2055,2009.2),(2056,1946.54),(2057,1883.58),(2058,1820.32\ ),(2059,1756.81),(2060,1693.17),(2061,1629.56),(2062,1566.17),(2063,1503.21),(2064,\ 1440.92),(2065,1379.52),(2066,1319.21),(2067,1260.2),(2068,1202.66),(2069,1146.75),\ (2070,1092.58),(2071,1040.26),(2072,989.855),(2073,941.438),(2074,895.994),(2075,853.858\ ),(2076,814.762),(2077,778.406),(2078,744.501),(2079,712.786),(2080,683.028),(2081,\ 655.029),(2082,628.61),(2083,603.618),(2084,579.92),(2085,557.398),(2086,535.948),(\ 2087,515.482),(2088,495.919),(2089,477.189),(2090,459.233),(2091,441.995),(2092,425.428\ ),(2093,409.491),(2094,394.147),(2095,379.364),(2096,365.113),(2097,351.369),(2098,\ 338.109),(2099,325.314),(2100,312.966)) ~ MToe/Year ~ Primary energy (Add "Energía perdida" to the net energy extraction in the \ original model). | "Net gas extraction de Castro PhD - Scen III"( [(0,0)-(10,10)],(1985,1378.15),(1986,1422.43),(1987,1466.37),(1988,1509.97),(1989,1553.27\ ),(1990,1596.27),(1991,1639),(1992,1681.45),(1993,1723.6),(1994,1765.43),(1995,1806.88\ ),(1996,1847.87),(1997,1888.31),(1998,1928.08),(1999,1967.04),(2000,2005.02),(2001,\ 2041.85),(2002,2077.35),(2003,2111.34),(2004,2143.61),(2005,2174.01),(2006,2202.36)\ ,(2007,2228.55),(2008,2252.45),(2009,2274),(2010,2293.18),(2011,2310),(2012,2324.47\ ),(2013,2336.18),(2014,2344.72),(2015,2349.88),(2016,2350.38),(2017,2342.04),(2018,\ 2324.36),(2019,2296.96),(2020,2260.1),(2021,2214.64),(2022,2161.88),(2023,2103.47),\ (2024,2041.17),(2025,1976.72),(2026,1911.72),(2027,1847.53),(2028,1785.2),(2029,1725.49\ ),(2030,1668.87),(2031,1615.53),(2032,1565.49),(2033,1518.59),(2034,1474.56),(2035,\ 1433.08),(2036,1393.24),(2037,1354.7),(2038,1317.14),(2039,1280.29),(2040,1243.98),\ (2041,1208.07),(2042,1172.48),(2043,1137.16),(2044,1102.09),(2045,1067.27),(2046,1032.71\ ),(2047,998.441),(2048,964.476),(2049,930.845),(2050,893.625),(2051,852.817),(2052,\ 811.701),(2053,771.01),(2054,731.211),(2055,692.579),(2056,655.254),(2057,619.284),\ (2058,584.664),(2059,551.358),(2060,519.318),(2061,488.491),(2062,458.831),(2063,430.297\ ),(2064,402.855),(2065,376.484),(2066,351.166),(2067,326.892),(2068,303.655),(2069,\ 281.454),(2070,260.289),(2071,240.158),(2072,221.061),(2073,202.995),(2074,185.952)\ ,(2075,169.922),(2076,154.893),(2077,140.845),(2078,127.756),(2079,115.6),(2080,104.347\ ),(2081,93.9612),(2082,84.4072),(2083,75.6455),(2084,67.6349),(2085,60.3331),(2086,\ 53.697),(2087,47.6834),(2088,42.2492),(2089,37.3523),(2090,32.9516),(2091,29.0072),\ (2092,25.481),(2093,22.3367),(2094,19.5399),(2095,17.0583),(2096,14.8618),(2097,12.922\ ),(2098,11.2131),(2099,9.71091),(2100,8.39349)) ~ MToe/Year ~ | "Net coal extraction de Castro PhD - Scen III"( [(0,0)-(10,10)],(1985,1945.63),(1986,1995.96),(1987,2045.03),(1988,2092.89),(1989,2139.62\ ),(1990,2185.28),(1991,2229.93),(1992,2273.61),(1993,2316.36),(1994,2358.19),(1995,\ 2399.06),(1996,2438.96),(1997,2477.8),(1998,2515.5),(1999,2551.95),(2000,2587.03),(\ 2001,2620.58),(2002,2652.48),(2003,2682.56),(2004,2710.7),(2005,2736.76),(2006,2760.66\ ),(2007,2782.31),(2008,2801.7),(2009,2818.82),(2010,2833.73),(2011,2846.52),(2012,2857.31\ ),(2013,2865.65),(2014,2871.1),(2015,2873.47),(2016,2871.23),(2017,2859.31),(2018,2837.16\ ),(2019,2804.26),(2020,2760.86),(2021,2707.91),(2022,2646.88),(2023,2579.6),(2024,2508.07\ ),(2025,2434.29),(2026,2360.07),(2027,2286.98),(2028,2216.23),(2029,2148.71),(2030,\ 2084.94),(2031,2025.17),(2032,1969.39),(2033,1917.4),(2034,1868.88),(2035,1823.41),\ (2036,1779.85),(2037,1737.75),(2038,1696.69),(2039,1656.32),(2040,1616.38),(2041,1576.69\ ),(2042,1537.11),(2043,1497.56),(2044,1458),(2045,1418.41),(2046,1378.78),(2047,1339.14\ ),(2048,1299.51),(2049,1259.91),(2050,1215.03),(2051,1164.71),(2052,1113.39),(2053,\ 1062.05),(2054,1011.37),(2055,961.747),(2056,913.409),(2057,866.46),(2058,820.93),(\ 2059,776.805),(2060,734.051),(2061,692.63),(2062,652.506),(2063,613.653),(2064,576.054\ ),(2065,539.706),(2066,504.611),(2067,470.782),(2068,438.236),(2069,406.994),(2070,\ 377.077),(2071,348.507),(2072,321.3),(2073,295.471),(2074,271.027),(2075,247.969),(\ 2076,226.292),(2077,205.981),(2078,187.015),(2079,169.365),(2080,152.995),(2081,137.864\ ),(2082,123.924),(2083,111.123),(2084,99.4056),(2085,88.714),(2086,78.9881),(2087,70.1672\ ),(2088,62.1905),(2089,54.9978),(2090,48.5302),(2091,42.7303),(2092,37.5432),(2093,\ 32.916),(2094,28.7988),(2095,25.1446),(2096,21.9093),(2097,19.0516),(2098,16.5334),\ (2099,14.3195),(2100,12.3777)) ~ MToe/Year ~ | "Net coal extraction de Castro PhD - Scen I"( [(0,0)-(10,10)],(1985,1378.15),(1986,1422.43),(1987,1466.37),(1988,1509.97),(1989,1553.27\ ),(1990,1596.27),(1991,1639),(1992,1681.45),(1993,1723.6),(1994,1765.43),(1995,1806.88\ ),(1996,1847.87),(1997,1888.31),(1998,1928.08),(1999,1967.04),(2000,2005.02),(2001,\ 2041.85),(2002,2077.35),(2003,2111.34),(2004,2143.61),(2005,2174.01),(2006,2202.36)\ ,(2007,2228.55),(2008,2252.45),(2009,2274),(2010,2293.18),(2011,2310),(2012,2324.5)\ ,(2013,2336.78),(2014,2346.97),(2015,2355.23),(2016,2360.56),(2017,2358.93),(2018,2349.91\ ),(2019,2333.02),(2020,2308.36),(2021,2276.56),(2022,2238.66),(2023,2196.02),(2024,\ 2150.19),(2025,2102.72),(2026,2055.42),(2027,2009.48),(2028,1965.96),(2029,1925.6),\ (2030,1888.94),(2031,1856.22),(2032,1827.53),(2033,1802.76),(2034,1781.69),(2035,1764.05\ ),(2036,1748.05),(2037,1733.15),(2038,1718.83),(2039,1704.69),(2040,1690.47),(2041,\ 1676.02),(2042,1661.3),(2043,1646.32),(2044,1631.17),(2045,1615.96),(2046,1598.98),\ (2047,1581.36),(2048,1563.41),(2049,1545.42),(2050,1521.06),(2051,1491.54),(2052,1462.02\ ),(2053,1433.79),(2054,1407.58),(2055,1383.71),(2056,1362.23),(2057,1342.98),(2058,\ 1325.69),(2059,1310.03),(2060,1295.68),(2061,1282.28),(2062,1269.52),(2063,1257.12)\ ,(2064,1244.82),(2065,1232.39),(2066,1219.62),(2067,1206.36),(2068,1192.45),(2069,1177.78\ ),(2070,1162.23),(2071,1145.74),(2072,1128.25),(2073,1109.71),(2074,1090.12),(2075,\ 1069.47),(2076,1047.78),(2077,1025.09),(2078,1001.45),(2079,976.929),(2080,951.611)\ ,(2081,925.587),(2082,898.96),(2083,871.837),(2084,844.332),(2085,816.56),(2086,788.637\ ),(2087,760.675),(2088,732.784),(2089,705.067),(2090,677.624),(2091,650.543),(2092,\ 623.906),(2093,597.787),(2094,572.25),(2095,547.351),(2096,523.135),(2097,499.642),\ (2098,476.902),(2099,454.936),(2100,433.76)) ~ MToe/Year ~ | "TNES de Castro PhD - Scen III"( [(0,0)-(10,10)],(1985,7173.13),(1986,7368.39),(1987,7560.95),(1988,7750.95),(1989,7938.54\ ),(1990,8123.85),(1991,8306.94),(1992,8487.87),(1993,8666.6),(1994,8843.01),(1995,9016.91\ ),(1996,9188),(1997,9355.9),(1998,9520.11),(1999,9680.06),(2000,9835.12),(2001,9984.57\ ),(2002,10127.7),(2003,10263.7),(2004,10391.9),(2005,10511.6),(2006,10622.1),(2007,\ 10723.1),(2008,10814.1),(2009,10894.8),(2010,10965.4),(2011,11025.8),(2012,11075),(\ 2013,11109.9),(2014,11131.5),(2015,11139.1),(2016,11127.4),(2017,11079.5),(2018,10993.9\ ),(2019,10869.3),(2020,10707.1),(2021,10511.3),(2022,10287.5),(2023,10042.6),(2024,\ 9783.87),(2025,9518.5),(2026,9252.88),(2027,8992.4),(2028,8741.21),(2029,8502.22),(\ 2030,8277.14),(2031,8066.69),(2032,7870.72),(2033,7688.5),(2034,7518.87),(2035,7360.42\ ),(2036,7209.45),(2037,7064.52),(2038,6924.25),(2039,6787.58),(2040,6653.67),(2041,\ 6521.96),(2042,6392.02),(2043,6263.61),(2044,6136.56),(2045,6010.8),(2046,5886.31),\ (2047,5763.1),(2048,5641.19),(2049,5520.62),(2050,5379.15),(2051,5222.66),(2052,5064.42\ ),(2053,4907.35),(2054,4753.31),(2055,4603.4),(2056,4458.15),(2057,4317.76),(2058,4182.18\ ),(2059,4051.27),(2060,3924.82),(2061,3802.6),(2062,3684.43),(2063,3570.15),(2064,3459.62\ ),(2065,3352.78),(2066,3249.57),(2067,3149.98),(2068,3054.03),(2069,2961.73),(2070,\ 2873.14),(2071,2788.3),(2072,2707.25),(2073,2630.04),(2074,2556.68),(2075,2487.21),\ (2076,2421.6),(2077,2359.84),(2078,2301.9),(2079,2247.7),(2080,2197.16),(2081,2150.2\ ),(2082,2106.69),(2083,2066.5),(2084,2029.49),(2085,1995.52),(2086,1964.42),(2087,1936.03\ ),(2088,1910.19),(2089,1886.73),(2090,1865.5),(2091,1846.32),(2092,1829.04),(2093,1813.51\ ),(2094,1799.59),(2095,1787.14),(2096,1776.03),(2097,1766.14),(2098,1757.35),(2099,\ 1749.56),(2100,1742.67)) ~ MToe/Year ~ Total net energy supply scenario III. | "Primary coal extraction de Castro PhD - Scen 'madcoal'"( [(0,0)-(10,10)],(1985,2058.92),(1986,2092.27),(1987,2125.72),(1988,2159.47),(1989,2193.76\ ),(1990,2228.81),(1991,2264.86),(1992,2302.13),(1993,2340.84),(1994,2381.18),(1995,\ 2423.34),(1996,2467.47),(1997,2513.71),(1998,2562.15),(1999,2612.87),(2000,2665.92)\ ,(2001,2721.31),(2002,2779.03),(2003,2839.06),(2004,2901.33),(2005,2965.74),(2006,3032.57\ ),(2007,3101.67),(2008,3172.97),(2009,3246.4),(2010,3321.9),(2011,3399.43),(2012,3478.96\ ),(2013,3560.51),(2014,3644.12),(2015,3729.86),(2016,3816.11),(2017,3897.75),(2018,\ 3974.81),(2019,4046.62),(2020,4112.97),(2021,4174.06),(2022,4230.44),(2023,4282.94)\ ,(2024,4332.57),(2025,4380.4),(2026,4427.69),(2027,4475.38),(2028,4524.25),(2029,4574.94\ ),(2030,4627.89),(2031,4683.41),(2032,4741.63),(2033,4802.57),(2034,4866.15),(2035,\ 4932.23),(2036,4997.04),(2037,5059.9),(2038,5120.05),(2039,5176.96),(2040,5230.21),\ (2041,5279.47),(2042,5324.46),(2043,5364.9),(2044,5400.52),(2045,5431.05),(2046,5456.18\ ),(2047,5475.61),(2048,5489.04),(2049,5496.15),(2050,5485.53),(2051,5462.41),(2052,\ 5433),(2053,5397.99),(2054,5357.58),(2055,5311.76),(2056,5260.45),(2057,5203.57),(2058\ ,5141.1),(2059,5073.11),(2060,4999.72),(2061,4921.11),(2062,4837.56),(2063,4749.39)\ ,(2064,4656.95),(2065,4560.64),(2066,4460.9),(2067,4358.16),(2068,4252.9),(2069,4145.55\ ),(2070,4036.59),(2071,3926.47),(2072,3815.6),(2073,3704.47),(2074,3595.32),(2075,3489.22\ ),(2076,3386.16),(2077,3286.01),(2078,3188.63),(2079,3093.87),(2080,3001.58),(2081,\ 2911.63),(2082,2823.91),(2083,2738.31),(2084,2654.74),(2085,2573.11),(2086,2493.35)\ ,(2087,2415.41),(2088,2339.22),(2089,2264.73),(2090,2191.92),(2091,2120.74),(2092,2051.16\ ),(2093,1983.17),(2094,1916.73),(2095,1851.84),(2096,1788.49),(2097,1726.66),(2098,\ 1666.35),(2099,1607.54),(2100,1550.24)) ~ MToe/Year ~ Primary energy (Add "Energía perdida" to the net energy extraction in the \ original model). | "TPES de Castro PhD - Scen II"( [(0,0)-(10,10)],(1985,7749.13),(1986,7949.4),(1987,8160.47),(1988,8369.05),(1989,8575.33\ ),(1990,8779.44),(1991,8981.51),(1992,9181.61),(1993,9379.72),(1994,9575.75),(1995,\ 9769.52),(1996,9960.74),(1997,10149),(1998,10333.8),(1999,10514.5),(2000,10690.6),(\ 2001,10861.1),(2002,11025.4),(2003,11182.6),(2004,11331.9),(2005,11472.6),(2006,11613.1\ ),(2007,11744),(2008,11868.2),(2009,11985.7),(2010,12096.8),(2011,12202),(2012,12302.1\ ),(2013,12398),(2014,12490.6),(2015,12581.3),(2016,12667.2),(2017,12730),(2018,12767.9\ ),(2019,12779.1),(2020,12764.7),(2021,12728.4),(2022,12676),(2023,12615),(2024,12553.4\ ),(2025,12499.7),(2026,12465.2),(2027,12453.3),(2028,12470.3),(2029,12519.7),(2030,\ 12603.9),(2031,12723.6),(2032,12878.5),(2033,13067.2),(2034,13287.8),(2035,13538.2)\ ,(2036,13805),(2037,14082.5),(2038,14367),(2039,14656.3),(2040,14949),(2041,15244.7\ ),(2042,15543.8),(2043,15846.7),(2044,16154.3),(2045,16467.1),(2046,16785.7),(2047,\ 17110),(2048,17439.8),(2049,17774.5),(2050,18113.2),(2051,18354.1),(2052,18638.3),(\ 2053,18929.8),(2054,19227.6),(2055,19529.3),(2056,19832.1),(2057,20132.6),(2058,20427.7\ ),(2059,20714.2),(2060,20989.2),(2061,21250.3),(2062,21494.8),(2063,21720.8),(2064,\ 21926.3),(2065,22109.7),(2066,22269.4),(2067,22404.4),(2068,22513.5),(2069,22596.2)\ ,(2070,22651.7),(2071,22679.9),(2072,22680.6),(2073,22664.5),(2074,22677.2),(2075,22706.2\ ),(2076,22750.8),(2077,22809.7),(2078,22881.7),(2079,22965.5),(2080,23059.8),(2081,\ 23163.4),(2082,23275.1),(2083,23393.7),(2084,23518),(2085,23647),(2086,23779.6),(2087\ ,23914.5),(2088,24050.7),(2089,24187.2),(2090,24322.8),(2091,24456.4),(2092,24587),\ (2093,24713.6),(2094,24835.1),(2095,24950.6),(2096,25059.1),(2097,25159.7),(2098,25251.6\ ),(2099,25333.9),(2100,25405.8)) ~ MToe/Year ~ TPES. (Add "Energía perdida" to the net energy extraction in the original \ model). | P nuclear scen 1= 0 ~ Dmnl ~ Si P_nuclear_1 = 0 --> escenario 1. \ P_nuclear_1 = 1 --> permito los escenarios 2 y 3 (PLEX) | "P nuclear 2-3"= 1 ~ Dmnl ~ Si P_nuclear = 0 --> escenario 2. \ P_nuclear = 1 --> escenario 3 (PLEX) | gCO2e per GTCO2e 4= 1/1000 ~ GTCO2e/gCO2e ~ /* Comprobar esta relación de unidades */ | gCO2e per GTCO2e 3= 1/1000 ~ GTCO2e/gCO2e ~ /* Comprobar esta relación de unidades */ | gCO2e per GTCO2e 0= 1/1000 ~ GTCO2e/gCO2e ~ /* Comprobar esta relación de unidades */ | gCO2e per GTCO2e 1= 1/1000 ~ GTCO2e/gCO2e ~ /* Comprobar esta relación de unidades */ | TWh per gCO2e 0= 0.02 ~ gCO2e/TWh ~ 17-22 gCO2e/KWh [Arvesen 2011] /*Comprobar esta relación*/ | ******************************************************** .Control ********************************************************~ Simulation Control Parameters | "FED Heat-com EJ"[scenarios]= "Required heat-com"[scenarios] ~ EJ ~ Final energy demand heat commercial. | Evol final energy intensity by sector and fuel[scenarios,sectors,final sources]= INTEG\ ( Increase of intensity due to energy a technology change TOP DOWN[scenarios,sectors,final sources\ ]+inertial rate energy intensity TOP DOWN[scenarios,sectors,final sources]+rate change intensity BOTTOM UP\ [scenarios,sectors,final sources]-Decrease of intensity due to energy a technology change TOP DOWN\ [scenarios,sectors,final sources], Initial energy intensity by fuel and sector 1995[sectors,final sources]) ~ EJ/Tdollars ~ This variable models the dynamic evolution of the matrix of energy intensities of \ the 35 economic sectors and the 5 types of final energy. It is a 35x5 \ matrix. The evolution of the intensities is considered to be due to two main \ effects: (1) the variation of the energy efficiency (flow due to the \ variable inertial rate energy intensity) and (2) the change of one type of \ final energy by another, As a consequence of a technological change (flow \ due to the variables Increase / decrease of intensity due to energy to \ technology change), as for example the change due to the electrification \ of the transport. | Total FE Elec demand TWh[scenarios]= (FE demand Elec consum TWh[scenarios])*(1+"share transm&distr elec losses" [scenarios]) ~ TWh/Year ~ Total final energy electricity demand (TWh). It includes new electric uses \ (e.g. EV & HEV) and electrical transmission and distribution losses. | Real demand by sector[scenarios,sectors]= MAX(0,IA Matrix [sectors,Agriculture Hunting Forestry and Fishing]*Real total output by sector\ [scenarios,Agriculture Hunting Forestry and Fishing ] + IA Matrix [sectors, Mining and Quarrying]*Real total output by sector[scenarios,\ Mining and Quarrying]+ IA Matrix [ sectors , Food Beverages and Tobacco]*Real total output by sector[scenarios,Food Beverages and Tobacco\ ]+IA Matrix [sectors, Textiles and Textile Products ]*Real total output by sector[scenarios,Textiles and Textile Products]+ IA Matrix [sectors\ , Leather Leather and Footwear ]*Real total output by sector[scenarios,Leather Leather and Footwear] + IA Matrix [sectors, Wood and Products of Woood and Cork]*Real total output by sector\ [scenarios,Wood and Products of Woood and Cork ] + IA Matrix [sectors, Pulp Paper Printing and Publishing]*Real total output by sector\ [scenarios,Pulp Paper Printing and Publishing ]+ IA Matrix [sectors, Coke Refined Petroleum and Nuclear Fuel]*Real total output by sector\ [scenarios,Coke Refined Petroleum and Nuclear Fuel ]+ IA Matrix [sectors, Chemicals and Chemical products]*Real total output by sector[\ scenarios,Chemicals and Chemical products ]+ IA Matrix [sectors, Rubber and Plastics]*Real total output by sector[scenarios,Rubber and Plastics\ ]+ IA Matrix [sectors , Other Non Metalic Mineral]*Real total output by sector[scenarios,Other Non Metalic Mineral\ ]+ IA Matrix [sectors, Basic Metals and Fabricated Metal]*Real total output by sector[scenarios,\ Basic Metals and Fabricated Metal]+ IA Matrix [sectors, Machinery Nec]*Real total output by sector[scenarios,Machinery Nec]+ IA Matrix\ [sectors, Electrical and Optical Equipment ]*Real total output by sector[scenarios,Electrical and Optical Equipment]+ IA Matrix\ [sectors, Transport Equipment]*Real total output by sector [scenarios,Transport Equipment]+ IA Matrix [sectors, Manufacturing Nec Recycling]*Real total output by sector\ [scenarios , Manufacturing Nec Recycling] + IA Matrix [sectors, Electricity Gas and Water Supply]\ *Real total output by sector[scenarios ,Electricity Gas and Water Supply] + IA Matrix [sectors, Construction]*Real total output by sector\ [scenarios,Construction ]+ IA Matrix [sectors, Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel ]*Real total output by sector[scenarios,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel ]+ IA Matrix [sectors, Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ]*Real total output by sector[ scenarios,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ] + IA Matrix [sectors, Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ]*Real total output by sector [scenarios,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ]+ IA Matrix [sectors, Hotels and Restaurants ]*Real total output by sector[scenarios,Hotels and Restaurants]+ IA Matrix [sectors,\ Inland Transport]*Real total output by sector [scenarios,Inland Transport]+ IA Matrix [sectors, Water Transport]*Real total output by sector\ [scenarios,Water Transport ]+ IA Matrix [sectors, Air Transport]*Real total output by sector[scenarios,Air Transport]+ IA Matrix\ [sectors, Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies ]*Real total output by sector[scenarios,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies ]+ IA Matrix [sectors,Post and Telecommunications]*Real total output by sector[scenarios,Post and Telecommunications\ ]+ IA Matrix [sectors , Financial Intermedation]*Real total output by sector[scenarios,Financial Intermedation\ ]+ IA Matrix [sectors, Real Estate Activities ]*Real total output by sector[scenarios,Real Estate Activities]+IA Matrix [sectors, \ Renting od MEq and Other Business Activities ]*Real total output by sector[scenarios,Renting od MEq and Other Business Activities\ ]+ IA Matrix [sectors, Public Admin and Defence Compulsory Social Security ]*Real total output by sector[scenarios,Public Admin and Defence Compulsory Social Security\ ]+ IA Matrix [sectors, Education ] *Real total output by sector[scenarios,Education]+ IA Matrix [sectors, Health and Social Work\ ]*Real total output by sector [scenarios,Health and Social Work] + IA Matrix [sectors, Other Community Social and Persona Services\ ]*Real total output by sector [scenarios,Other Community Social and Persona Services] + IA Matrix [sectors, Private Households with Employed Persons\ ] * Real total output by sector[scenarios,Private Households with Employed Persons]) ~ Mdollars ~ Real demand by sector (35 WIOD sectors). US$1995 | Required total output by sector[scenarios,sectors]= Leontief Matrix [sectors,Agriculture Hunting Forestry and Fishing]*Demand by sector[\ scenarios,Agriculture Hunting Forestry and Fishing ]+ Leontief Matrix [sectors, Mining and Quarrying]*Demand by sector[scenarios,Mining and Quarrying\ ]+ Leontief Matrix [ sectors , Food Beverages and Tobacco]*Demand by sector[scenarios,Food Beverages and Tobacco]\ +Leontief Matrix [sectors, Textiles and Textile Products ]*Demand by sector[scenarios,Textiles and Textile Products]+ Leontief Matrix [sectors\ , Leather Leather and Footwear]*Demand by sector [scenarios,Leather Leather and Footwear]+ Leontief Matrix [sectors, Wood and Products of Woood and Cork\ ]*Demand by sector [scenarios,Wood and Products of Woood and Cork]+ Leontief Matrix [sectors, Pulp Paper Printing and Publishing\ ]*Demand by sector [scenarios,Pulp Paper Printing and Publishing]+ Leontief Matrix [sectors, Coke Refined Petroleum and Nuclear Fuel\ ]*Demand by sector [scenarios,Coke Refined Petroleum and Nuclear Fuel]+ Leontief Matrix [sectors, Chemicals and Chemical products\ ]*Demand by sector [scenarios,Chemicals and Chemical products]+ Leontief Matrix [sectors, Rubber and Plastics\ ]*Demand by sector[scenarios, Rubber and Plastics ] + Leontief Matrix [sectors, Other Non Metalic Mineral]*Demand by sector[scenarios,\ Other Non Metalic Mineral]+ Leontief Matrix [sectors, Basic Metals and Fabricated Metal]*Demand by sector[scenarios,Basic Metals and Fabricated Metal\ ]+ Leontief Matrix [sectors, Machinery Nec]*Demand by sector[scenarios,Machinery Nec]+ Leontief Matrix\ [sectors, Electrical and Optical Equipment ]*Demand by sector[scenarios,Electrical and Optical Equipment]+ Leontief Matrix [sectors\ , Transport Equipment]*Demand by sector [scenarios,Transport Equipment]+ Leontief Matrix [sectors, Manufacturing Nec Recycling\ ]*Demand by sector[scenarios,Manufacturing Nec Recycling ] + Leontief Matrix [sectors, Electricity Gas and Water Supply]*Demand by sector[scenarios\ ,Electricity Gas and Water Supply ] + Leontief Matrix [sectors, Construction]*Demand by sector[scenarios,Construction]\ + Leontief Matrix [sectors, Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel ]*Demand by sector[scenarios,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel\ ]+ Leontief Matrix [sectors, Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles\ ]*Demand by sector[scenarios,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles ]+ Leontief Matrix [sectors, Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ]*Demand by sector [scenarios,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods\ ]+ Leontief Matrix [sectors, Hotels and Restaurants ]*Demand by sector[scenarios,Hotels and Restaurants]+ Leontief Matrix [sectors, Inland Transport\ ]*Demand by sector[scenarios ,Inland Transport]+ Leontief Matrix [sectors, Water Transport]*Demand by sector[scenarios\ ,Water Transport]+ Leontief Matrix [sectors, Air Transport]*Demand by sector[scenarios,Air Transport]+ Leontief Matrix\ [sectors, Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies ]*Demand by sector[scenarios,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ]+ Leontief Matrix [sectors,Post and Telecommunications]*Demand by sector[scenarios,Post and Telecommunications\ ]+ Leontief Matrix [sectors , Financial Intermedation]*Demand by sector[scenarios,Financial Intermedation]+ Leontief Matrix\ [sectors, Real Estate Activities ]*Demand by sector[scenarios,Real Estate Activities]+Leontief Matrix [sectors, Renting od MEq and Other Business Activities ]*Demand by sector[scenarios,Renting od MEq and Other Business Activities]+ Leontief Matrix\ [sectors, Public Admin and Defence Compulsory Social Security ]*Demand by sector[scenarios,Public Admin and Defence Compulsory Social Security]+ Leontief Matrix\ [sectors, Education ] *Demand by sector[scenarios,Education]+ Leontief Matrix [sectors, Health and Social Work\ ]*Demand by sector[scenarios,Health and Social Work ] + Leontief Matrix [sectors, Other Community Social and Persona Services]*Demand by sector\ [scenarios,Other Community Social and Persona Services ]+ Leontief Matrix [sectors, Private Households with Employed Persons]*Demand by sector\ [scenarios,Private Households with Employed Persons ] ~ Mdollars ~ Required total output by sector (35 WIOD sectors). US$1995 | rate change intensity BOTTOM UP[scenarios,Agriculture Hunting Forestry and Fishing,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Mining and Quarrying,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Food Beverages and Tobacco,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Textiles and Textile Products,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Leather Leather and Footwear,final sources]\ = 0 ~~| rate change intensity BOTTOM UP[scenarios,Wood and Products of Woood and Cork,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Pulp Paper Printing and Publishing,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Coke Refined Petroleum and Nuclear Fuel,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Chemicals and Chemical products,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Rubber and Plastics,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Other Non Metalic Mineral,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Basic Metals and Fabricated Metal,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Machinery Nec,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Electrical and Optical Equipment,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Transport Equipment,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Manufacturing Nec Recycling,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Electricity Gas and Water Supply,final sources\ ]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Construction,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Sale Maintenance and Repair of Motor Vehicles anda Motorcycles Retail Sale of fuel ,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Wholesale Trade and Commissions Trade Except of Motor vehicles and Motorcycles ,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Retail Trade Except of Motor Vehicles and Motorcycles Repair of Household goods ,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Hotels and Restaurants,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Inland Transport,final sources]= IF THEN ELSE( Activate BOTTOM UP method[scenarios,Inland Transport]=1,inland transport variation intensity\ [scenarios,final sources],0) ~~| rate change intensity BOTTOM UP[scenarios,Water Transport,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Air Transport,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies ,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Post and Telecommunications,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Financial Intermedation,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Real Estate Activities,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Renting od MEq and Other Business Activities\ ,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Public Admin and Defence Compulsory Social Security\ ,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Education,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Health and Social Work,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Other Community Social and Persona Services\ ,final sources]= 0 ~~| rate change intensity BOTTOM UP[scenarios,Private Households with Employed Persons,final sources\ ]= 0 ~ ~ | RURR unconv oil EJ[scenarios]= INTEG ( -extraction unconv oil EJ[scenarios]-Flow unconv oil left in ground[scenarios], URR unconv oil[scenarios]-cumulated unconv oil extraction to 1995*"separate conv and unconv oil?"\ [scenarios]) ~ EJ ~ RURR unconventional oil. | share liquids for final energy[scenarios]= ZIDZ( Required FED by liquids EJ[scenarios] , (PED liquids EJ[scenarios]-Other liquids required EJ\ [scenarios]) ) ~ Dmnl ~ Share of final energy vs primary energy for liquids. | PED liquids EJ[scenarios]= MAX(0,Required FED by liquids EJ[scenarios]+Other liquids required EJ[scenarios]+PE demand oil Elec plants EJ\ [scenarios ]+PED oil for Heat plants EJ[scenarios]+PED oil for CHP plants EJ[scenarios]+"PED liquids Heat-nc"\ [scenarios]) ~ EJ/Year ~ Primary energy demand of total liquids. | FED Heat liquids plants EJ[scenarios]= "FED Heat-com plants fossil fuels EJ"[scenarios]*share liquids fot heat plants[scenarios\ ] ~ EJ ~ Final energy demand of liquids to produce heat. | Real final energy by sector and fuel[scenarios,final sources,sectors]= Required final energy by sector and fuel[scenarios,final sources,sectors]*Energy scarcity feedback shortage coeff\ [scenarios,final sources]*CC impacts feedback shortage coeff[scenarios] ~ EJ ~ Real final energy to be used by economic sectors and fuel after accounting \ for energy scarcity and CC impacts. | hist var inlandT[scenarios,vehicleT]= 0 ~ Dmnl ~ Historical growth of alternative percentages of transport vehicles. For \ inland transport vehicles the initial percentages of vehicles are \ neglictible in 2015. | inland transport variation intensity[scenarios,electricity]= var I inland Elec[scenarios] ~~| inland transport variation intensity[scenarios,heat]= 0 ~~| inland transport variation intensity[scenarios,liquids]= var I inlandT liq[scenarios] ~~| inland transport variation intensity[scenarios,solids]= 0 ~~| inland transport variation intensity[scenarios,gases]= var I inlandT Gas[scenarios] ~ EJ/TS/yr ~ Variation of the energy intensity of inland transport | max unconv oil growth extraction[scenarios]= MAX(0, 1+(IF THEN ELSE(Selection constraint extraction unconv oil[scenarios]=1,(P constraint growth extraction unconv oil\ [scenarios ])*TIME STEP*scarcity conv oil stock[scenarios],("User-defined extraction growth unconv oil"\ (Time)*TIME STEP)))*abundance unconv oil2 [scenarios]) ~ Dmnl ~ Constraint to maximum annual unconventional gas extraction (%). | "FED Heat-com NRE EJ"[scenarios]= MAX("FED Heat-com after priorities EJ"[scenarios]-"Total FE real supply RES for heat-com EJ"\ [scenarios],0) ~ EJ ~ Demand of non renewable energy to produce commercial Heat (final energy). \ We give priority to RES. | real FE consumption by fuel[scenarios,electricity]= Total FE Elec consumption EJ[scenarios] ~~| real FE consumption by fuel[scenarios,heat]= Total FE Heat consumption EJ[scenarios] ~~| real FE consumption by fuel[scenarios,liquids]= real FE consumption liquids EJ[scenarios] ~~| real FE consumption by fuel[scenarios,solids]= real FE consumption solids EJ[scenarios] ~~| real FE consumption by fuel[scenarios,gases]= real FE consumption gases EJ[scenarios] ~ EJ ~ Real final energy consumption by fuel after accounting for energy availability. test2[scenarios]+0*Total FE Elec consumption EJ[scenarios] | Other liquids required EJ[scenarios]= Energy distr losses FF EJ[scenarios,liquids]+Transformation FF losses EJ[scenarios,liquids\ ]+"Non-energy use demand by final fuel EJ"[scenarios,liquids] ~ EJ ~ | FE Elec demand consum EJ[scenarios]= Required FED by fuel[scenarios,electricity] ~ EJ ~ Electricity consumption (EJ) | Required FED by liquids EJ[scenarios]= Required FED by fuel[scenarios,liquids] ~ EJ ~ Required final energy demand by liquids. | Real GFCF[scenarios,sectors]= Real demand by sector[scenarios,sectors]*(1-share consum goverment and inventories[sectors\ ])*"pct GFCF vs GFCF+HD"[scenarios,sectors] ~ Mdollars ~ Real Gross Fixed Capital Formation | Real Household demand[scenarios,sectors]= Real demand by sector[scenarios,sectors]*(1-share consum goverment and inventories[sectors\ ])*(1-"pct GFCF vs GFCF+HD"[scenarios,sectors]) ~ Mdollars ~ | extraction unconv oil EJ[scenarios]= MIN(IF THEN ELSE(RURR unconv oil EJ[scenarios]<0,0, IF THEN ELSE(Time>2012, IF THEN ELSE("separate conv and unconv oil?"[scenarios]=1, MIN(max extraction unconv oil\ [scenarios], max unconv oil growth extraction EJ [scenarios]),0), Historic unconv oil)),PED total oil EJ[scenarios]) ~ EJ/Year ~ Annual extraction of unconventional oil. MIN(IF THEN ELSE(RURR unconv oil EJ[scenarios]<0,0, IF THEN ELSE(Time<=2013, Historic unconv oil, IF THEN ELSE("separate conv and unconv oil?"[scenarios]=1, MIN(max extraction unconv \ oil[scenarios], max unconv oil growth extraction EJ [scenarios]),0))),PED total oil EJ[scenarios]) | Demand conv oil EJ[scenarios]= MAX(PED total oil EJ[scenarios]-extraction unconv oil EJ[scenarios], 0) ~ EJ/Year ~ Demand of conventional oil. It is assumed that conventional oil covers the \ rest of the liquids demand after accounting for the contributions from \ other liquids and unconventional oil. | max unconv oil growth extraction EJ[scenarios]= IF THEN ELSE(check liquids delayed 1yr[scenarios]<0, (1+"constrain liquids exogenous growth? delayed 1yr"\ [scenarios ])*extraction unconv oil delayed[scenarios],extraction unconv oil delayed[scenarios]\ *max unconv oil growth extraction[scenarios]) ~ EJ/Year ~ Constrained unconventional oil extraction growth (EJ/Year), i.e. maximum \ annual growth compatible with the constraint selected in the scenario. | FE demand Elec consum TWh[scenarios]= FE Elec demand consum EJ[scenarios]/EJ per TWh ~ TWh/Year ~ Electricity consumption (TWh) | "Total FED Heat-com EJ"[scenarios]= "FED Heat-com EJ"[scenarios]*(1+Share heat distribution losses) ~ EJ ~ Total commercial heat demand including distribution losses. | Real total output by fuel and sector[scenarios,final sources,sectors]= XIDZ(Real final energy by sector and fuel[scenarios,final sources,sectors], Final energy intensity by sector and fuel\ [scenarios,final sources,sectors], Required total output by sector[scenarios,sectors\ ]/1e+006)*1e+006 ~ Mdollars ~ Real total output by sector (35 WIOD sectors). US$1995 | Required final energy by sector and fuel[scenarios,final sources,sectors]= Required total output by sector[scenarios,sectors]*Final energy intensity by sector and fuel\ [scenarios,final sources,sectors]/1e+006 ~ EJ ~ Required final energy by sector and fuel (35 WIOD sectors & 5 final \ sources). | URR unconv oil[scenarios]= IF THEN ELSE("separate conv and unconv oil?"[scenarios]=1, IF THEN ELSE(choose extraction curve unconv oil[scenarios]=1, URR unconv oil BG Mohr15\ , IF THEN ELSE(choose extraction curve unconv oil[scenarios]=2, URR unconv oil Low Mohr15\ , IF THEN ELSE(choose extraction curve unconv oil[scenarios]=3, URR unconv oil High Mohr15\ , URR unconv oil User defined))), 0) ~ EJ ~ URR unconventional oil. | max extraction unconv gas[scenarios]= IF THEN ELSE(choose extraction curve unconv gas[scenarios]=1, table max extraction unconv gas BG Mohr15\ (Tot RURR unconv gas[scenarios]), IF THEN ELSE(choose extraction curve unconv gas[scenarios]=2, table max extraction unconv gas Low Mohr15\ (Tot RURR unconv gas[scenarios]), IF THEN ELSE(choose extraction curve unconv gas[scenarios]=3, table max extraction unconv gas High Mohr15 (Tot RURR unconv gas[scenarios]), table max extraction unconv gas User defined(Tot RURR unconv gas\ [scenarios])))) ~ EJ/Year ~ Maximum extraction curve selected for the simulations. | max extraction unconv oil[scenarios]= IF THEN ELSE(choose extraction curve unconv oil[scenarios]=1, table max extraction unconv oil BG Mohr15\ (Tot RURR unconv oil[scenarios]), IF THEN ELSE(choose extraction curve unconv oil[scenarios]=2, table max extraction unconv oil Low Mohr15\ (Tot RURR unconv oil[scenarios]), IF THEN ELSE(choose extraction curve unconv oil[scenarios]=3, table max extraction unconv oil High Mohr15\ (Tot RURR unconv oil[scenarios]), table max extraction unconv oil User defined(Tot RURR unconv oil\ [scenarios])) )) ~ EJ/Year ~ Maximum extraction curve selected for the simulations. | max extraction coal EJ[scenarios]= IF THEN ELSE(choose extraction coal curve[scenarios]=1, table max extraction coal Mohr2012 EJ\ (Tot RURR coal[scenarios]), IF THEN ELSE(choose extraction coal curve[scenarios]=2, table max extraction coal Low Mohr15\ (Tot RURR coal[scenarios]), IF THEN ELSE(choose extraction coal curve[scenarios]=3, table max extraction coal BG Mohr15\ (Tot RURR coal[scenarios]), IF THEN ELSE(choose extraction coal curve[scenarios]=4, table max extraction coal High Mohr15\ (Tot RURR coal[scenarios]), table max extraction coal User defined(Tot RURR coal[scenarios\ ]))))) ~ EJ/Year ~ Maximum extraction curve selected for the simulations. | max extraction conv gas EJ[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1, IF THEN ELSE(choose extraction conv gas curve[scenarios]=1, table max extraction conv gas BG Mohr15\ (Tot RURR conv gas[scenarios]), IF THEN ELSE(choose extraction conv gas curve[scenarios]=2, table max extraction conv gas Low Mohr15\ (Tot RURR conv gas[scenarios]), IF THEN ELSE(choose extraction conv gas curve[scenarios]=3, table max extraction conv gas High Mohr15\ (Tot RURR conv gas[scenarios]), table max extraction conv gas User defined(Tot RURR conv gas\ [scenarios])))), 0) ~ EJ/Year ~ Maximum extraction curve selected for the simulations. | FED Heat gas plants EJ[scenarios]= "FED Heat gas+coal EJ"[scenarios]*"share gas/(coal+gas) for heat plants" ~ EJ ~ Final energy demand of gas to produce heat. | FED Heat coal plants EJ[scenarios]= "FED Heat gas+coal EJ"[scenarios]*"share coal(coal+gas) for heat plants" ~ EJ ~ Final energy demand of coal to produce heat. | URR coal[scenarios]= IF THEN ELSE("unlimited NRE?"[scenarios]=1,URR coal unlimited, IF THEN ELSE("unlimited coal?"[scenarios]=1,URR coal unlimited, IF THEN ELSE(choose extraction coal curve[scenarios]=1, URR coal Mohr2012 EJ, IF THEN ELSE(choose extraction coal curve[scenarios]=2, URR coal Low Mohr15, IF THEN ELSE(choose extraction coal curve[scenarios]=3, URR coal BG Mohr15, IF THEN ELSE(choose extraction coal curve[scenarios]=4, URR coal High15, URR coal User defined EJ\ )))))) ~ EJ ~ Ultimately Recoverable Resources (URR) associated to the selected \ depletion curve. | URR conv gas[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1, IF THEN ELSE("unlimited NRE?"[scenarios]=1,URR conv gas unlimited, IF THEN ELSE("unlimited gas?"[scenarios]=1,URR conv gas unlimited, IF THEN ELSE(choose extraction conv gas curve[scenarios]=1, URR conv gas BG Mohr15, IF THEN ELSE(choose extraction conv gas curve[scenarios]=2, URR conv gas Low Mohr15,\ IF THEN ELSE(choose extraction conv gas curve[scenarios]=3, URR conv gas High Mohr15\ , URR conv gas User defined))))) , 0) ~ EJ ~ Ultimately Recoverable Resources (URR) associated to the selected \ depletion curve. | Real demand by sector delayed[scenarios,sectors]= DELAY FIXED(Real demand by sector[scenarios,sectors], 1, 10) ~ $ ~ | Required final energy other transport[scenarios,final sources]= Required final energy by sector and fuel[scenarios,final sources,Other Supporting and Auxiliary Transport Activities Activities of Travel Agencies\ ] ~ EJ/Year ~ Other Supporting and Auxiliary Transport Activities Activities of Travel \ Agencies Final Energy | PED gases for Heat plants EJ[scenarios]= FED Heat gas plants EJ[scenarios]/efficiency gases for heat plants ~ EJ/Year ~ Primary energy demand of gas (EJ) for heat consumption (including \ generation losses). | PED oil for Heat plants EJ[scenarios]= FED Heat liquids plants EJ[scenarios]/efficiency liquids for heat plants ~ EJ/Year ~ Primary energy demand of oil (EJ) for heat consumption (including \ generation losses). | PED coal for Heat plants EJ[scenarios]= FED Heat coal plants EJ[scenarios]/efficiency coal for heat plants ~ EJ/Year ~ Primary energy demand of coal (EJ) for heat consumption (including \ generation losses). | Real total output by sector[scenarios,sectors]= MIN(Real total output by fuel and sector[scenarios,electricity,sectors], MIN(Real total output by fuel and sector\ [scenarios,heat,sectors], MIN(Real total output by fuel and sector[scenarios,liquids\ ,sectors], MIN(Real total output by fuel and sector[scenarios,gases,sectors], Real total output by fuel and sector\ [scenarios,solids,sectors])))) ~ Mdollars ~ Real total output by sector (35 WIOD sectors). US$1995. We assume the most \ limiting resources. | Required final energy air transport[scenarios,final sources]= Required final energy by sector and fuel[scenarios,final sources,Air Transport] ~ EJ/Year ~ Air transport final Energy EJ | Required final energy inland transport[scenarios,final sources]= Required final energy by sector and fuel[scenarios,final sources,Inland Transport] ~ EJ/Year ~ Inland transport final energy | Required final energy water transport[scenarios,final sources]= Required final energy by sector and fuel[scenarios,final sources,Water Transport] ~ EJ/Year ~ Water transport final energy EJ | table max extraction conv gas Low Mohr15= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '141' , 'E142') ~ EJ/Year ~ | table max extraction conv gas User defined( GET XLS LOOKUPS('inputs.xlsx', 'User defined', '146', 'E147')) ~ EJ/Year ~ | table max extraction total gas BG Mohr12= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '155' , 'E156') ~ EJ/Year ~ | table max extraction total gas Laherrère10= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '153' , 'E154') ~ EJ/Year ~ | table max extraction total gas User defined= GET XLS LOOKUPS('inputs.xlsx', 'User defined', '150', 'E151') ~ EJ/Year ~ | table max extraction unconv gas BG Mohr15( GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '147' , 'E148')) ~ EJ/Year ~ | table max extraction unconv gas High Mohr15( GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '149' , 'E150')) ~ EJ/Year ~ | table max extraction unconv gas Low Mohr15( GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '151' , 'E152')) ~ EJ/Year ~ | table max extraction unconv gas User defined( GET XLS LOOKUPS('inputs.xlsx', 'User defined', '148', 'E149')) ~ EJ/Year ~ | table max extraction coal BG Mohr15( GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '162' , 'E163')) ~ EJ/Year ~ | table max extraction coal High Mohr15= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '164' , 'E165') ~ EJ/Year ~ | URR coal BG Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C162') ~ EJ ~ | URR coal User defined EJ= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C153') ~ EJ ~ | URR conv gas BG Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C145') ~ EJ ~ | URR conv gas High Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C143') ~ EJ ~ | URR conv gas Low Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C141') ~ EJ ~ | URR conv gas User defined= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C146') ~ EJ ~ | URR total gas Laherrère10= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C153') ~ EJ ~ | URR total gas Mohr12 BG= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C155') ~ EJ ~ | URR total gas User defined= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C150') ~ EJ ~ | URR unconv gas[scenarios]= IF THEN ELSE("separate conv and unconv gas?"[scenarios]=1, IF THEN ELSE(choose extraction curve unconv gas[scenarios]=1, URR unconv gas BG Mohr15\ , IF THEN ELSE(choose extraction curve unconv gas[scenarios]=2, URR unconv gas Low Mohr15\ , IF THEN ELSE(choose extraction curve unconv gas[scenarios]=3, URR unconv gas High Mohr15\ , URR unconv gas User defined) )), 0) ~ EJ ~ RURR unconventional gas. | URR unconv gas BG Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C147') ~ EJ ~ | table max extraction coal Low Mohr15= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '160' , 'E161') ~ EJ/Year ~ | table max extraction coal Mohr2012 EJ( GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '158' , 'E159')) ~ EJ/Year ~ Curva [Mohr2012] High Case. update de [Mohr2009] | table max extraction coal User defined( GET XLS LOOKUPS('inputs.xlsx', 'User defined', '153', 'E154')) ~ EJ/Year ~ | table max extraction conv gas BG Mohr15( GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '145' , 'E146')) ~ EJ/Year ~ | table max extraction conv gas High Mohr15= GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '143' , 'E144') ~ EJ/Year ~ | URR unconv gas Low Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C151') ~ EJ ~ | URR coal High15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C164') ~ EJ ~ | URR coal Low Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C160') ~ EJ ~ | URR unconv gas High Mohr15= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C149') ~ EJ ~ | URR unconv gas User defined= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C148') ~ EJ ~ | URR coal Mohr2012 EJ= GET XLS CONSTANTS('inputs.xlsx', 'Constants', 'C158') ~ EJ ~ | table max extraction unconv oil BG Mohr15( GET XLS LOOKUPS( 'inputs.xlsx', 'Constants', '132' , 'E133')) ~ EJ/Year ~ | Selection constraint extraction unconv oil[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'D80') ~~| Selection constraint extraction unconv oil[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'D80') ~~| Selection constraint extraction unconv oil[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'D80') ~~| Selection constraint extraction unconv oil[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'D80') ~~| Selection constraint extraction unconv oil[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'D80') ~~| Selection constraint extraction unconv oil[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'D80') ~ Dmnl ~ Selection of type of constraint to annual growth extraction of unconventional oil: 1= Constraint annual growth (%) 2= User defined as a function of time | Abundance electricity[scenarios]= IF THEN ELSE(Total FE Elec generation TWh[scenarios]>Total FE Elec demand TWh[scenarios\ ], 1, 1-ZIDZ( Total FE Elec demand TWh[scenarios]-Total FE Elec generation TWh[scenarios\ ] , Total FE Elec demand TWh[scenarios] )) ~ Dmnl ~ The parameter abundance varies between (1;0). Abundance=1 while the supply \ covers the demand; the closest to 0 indicates a higher divergence between \ supply and demand. | P constraint growth extraction unconv oil[BAU]= GET XLS CONSTANTS('inputs.xlsx', 'BAU', 'C80') ~~| P constraint growth extraction unconv oil[SCEN1]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN1', 'C80') ~~| P constraint growth extraction unconv oil[SCEN2]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN2', 'C80') ~~| P constraint growth extraction unconv oil[SCEN3]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN3', 'C80') ~~| P constraint growth extraction unconv oil[SCEN4]= GET XLS CONSTANTS('inputs.xlsx', 'SCEN4', 'C80') ~~| P constraint growth extraction unconv oil[User defined]= GET XLS CONSTANTS('inputs.xlsx', 'User defined', 'C80') ~ Dmnl ~ Constant constraint to annual extraction of unconventional oil. | extraction unconv oil delayed[scenarios]= DELAY FIXED ( extraction unconv oil EJ[scenarios], TIME STEP, 1.09) ~ EJ/Year ~ Extraction of unconventional oil delayed 1 year. Data from Mohr et al \ (2015) for 1989. | FINAL TIME = 2050 ~ Year ~ The final time for the simulation. | INITIAL TIME = 1995 ~ Year ~ The initial time for the simulation. | SAVEPER = TIME STEP ~ Year [0,?] ~ The frequency with which output is stored. | TIME STEP = 0.03125 ~ Year [0,?] ~ The time step for the simulation. | \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *Intro $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,745,180,182,44,3,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|20||0-0-0 MEDEAS-World model (v130) 12,2,0,745,416,229,25,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 Group of Energy, Economy and System Dynamics of the University of Valladolid, Spain. Contact: inigocapelll@gmail.com; ljmiguel@eii.uva.es 12,3,0,745,482,156,32,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||255-0-0 Advertisement: decreasing the resolution of the TIMESTEP may provoke that the model does not solve (Default value=0.03125) 12,4,0,745,373,36,11,8,7,0,0,-1,0,0,0 7-11-2017 12,5,0,745,292,259,58,8,135,0,16,-1,0,0,0,-1--1--1,0-0-0,|12|I|0-0-0 Iñigo Capellán-Pérez, Ignacio de Blas, Jaime Nieto, Carlos de Castro, Luis Javier Miguel, Margarita Mediavilla, Óscar Carpintero, Paula Rodrigo, Fernando Frechoso and Santiago Cáceres. D4.1 (D13) Global Model: MEDEAS-World Model and IOA implementation at global geographical level, 30-6-2017. MEDEAS H2020 project (http://www.medeas.eu/). \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *---- STRUCTURE ---- $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,746,145,147,18,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 (View intentionally left blank) \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *POP - Population #P $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Population,772,218,45,22,3,131,0,0,0,0,0,0 12,2,48,535,217,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(684,217)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(587,217)| 11,5,48,636,217,6,8,34,3,0,0,1,0,0,0 10,6,pop variation,636,236,42,11,40,3,0,0,-1,0,0,0 10,7,variation historic pop,729,324,47,19,8,3,0,0,0,0,0,0 10,8,P timeseries pop growth rate,254,335,65,22,8,131,0,0,0,0,0,0 1,9,7,6,1,0,0,0,0,64,0,-1--1--1,,1|(646,286)| 1,10,1,6,1,0,0,0,0,64,0,-1--1--1,,1|(707,270)| 10,11,Time,570,329,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,12,11,6,0,0,0,0,0,64,0,-1--1--1,,1|(598,288)| 10,13,initial population,797,174,40,16,8,131,0,0,0,0,0,0 1,14,13,1,0,0,0,0,0,128,1,-1--1--1,,1|(789,187)| 12,15,1049218,1083,298,236,170,3,188,0,0,1,0,0,0 Population 10,16,Historic pop,737,389,46,19,8,131,0,0,0,0,0,0 1,17,16,7,0,0,0,0,0,128,0,-1--1--1,,1|(734,363)| 1,18,11,7,0,0,0,0,0,128,0,-1--1--1,,1|(632,327)| 12,19,0,938,46,191,28,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Exogenous evolution of global population 10,20,select Population evolution input,422,152,54,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 10,21,P customized year pop evolution,231,220,62,19,8,131,0,0,0,0,0,0 10,22,P customized cte pop variation,227,268,66,19,8,3,0,0,0,0,0,0 10,23,Annual population growth rate,462,280,58,19,8,3,0,0,0,0,0,0 1,24,20,23,0,0,0,0,0,128,0,-1--1--1,,1|(439,209)| 1,25,8,23,0,0,0,0,0,128,0,-1--1--1,,1|(354,308)| 1,26,22,23,0,0,0,0,0,128,0,-1--1--1,,1|(341,273)| 1,27,21,23,0,0,0,0,0,128,0,-1--1--1,,1|(341,248)| 1,28,23,6,0,0,0,0,0,128,0,-1--1--1,,1|(550,257)| 1,29,11,23,0,0,0,0,0,128,0,-1--1--1,,1|(530,311)| 10,30,Pop SSP2,207,527,44,19,8,3,0,0,0,0,0,0 10,31,variation pop SSP2,332,497,52,19,8,3,0,0,0,0,0,0 1,32,30,31,0,0,0,0,0,128,0,-1--1--1,,1|(258,514)| 1,33,11,31,1,0,0,0,0,128,0,-1--1--1,,1|(489,418)| 10,34,variation pop SSPs,438,392,42,19,8,3,0,0,0,0,0,0 1,35,31,34,0,0,0,0,0,128,0,-1--1--1,,1|(379,449)| 1,36,34,23,0,0,0,0,0,128,0,-1--1--1,,1|(448,342)| 10,37,Pop SSP3,308,608,40,11,8,3,0,0,0,0,0,0 10,38,Pop SSP1,196,471,40,11,8,3,0,0,0,0,0,0 10,39,Pop SSP4,461,606,40,11,8,3,0,0,0,0,0,0 10,40,Pop SSP5,573,611,40,11,8,3,0,0,0,0,0,0 10,41,select pop SSPs,255,390,54,19,8,3,0,0,0,0,0,0 1,42,41,34,0,0,0,0,0,128,0,-1--1--1,,1|(345,390)| 10,43,variation pop SSP1,298,443,42,19,8,3,0,0,0,0,0,0 10,44,variation pop SSP3,360,551,42,19,8,3,0,0,0,0,0,0 10,45,variation pop SSP4,469,556,42,19,8,3,0,0,0,0,0,0 10,46,variation pop SSP5,577,554,42,19,8,3,0,0,0,0,0,0 1,47,38,43,0,0,0,0,0,128,0,-1--1--1,,1|(239,459)| 1,48,43,34,0,0,0,0,0,128,0,-1--1--1,,1|(361,419)| 1,49,37,44,0,0,0,0,0,128,0,-1--1--1,,1|(325,588)| 1,50,44,34,1,0,0,0,0,128,0,-1--1--1,,1|(411,477)| 1,51,39,45,0,0,0,0,0,128,0,-1--1--1,,1|(462,591)| 1,52,45,34,0,0,0,0,0,128,0,-1--1--1,,1|(454,480)| 1,53,40,46,0,0,0,0,0,128,0,-1--1--1,,1|(573,593)| 1,54,46,34,0,0,0,0,0,128,0,-1--1--1,,1|(512,478)| 1,55,11,45,0,0,0,0,0,128,0,-1--1--1,,1|(524,432)| 1,56,11,46,0,0,0,0,0,128,0,-1--1--1,,1|(572,430)| 1,57,11,43,1,0,0,0,0,128,0,-1--1--1,,1|(419,352)| 1,58,11,44,1,0,0,0,0,128,0,-1--1--1,,1|(495,446)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *DEM ECON - sectors & households #D,e $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,100,0 10,1,Demand by sector FD,1532,1023,40,20,3,3,0,0,0,0,0,0 12,2,48,1192,1027,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(1422,1027)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(1271,1027)| 11,5,48,1347,1027,6,8,34,3,0,0,1,0,0,0 10,6,variation demand flow FD,1347,1054,55,19,40,3,0,0,-1,0,0,0 10,7,Household demand,1736,805,40,20,3,3,0,0,0,0,0,0 12,8,48,1449,815,10,8,0,3,0,0,-1,0,0,0 1,9,11,7,4,0,0,22,0,0,0,-1--1--1,,1|(1642,815)| 1,10,11,8,100,0,0,22,0,0,0,-1--1--1,,1|(1517,815)| 11,11,48,1582,815,6,8,34,3,0,0,1,0,0,0 10,12,variation household demand,1582,842,61,19,40,3,0,0,-1,0,0,0 10,13,Gross fixed capital formation,1148,831,48,25,3,131,0,0,0,0,0,0 12,14,48,800,838,10,8,0,3,0,0,-1,0,0,0 1,15,17,13,4,0,0,22,0,0,0,-1--1--1,,1|(1030,838)| 1,16,17,14,100,0,0,22,0,0,0,-1--1--1,,1|(879,838)| 11,17,48,955,838,6,8,34,3,0,0,1,0,0,0 10,18,variation GFCF,955,857,50,11,40,3,0,0,-1,0,0,0 10,19,beta 2 lab,1353,707,32,11,8,3,0,0,0,0,0,0 10,20,Real demand,1187,553,51,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,21,capital share,1002,522,40,11,8,3,0,0,0,0,0,0 10,22,beta 1 cap,718,732,34,11,8,3,0,0,0,0,0,0 10,23,Real demand by sector,1754,1204,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,24,48,1536,1179,10,8,0,3,0,0,-1,0,0,0 1,25,27,24,4,0,0,22,0,0,0,-1--1--1,,1|(1536,1142)| 1,26,27,1,100,0,0,22,0,0,0,-1--1--1,,1|(1536,1072)| 11,27,48,1536,1107,8,6,33,3,0,0,4,0,0,0 10,28,demand not covered by sector FD,1582,1107,66,19,40,3,0,0,-1,0,0,0 10,29,initial household demand,1798,860,50,19,8,3,0,0,0,0,0,0 1,30,29,7,1,0,0,0,0,128,1,-1--1--1,,1|(1777,833)| 10,31,initial GFCF,1165,873,39,11,8,3,0,0,0,0,0,0 1,32,1,28,1,0,0,0,0,128,0,-1--1--1,,1|(1603,1041)| 10,33,Time,1347,1092,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,34,LC,1662,608,40,20,3,3,0,0,0,0,0,0 12,35,48,1334,600,10,8,0,3,0,0,-1,0,0,0 1,36,38,34,4,0,0,22,0,0,0,-1--1--1,,1|(1555,600)| 1,37,38,35,100,0,0,22,0,0,0,-1--1--1,,1|(1410,600)| 11,38,48,1483,600,6,8,34,3,0,0,1,0,0,0 10,39,variation LC,1483,619,40,11,40,3,0,0,-1,0,0,0 10,40,LC next step,1736,690,41,11,8,3,0,0,0,0,0,0 1,41,34,40,1,0,0,0,0,128,0,-1--1--1,,1|(1709,648)| 10,42,Beta 1 lab,1448,674,33,11,8,3,0,0,0,0,0,0 10,43,Bet 0 lab,1546,677,30,11,8,3,0,0,0,0,0,0 1,44,12,6,1,0,0,0,0,128,0,-1--1--1,,1|(1409,914)| 10,45,CC total,1118,640,40,20,3,3,0,0,0,0,0,0 12,46,48,779,650,10,8,0,3,0,0,-1,0,0,0 1,47,49,45,4,0,0,22,0,0,0,-1--1--1,,1|(1008,650)| 1,48,49,46,100,0,0,22,0,0,0,-1--1--1,,1|(858,650)| 11,49,48,933,650,6,8,34,3,0,0,1,0,0,0 10,50,variation CC,933,669,41,11,40,3,0,0,-1,0,0,0 1,51,21,49,1,0,0,0,0,128,0,-1--1--1,,1|(960,563)| 10,52,beta 2 cap,665,761,34,11,8,3,0,0,0,0,0,0 10,53,beta 0 cap,858,729,34,11,8,3,0,0,0,0,0,0 10,54,CC sectoral,1048,728,39,11,8,3,0,0,0,0,0,0 10,55,share CC sectoral,1144,689,57,11,8,3,0,0,0,0,0,0 10,56,CC sectoral next step,1187,747,54,19,8,3,0,0,0,0,0,0 1,57,45,54,1,0,0,0,0,128,0,-1--1--1,,1|(1066,679)| 1,58,55,54,1,0,0,0,0,128,0,-1--1--1,,1|(1096,695)| 1,59,54,56,1,0,0,0,0,128,0,-1--1--1,,1|(1107,727)| 10,60,initial CC total,1123,600,45,11,8,3,0,0,0,0,0,0 10,61,initial LC total,1664,559,44,11,8,3,0,0,0,0,0,0 1,62,60,45,0,0,0,0,0,128,1,-1--1--1,,1|(1122,608)| 1,63,61,34,0,0,0,0,0,128,1,-1--1--1,,1|(1663,572)| 1,64,18,6,1,0,0,0,0,128,0,-1--1--1,,1|(1174,949)| 1,65,23,28,1,0,0,0,0,128,0,-1--1--1,,1|(1704,1166)| 12,66,48,1288,638,10,8,0,3,0,0,-1,0,0,0 1,67,69,66,4,0,0,22,0,0,0,-1--1--1,,1|(1251,638)| 1,68,69,45,100,0,0,22,0,0,0,-1--1--1,,1|(1185,638)| 11,69,48,1218,638,6,8,34,3,0,0,1,0,0,0 10,70,CC total not covered,1218,665,40,19,40,3,0,0,-1,0,0,0 12,71,48,1868,606,10,8,0,3,0,0,-1,0,0,0 1,72,74,71,4,0,0,22,0,0,0,-1--1--1,,1|(1822,606)| 1,73,74,34,100,0,0,22,0,0,0,-1--1--1,,1|(1738,606)| 11,74,48,1780,606,6,8,34,3,0,0,1,0,0,0 10,75,LC not covered,1780,625,50,11,40,3,0,0,-1,0,0,0 1,76,21,70,1,0,0,0,0,128,0,-1--1--1,,1|(1103,573)| 10,77,demand not covered total FD,1710,980,55,19,8,3,0,0,0,0,0,0 1,78,28,77,1,0,0,0,0,128,0,-1--1--1,,1|(1668,1060)| 1,79,77,75,1,0,0,0,0,128,0,-1--1--1,,1|(1923,887)| 1,80,77,70,1,0,0,0,0,128,0,-1--1--1,,1|(1383,847)| 10,81,initial demand by sectot,1409,972,54,19,8,3,0,0,0,0,0,0 10,82,share consum goverments and inventories next step,1056,1150,82,19,8,3,0,0,0,0,0,0 1,83,82,6,1,0,0,0,0,128,0,-1--1--1,,1|(1192,1084)| 10,84,total demand,1759,1061,41,11,8,3,0,0,0,0,0,0 1,85,1,84,1,0,0,0,0,128,0,-1--1--1,,1|(1623,997)| 10,86,Time,1335,416,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,87,Time,1626,1178,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,88,87,28,0,0,0,0,0,64,0,-1--1--1,,1|(1610,1152)| 10,89,Historic labour share,1225,220,55,19,8,131,0,0,0,0,0,0 10,90,growth capital share,936,427,45,19,8,3,0,0,0,0,0,0 1,91,90,50,1,0,0,0,0,128,0,-1--1--1,,1|(896,539)| 1,92,39,40,1,0,0,0,0,128,0,-1--1--1,,1|(1602,652)| 10,93,Household demand total,1871,777,42,19,8,3,0,0,0,0,0,0 1,94,7,93,1,0,0,0,0,128,0,-1--1--1,,1|(1779,755)| 10,95,share CC next step,1245,708,46,19,8,3,0,0,0,0,0,0 10,96,variation CC sectoral,944,726,41,19,8,3,0,0,0,0,0,0 1,97,50,96,0,0,0,0,0,128,0,-1--1--1,,1|(936,686)| 1,98,45,96,0,0,0,0,0,128,0,-1--1--1,,1|(1036,679)| 1,99,55,96,0,0,0,0,0,128,0,-1--1--1,,1|(1043,707)| 1,100,95,96,0,0,0,0,0,128,0,-1--1--1,,1|(1098,716)| 1,101,96,56,1,0,0,0,0,128,0,-1--1--1,,1|(1059,762)| 1,102,13,6,0,0,0,0,0,128,0,-1--1--1,,1|(1245,940)| 1,103,7,6,1,0,0,0,0,128,0,-1--1--1,,1|(1589,933)| 10,104,share consum goverment and inventories,1244,1145,47,28,8,3,0,0,0,0,0,0 1,105,104,6,0,0,0,0,0,128,0,-1--1--1,,1|(1294,1099)| 10,106,"pct GFCF vs GFCF+HD",1347,761,43,19,8,3,0,0,0,0,0,0 1,107,13,106,1,0,0,0,0,128,0,-1--1--1,,1|(1248,764)| 1,108,7,106,1,0,0,0,0,128,0,-1--1--1,,1|(1607,761)| 12,109,48,1354,830,10,8,0,3,0,0,-1,0,0,0 1,110,112,109,4,0,0,22,0,0,0,-1--1--1,,1|(1310,830)| 1,111,112,13,100,0,0,22,0,0,0,-1--1--1,,1|(1230,830)| 11,112,48,1270,830,6,8,34,3,0,0,1,0,0,0 10,113,GFCF not covered,1270,857,34,19,40,3,0,0,-1,0,0,0 12,114,48,2031,806,10,8,0,3,0,0,-1,0,0,0 1,115,117,114,4,0,0,22,0,0,0,-1--1--1,,1|(1965,806)| 1,116,117,7,100,0,0,22,0,0,0,-1--1--1,,1|(1836,806)| 11,117,48,1903,806,6,8,34,3,0,0,1,0,0,0 10,118,Household demand not covered,1903,833,62,19,40,3,0,0,-1,0,0,0 1,119,31,13,0,0,0,0,0,64,1,-1--1--1,,1|(1162,865)| 1,120,20,50,1,0,0,0,0,128,0,-1--1--1,,1|(1076,581)| 1,121,20,39,1,0,0,0,0,128,0,-1--1--1,,1|(1332,585)| 10,122,sum variation,973,1000,42,11,8,3,0,0,0,0,0,0 1,123,6,122,0,0,0,0,0,128,0,-1--1--1,,1|(1160,1027)| 1,124,81,1,0,0,0,0,0,64,1,-1--1--1,,1|(1466,995)| 1,125,52,18,1,0,0,0,0,128,0,-1--1--1,,1|(802,806)| 1,126,22,18,1,0,0,0,0,128,0,-1--1--1,,1|(813,770)| 1,127,53,18,1,0,0,0,0,128,0,-1--1--1,,1|(901,787)| 1,128,54,18,1,0,0,0,0,128,0,-1--1--1,,1|(1004,802)| 1,129,56,18,1,0,0,0,0,128,0,-1--1--1,,1|(1068,803)| 1,130,19,12,1,0,0,0,0,128,0,-1--1--1,,1|(1447,735)| 1,131,42,12,1,0,0,0,0,128,0,-1--1--1,,1|(1521,745)| 1,132,43,12,1,0,0,0,0,128,0,-1--1--1,,1|(1579,767)| 1,133,40,12,1,0,0,0,0,128,0,-1--1--1,,1|(1667,757)| 1,134,34,12,1,0,0,0,0,128,0,-1--1--1,,1|(1656,689)| 10,135,Time,1347,1092,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,136,135,6,0,0,0,0,0,64,0,-1--1--1,,1|(1347,1084)| 10,137,Historic GFCF,829,947,48,11,8,3,0,0,0,0,0,0 10,138,variation historic GFCF,863,897,52,19,8,3,0,0,0,0,0,0 10,139,Historic HD,1590,926,39,11,8,3,0,0,0,0,0,0 10,140,variation historic demand,1544,886,52,19,8,3,0,0,0,0,0,0 1,141,137,138,0,0,0,0,0,128,0,-1--1--1,,1|(838,931)| 1,142,138,18,0,0,0,0,0,128,0,-1--1--1,,1|(911,875)| 1,143,139,140,0,0,0,0,0,128,0,-1--1--1,,1|(1577,914)| 1,144,140,12,0,0,0,0,0,128,0,-1--1--1,,1|(1558,869)| 10,145,Time,978,925,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,146,145,138,0,0,0,0,0,64,0,-1--1--1,,1|(940,915)| 10,147,Time,1450,849,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,148,147,12,0,0,0,0,0,64,0,-1--1--1,,1|(1491,846)| 10,149,growth labour share,1289,276,69,22,8,131,0,0,0,0,0,0 1,150,89,149,0,0,0,0,0,128,0,-1--1--1,,1|(1249,241)| 1,151,149,39,1,0,0,0,0,128,0,-1--1--1,,1|(1456,415)| 1,152,149,90,1,0,0,0,0,128,0,-1--1--1,,1|(1100,342)| 10,153,labour share,1532,324,40,20,3,3,0,0,0,0,0,0 12,154,48,1808,321,10,8,0,3,0,0,-1,0,0,0 1,155,157,153,4,0,0,22,0,0,0,-1--1--1,,1|(1634,322)| 1,156,157,154,100,0,0,22,0,0,0,-1--1--1,,1|(1753,322)| 11,157,48,1703,322,6,8,34,3,0,0,1,0,0,0 10,158,variation labour share,1703,349,46,19,40,3,0,0,-1,0,0,0 1,159,149,158,1,0,0,0,0,128,0,-1--1--1,,1|(1454,255)| 1,160,153,158,1,0,0,0,0,128,0,-1--1--1,,1|(1671,360)| 1,161,153,75,0,0,0,0,0,128,0,-1--1--1,,1|(1654,473)| 1,162,153,39,0,0,0,0,0,128,0,-1--1--1,,1|(1507,469)| 1,163,153,90,1,0,0,0,0,128,0,-1--1--1,,1|(1237,342)| 1,164,153,21,1,0,0,0,0,128,0,-1--1--1,,1|(1307,462)| 10,165,Labour share growth,1308,177,41,22,8,131,0,0,0,0,0,0 1,166,165,149,1,0,0,0,0,128,0,-1--1--1,,1|(1297,213)| 10,167,share consum goverments next step,826,1265,67,19,8,3,0,0,0,0,0,0 10,168,share consum goverments,1202,1272,44,19,8,3,0,0,0,0,0,0 10,169,share inventories next step,1026,1274,53,19,8,3,0,0,0,0,0,0 10,170,share inventories,1347,1279,58,18,8,131,0,0,0,0,0,0 1,171,167,82,0,0,0,0,0,128,0,-1--1--1,,1|(934,1210)| 1,172,169,82,0,0,0,0,0,128,0,-1--1--1,,1|(1038,1218)| 1,173,168,104,0,0,0,0,0,128,0,-1--1--1,,1|(1218,1219)| 1,174,170,104,0,0,0,0,0,128,0,-1--1--1,,1|(1303,1222)| 12,175,1837238,2212,463,245,201,3,188,0,0,1,0,0,0 Labor_share 12,176,2624374,360,1042,319,231,3,156,0,0,1,0,0,0 Demand 10,177,Real GFCF,1357,902,38,11,8,3,0,0,0,0,0,0 10,178,Real Household demand,1901,994,51,19,8,3,0,0,0,0,0,0 1,179,23,177,1,0,0,0,0,128,0,-1--1--1,,1|(1586,1029)| 1,180,106,177,0,0,0,0,0,128,0,-1--1--1,,1|(1351,828)| 1,181,104,177,0,0,0,0,0,128,0,-1--1--1,,1|(1301,1021)| 1,182,104,178,0,0,0,0,0,128,0,-1--1--1,,1|(1563,1071)| 1,183,106,178,0,0,0,0,0,128,0,-1--1--1,,1|(1616,874)| 1,184,23,178,0,0,0,0,0,128,0,-1--1--1,,1|(1822,1104)| 1,185,13,113,1,0,0,0,0,128,0,-1--1--1,,1|(1228,800)| 1,186,177,113,0,0,0,0,0,128,0,-1--1--1,,1|(1326,885)| 10,187,Time,1270,895,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,188,187,113,0,0,0,0,0,64,0,-1--1--1,,1|(1270,887)| 1,189,7,118,0,0,0,0,0,128,0,-1--1--1,,1|(1801,815)| 1,190,178,118,0,0,0,0,0,128,0,-1--1--1,,1|(1901,920)| 10,191,Time,1856,907,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,192,191,118,0,0,0,0,0,64,0,-1--1--1,,1|(1872,879)| 12,193,2100036,2287,1050,297,225,3,188,0,0,1,0,0,0 Household_enconomic_dema 10,194,Historic demand by sector,1689,1257,53,19,8,3,0,0,0,0,0,0 10,195,historic variation demand,1510,1232,52,19,8,3,0,0,0,0,0,0 1,196,194,195,1,0,0,0,0,128,0,-1--1--1,,1|(1577,1255)| 1,197,195,6,0,0,0,0,0,64,0,-1--1--1,,1|(1433,1148)| 10,198,"Labor share cte?",1402,215,53,11,8,3,0,2,0,0,0,0,0-0-0,0-0-0,|12||0-128-0 1,199,198,149,0,0,0,0,0,128,0,-1--1--1,,1|(1361,236)| 1,200,145,18,0,0,0,0,0,128,0,-1--1--1,,1|(968,897)| 1,201,87,195,0,0,0,0,0,128,0,-1--1--1,,1|(1582,1198)| 1,202,147,140,0,0,0,0,0,128,0,-1--1--1,,1|(1479,860)| 10,203,P labour share 2050,1460,111,41,19,8,3,0,0,0,0,0,0 10,204,Initial Labour share,1432,63,43,19,8,3,0,0,0,0,0,0 1,205,203,165,1,0,0,0,0,128,0,-1--1--1,,1|(1390,140)| 1,206,204,165,1,0,0,0,0,128,0,-1--1--1,,1|(1353,99)| 10,207,Year Final Labour share,1458,158,59,19,8,3,0,0,0,0,0,0 1,208,207,165,1,0,0,0,0,128,0,-1--1--1,,1|(1376,177)| 10,209,Year Initial Labour share,1322,53,43,19,8,3,0,0,0,0,0,0 1,210,209,165,1,0,0,0,0,128,0,-1--1--1,,1|(1300,113)| 10,211,Desired annual GDP growth rate,1205,438,55,19,8,3,0,0,0,0,0,0 12,212,48,805,154,10,8,0,3,0,0,-1,0,0,0 1,213,215,217,4,0,0,22,0,0,0,-1--1--1,,1|(959,154)| 1,214,215,212,100,0,0,22,0,0,0,-1--1--1,,1|(851,154)| 11,215,48,894,154,6,8,34,3,0,0,1,0,0,0 10,216,Desired variation GDPpc,894,187,58,25,40,131,0,0,-1,0,0,0 10,217,Desired GDPpc,1065,153,46,27,3,131,0,0,0,0,0,0 10,218,Historic GDPpc,880,288,49,11,8,3,0,0,0,0,0,0 10,219,GDPpc initial year,1114,114,57,11,8,3,0,0,0,0,0,0 1,220,219,217,0,0,0,0,0,64,1,-1--1--1,,1|(1106,123)| 10,221,initial population,1082,138,60,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,222,variation historic GDPpc,796,252,52,19,8,3,0,0,0,0,0,0 1,223,218,222,0,0,0,0,0,128,0,-1--1--1,,1|(853,276)| 10,224,Time,741,173,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,225,224,222,0,0,0,0,0,64,0,-1--1--1,,1|(761,202)| 1,226,222,216,0,0,0,0,0,128,0,-1--1--1,,1|(834,226)| 1,227,217,216,1,0,0,0,0,128,0,-1--1--1,,1|(971,187)| 1,228,224,216,1,0,0,0,0,128,0,-1--1--1,,1|(798,173)| 10,229,Desired GDP,1112,244,43,11,8,3,0,0,0,0,0,0 10,230,Population,1167,169,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,231,217,229,0,0,0,0,0,128,0,-1--1--1,,1|(1088,200)| 1,232,230,229,0,0,0,0,0,128,0,-1--1--1,,1|(1143,200)| 10,233,dollars to Tdollars,1025,208,35,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,234,233,229,0,0,0,0,0,128,0,-1--1--1,,1|(1066,224)| 10,235,Desired GDP delayed 1yr,1016,290,44,19,8,3,0,0,-1,0,0,0 1,236,229,235,0,0,0,0,0,128,0,-1--1--1,,1|(1078,260)| 1,237,229,211,0,0,0,0,0,128,0,-1--1--1,,1|(1152,330)| 1,238,235,211,0,0,0,0,0,128,0,-1--1--1,,1|(1104,359)| 12,239,2362106,377,409,319,240,3,188,0,0,1,0,0,0 Desired_annual_GDP_growth_rate 10,240,P timeseries GDPpc growth rate,632,17,66,20,8,131,0,0,0,0,0,0 10,241,select GDPpc evolution input,604,78,54,19,8,3,0,0,0,0,0,0 10,242,P customized year GDPpc evolution,907,-5,58,19,8,131,0,0,0,0,0,0 10,243,P customized cte GDPpc variation,772,-11,54,19,8,3,0,0,0,0,0,0 10,244,Annual GDPpc growth rate,834,78,58,19,8,3,0,0,0,0,0,0 1,245,241,244,0,0,0,0,0,128,0,-1--1--1,,1|(710,78)| 1,246,240,244,0,0,0,0,0,128,0,-1--1--1,,1|(730,45)| 1,247,243,244,0,0,0,0,0,128,0,-1--1--1,,1|(798,27)| 1,248,242,244,0,0,0,0,0,128,0,-1--1--1,,1|(875,31)| 1,249,244,216,0,0,0,0,0,128,0,-1--1--1,,1|(858,123)| 1,250,224,244,0,0,0,0,0,128,0,-1--1--1,,1|(778,134)| 1,251,86,149,0,0,0,0,0,128,0,-1--1--1,,1|(1316,358)| 10,252,GDPpc annual growth SSP2,1039,46,65,19,8,131,0,0,0,0,0,0 1,253,252,244,0,0,0,0,0,128,0,-1--1--1,,1|(939,60)| 10,254,diff demand,1877,1160,42,14,8,131,0,0,0,0,0,0 10,255,Desired annual GDP growth rate,1919,1089,60,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,256,84,254,1,0,0,0,0,128,0,-1--1--1,,1|(1798,1104)| 1,257,255,254,1,0,0,0,0,128,0,-1--1--1,,1|(1916,1120)| 10,258,demand by sector FD adjusted,1547,1335,57,19,8,3,0,0,0,0,0,0 10,259,total demand adjusted,1728,1355,42,19,8,3,0,0,0,0,0,0 1,260,1,258,1,0,0,0,0,128,0,-1--1--1,,1|(1441,1146)| 1,261,254,258,1,0,0,0,0,128,0,-1--1--1,,1|(1757,1274)| 1,262,258,259,1,0,0,0,0,128,0,-1--1--1,,1|(1618,1361)| 10,263,Time,1870,1216,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,264,263,254,0,0,0,0,0,64,0,-1--1--1,,1|(1872,1196)| 10,265,total demand,942,244,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,266,265,229,1,0,0,0,0,128,0,-1--1--1,,1|(1008,248)| 10,267,Time,1112,274,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,268,267,229,0,0,0,0,0,64,0,-1--1--1,,1|(1112,266)| 1,269,211,50,1,0,0,0,0,128,0,-1--1--1,,1|(1100,509)| 1,270,211,39,1,0,0,0,0,128,0,-1--1--1,,1|(1269,489)| 10,271,GDP delayed 1yr,1931,1248,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,272,271,254,1,0,0,0,0,128,0,-1--1--1,,1|(1922,1222)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *DEM E - Adjust non-com heat demand #D,E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"FED coal for heat-nc",1289,346,42,19,8,131,0,0,-1,0,0,0 10,2,"FED nat. gas for heat-nc",910,345,53,19,8,131,0,0,-1,0,0,0 10,3,"FED oil for heat-nc",639,345,36,19,8,131,0,0,-1,0,0,0 10,4,"FED solid bioE for heat-nc",1597,342,60,19,8,131,0,0,-1,0,0,0 10,5,efficiency coal for heat plants,1289,262,61,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,5,1,0,0,0,0,0,0,0,-1--1--1,,1|(1289,297)| 10,7,Required FED by fuel before heat correction,1107,220,74,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,8,7,1,1,0,0,0,0,0,0,-1--1--1,,1|(1133,272)| 10,9,Share heat distribution losses,1112,94,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,10,9,1,0,0,0,0,0,0,0,-1--1--1,,1|(1195,214)| 10,11,Efficiency conversion BioE plants to heat,1604,254,72,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,12,11,4,0,0,0,0,0,0,0,-1--1--1,,1|(1601,291)| 10,13,efficiency liquids for heat plants,638,246,68,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,14,13,3,0,0,0,0,0,0,0,-1--1--1,,1|(638,288)| 10,15,efficiency gases for heat plants,911,260,65,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,16,15,2,0,0,0,0,0,0,0,-1--1--1,,1|(910,295)| 1,17,7,2,1,0,0,0,0,128,0,-1--1--1,,1|(1045,273)| 1,18,9,2,0,0,0,0,0,128,0,-1--1--1,,1|(1015,214)| 1,19,9,4,1,0,0,0,0,128,0,-1--1--1,,1|(1384,196)| 1,20,7,4,1,0,0,0,0,128,0,-1--1--1,,1|(1355,231)| 1,21,7,3,1,0,0,0,0,128,0,-1--1--1,,1|(867,220)| 1,22,9,3,1,0,0,0,0,128,0,-1--1--1,,1|(835,185)| 10,23,"share FED gas vs NRE heat-nc",771,533,57,19,8,3,0,0,-1,0,0,0 10,24,"share FED liquids vs NRE heat-nc",976,538,61,20,8,131,0,0,-1,0,0,0 10,25,"share FED coal vs NRE heat-nc",1155,538,60,19,8,3,0,0,-1,0,0,0 1,26,2,23,0,0,0,0,0,0,0,-1--1--1,,1|(844,433)| 1,27,3,24,0,0,0,0,0,0,0,-1--1--1,,1|(800,437)| 1,28,1,25,0,0,0,0,0,0,0,-1--1--1,,1|(1226,436)| 10,29,share FEH over FED by final fuel,1438,578,69,20,8,131,0,0,-1,0,0,0 10,30,"share FEH over FED nat. gas",1525,670,51,19,8,3,0,0,-1,0,0,0 1,31,30,29,0,0,0,0,0,0,0,-1--1--1,,1|(1486,629)| 10,32,share FEH over FED oil,1395,650,51,19,8,3,0,0,-1,0,0,0 1,33,32,29,0,0,0,0,0,0,0,-1--1--1,,1|(1412,620)| 10,34,share FEH over FED solid bioE,1668,522,51,19,8,3,0,0,-1,0,0,0 1,35,34,29,0,0,0,0,0,0,0,-1--1--1,,1|(1568,545)| 10,36,"FED by fuel for heat-nc",604,507,50,19,8,131,0,0,-1,0,0,0 1,37,3,36,0,0,0,0,0,128,0,-1--1--1,,1|(622,419)| 1,38,2,36,0,0,0,0,0,128,0,-1--1--1,,1|(763,422)| 1,39,1,36,0,0,0,0,0,128,0,-1--1--1,,1|(957,423)| 1,40,4,36,0,0,0,0,0,128,0,-1--1--1,,1|(1102,423)| 12,41,0,746,86,160,35,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Adjustment of heat demand to account for non-commercial heat 1,42,34,4,1,0,0,0,0,128,0,-1--1--1,,1|(1651,390)| 10,43,share FEH over FED coal,1690,689,51,19,8,3,0,0,-1,0,0,0 1,44,43,29,1,0,0,0,0,128,0,-1--1--1,,1|(1559,595)| 1,45,29,1,0,0,0,0,0,128,0,-1--1--1,,1|(1367,467)| 1,46,29,2,1,0,0,0,0,128,0,-1--1--1,,1|(1049,380)| 1,47,29,3,1,0,0,0,0,128,0,-1--1--1,,1|(780,483)| 10,48,Required FED by fuel before heat correction,601,635,80,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,49,"ratio FED for heat-nc vs FED for heat-com",827,636,61,28,8,3,0,0,0,0,0,0 1,50,48,49,0,0,0,0,0,128,0,-1--1--1,,1|(716,635)| 10,51,"FED NRE for heat-nc",1073,450,45,19,8,3,0,0,0,0,0,0 1,52,3,51,0,0,0,0,0,128,0,-1--1--1,,1|(844,394)| 1,53,2,51,0,0,0,0,0,128,0,-1--1--1,,1|(985,393)| 1,54,51,23,0,0,0,0,0,128,0,-1--1--1,,1|(934,487)| 1,55,51,24,0,0,0,0,0,128,0,-1--1--1,,1|(1030,488)| 1,56,51,25,0,0,0,0,0,128,0,-1--1--1,,1|(1108,488)| 1,57,1,51,0,0,0,0,0,128,0,-1--1--1,,1|(1187,394)| 1,58,34,1,1,0,0,0,0,128,0,-1--1--1,,1|(1478,355)| 1,59,36,49,0,0,0,0,0,64,0,-1--1--1,,1|(700,563)| 12,60,2883656,267,402,250,179,3,188,0,0,1,0,0,0 Share_FEH_over_FED_by_final_fuel \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *DEM E - Non-energy use #D,E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"Non-energy use demand by final fuel EJ",749,153,75,27,3,131,0,0,0,0,0,0 12,2,48,1039,146,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(870,148)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(979,148)| 11,5,48,923,148,6,8,34,3,0,0,1,0,0,0 10,6,"Annual variation non-energy use",923,175,64,19,40,3,0,0,-1,0,0,0 10,7,"Historic non-energy use",868,82,50,20,8,131,0,0,0,0,0,0 10,8,Time,990,85,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,6,0,0,0,0,0,64,0,-1--1--1,,1|(963,120)| 10,10,"initial non-energy use",705,110,77,21,8,131,0,0,0,0,0,0 10,11,"Total real non-energy use consumption EJ",494,145,68,19,8,3,0,0,0,0,0,0 10,12,GDP,1026,315,27,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,13,GDP delayed 1yr,921,324,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,14,"variation non-energy use",978,254,65,19,8,3,0,0,0,0,0,0 1,15,13,14,0,0,0,0,0,128,0,-1--1--1,,1|(944,294)| 1,16,12,14,0,0,0,0,0,128,0,-1--1--1,,1|(1009,293)| 1,17,14,6,0,0,0,0,0,128,0,-1--1--1,,1|(954,220)| 1,18,1,11,0,0,0,0,0,128,0,-1--1--1,,1|(624,149)| 1,19,10,1,0,0,0,0,0,64,1,-1--1--1,,1|(718,123)| 1,20,7,6,0,0,0,0,0,128,0,-1--1--1,,1|(891,122)| 12,21,3407944,622,389,199,188,3,188,0,0,1,0,0,0 Non-energy_use_demand_by_fuel 1,22,1,14,1,0,0,0,0,128,0,-1--1--1,,1|(854,204)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *FE INTENSITY - by fuel for households #I $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Household demand total,1496,122,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,Households final energy demand,1422,211,53,19,8,3,0,0,0,0,0,0 1,3,1,2,1,0,0,0,0,128,0,-1--1--1,,1|(1459,157)| 10,4,Evol final energy intensity H,795,210,106,60,3,131,0,0,0,0,0,0 1,5,6,4,4,0,0,22,0,0,0,-1--1--1,,1|(637,224)| 11,6,3004,579,224,6,8,34,3,0,0,1,0,0,0 10,7,inertial rate energy intensity H TOP DOWN,579,251,80,19,40,3,0,0,-1,0,0,0 10,8,historical mean rate energy intensity H,407,313,61,19,8,3,0,0,0,0,0,0 10,9,Initial energy intensity 1995 H,777,352,53,19,8,3,0,0,0,0,0,0 1,10,8,7,1,0,0,0,0,128,0,-1--1--1,,1|(450,263)| 1,11,4,7,1,0,0,0,0,128,0,-1--1--1,,1|(689,267)| 10,12,Global energy intensity H,917,366,45,19,8,3,0,0,0,0,0,0 1,13,4,12,1,0,0,0,0,128,0,-1--1--1,,1|(873,304)| 10,14,Initial global energy intensity 2009 H,687,438,61,19,8,3,0,0,0,0,0,0 10,15,min energy intensity vs intial H,568,406,62,19,8,3,0,0,0,0,0,0 10,16,available improvement efficiency H,617,334,71,19,8,3,0,0,0,0,0,0 1,17,15,16,1,0,0,0,0,128,0,-1--1--1,,1|(551,378)| 1,18,14,16,1,0,0,0,0,128,0,-1--1--1,,1|(679,392)| 1,19,12,16,1,0,0,0,0,128,0,-1--1--1,,1|(816,313)| 10,20,Efficiency energy aceleration H,436,496,54,19,8,3,0,0,0,0,0,0 10,21,Energy cost pressure H,641,650,38,19,8,3,0,0,0,0,0,0 10,22,abundance of energy H,847,670,43,19,8,3,0,0,0,0,0,0 1,23,21,25,1,0,0,0,0,128,0,-1--1--1,,1|(552,619)| 1,24,22,21,1,0,0,0,0,128,0,-1--1--1,,1|(762,629)| 10,25,Pressure to improve energy intensity efficiency H,451,647,88,19,8,3,0,0,0,0,0,0 10,26,Maximun yearly aceleration of intensity improvement pct H,909,553,89,28,8,3,0,0,0,0,0,0 10,27,Maximun yearly aceleratuin of intensity improvement H,658,540,86,19,8,3,0,0,0,0,0,0 1,28,26,27,1,0,0,0,0,128,0,-1--1--1,,1|(770,521)| 1,29,25,20,1,0,0,0,0,128,0,-1--1--1,,1|(421,577)| 1,30,27,20,1,0,0,0,0,128,0,-1--1--1,,1|(537,515)| 1,31,20,7,1,0,0,0,0,128,0,-1--1--1,,1|(457,398)| 10,32,Year policy to improve efficiency H,232,646,66,19,8,3,0,0,0,0,0,0 10,33,Policy to improve efficiency speed H,231,401,59,19,8,3,0,0,0,0,0,0 12,34,48,1256,249,10,8,0,3,0,0,-1,0,0,0 1,35,37,34,4,0,0,22,0,0,0,-1--1--1,,1|(1162,242)| 1,36,37,4,100,0,0,22,0,0,0,-1--1--1,,1|(984,242)| 11,37,48,1073,242,6,8,34,3,0,0,1,0,0,0 10,38,Decrease of intensity due to energy a technology change H TOP DOWN,1073,278,95,28,40,3,0,0,-1,0,0,0 12,39,48,1256,151,10,8,0,3,0,0,-1,0,0,0 1,40,42,4,4,0,0,22,0,0,0,-1--1--1,,1|(984,155)| 1,41,42,39,100,0,0,22,0,0,0,-1--1--1,,1|(1163,155)| 11,42,48,1074,155,6,8,34,3,0,0,1,0,0,0 10,43,Increase of intensity due to energy a technology change H TOP DOWN,1074,191,95,28,40,3,0,0,-1,0,0,0 10,44,minimum fraction H,980,409,32,19,8,3,0,0,0,0,0,0 10,45,Max yearly change H,1124,424,36,19,8,3,0,0,0,0,0,0 10,46,Pressure to change energy technology H,1242,418,66,19,8,3,0,0,0,0,0,0 10,47,Implementatio policy to change final energy H,1409,523,74,19,8,3,0,0,0,0,0,0 10,48,Year policy change energy H,1415,428,61,19,8,3,0,0,0,0,0,0 10,49,Policy change energy speed H,1542,471,50,19,8,3,0,0,0,0,0,0 10,50,efficiency rate of substitution H,1216,118,53,19,8,3,0,0,0,0,0,0 1,51,50,43,1,0,0,0,0,128,0,-1--1--1,,1|(1115,163)| 1,52,38,43,1,0,0,0,0,128,0,-1--1--1,,1|(1096,221)| 1,53,44,38,1,0,0,0,0,128,0,-1--1--1,,1|(1024,351)| 1,54,45,38,1,0,0,0,0,128,0,-1--1--1,,1|(1120,360)| 1,55,46,38,1,0,0,0,0,128,0,-1--1--1,,1|(1196,374)| 1,56,49,47,1,0,0,0,0,128,0,-1--1--1,,1|(1427,492)| 1,57,48,47,1,0,0,0,0,128,0,-1--1--1,,1|(1389,462)| 1,58,47,46,1,0,0,0,0,128,0,-1--1--1,,1|(1331,474)| 1,59,4,38,1,0,0,0,0,128,0,-1--1--1,,1|(889,274)| 1,60,12,38,1,0,0,0,0,128,0,-1--1--1,,1|(979,324)| 10,61,abundance gases,1025,644,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,62,abundance liquids,974,671,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,63,abundance solids,949,620,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,64,63,22,1,0,0,0,0,128,0,-1--1--1,,1|(869,622)| 1,65,61,22,1,0,0,0,0,128,0,-1--1--1,,1|(900,639)| 1,66,62,22,1,0,0,0,0,128,0,-1--1--1,,1|(904,665)| 1,67,16,7,1,0,0,0,0,128,0,-1--1--1,,1|(574,296)| 10,68,historic rate final energy intensity H,522,128,57,19,8,3,0,0,0,0,0,0 1,69,68,7,1,0,0,0,0,128,0,-1--1--1,,1|(592,157)| 1,70,9,7,0,0,0,0,0,128,0,-1--1--1,,1|(684,304)| 10,71,Time,579,289,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,72,71,7,0,0,0,0,0,64,0,-1--1--1,,1|(579,281)| 10,73,Activate BOTTOM UP method,1073,316,68,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,74,Time,617,372,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,75,74,16,0,0,0,0,0,64,0,-1--1--1,,1|(617,364)| 10,76,Historic final energy intensity H,590,41,63,19,8,3,0,0,0,0,0,0 10,77,Time,415,188,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,78,77,68,0,0,0,0,0,64,0,-1--1--1,,1|(454,165)| 1,79,76,68,0,0,0,0,0,128,0,-1--1--1,,1|(560,79)| 12,80,0,1894,137,283,225,3,188,0,0,1,0,0,0 Final_energy_intensity_H 12,81,0,1901,591,289,223,3,188,0,0,1,0,0,0 Households_energy_demand 12,82,48,490,225,10,8,0,3,0,0,-1,0,0,0 1,83,6,82,36,0,0,22,2,0,0,-1--1--1,|12||0-0-0,1|(536,224)| 10,84,Activate transport H BOTTOM UP method,953,-20,73,19,8,3,0,0,0,0,0,0 10,85,Energy intensity of households transport,1342,-37,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,86,change total intensity to rest,1021,37,48,19,8,3,0,0,0,0,0,0 10,87,Energy intensity of households rest,940,92,58,19,8,3,0,0,0,0,0,0 1,88,86,87,1,0,0,0,0,128,0,-1--1--1,,1|(969,75)| 1,89,84,87,0,0,0,0,0,128,0,-1--1--1,,1|(947,29)| 1,90,4,87,0,0,0,0,0,128,0,-1--1--1,,1|(886,134)| 10,91,Energy intensity of households,1177,16,58,19,8,3,0,0,0,0,0,0 1,92,85,91,1,0,0,0,0,128,0,-1--1--1,,1|(1256,2)| 1,93,87,91,1,0,0,0,0,128,0,-1--1--1,,1|(1079,67)| 1,94,84,91,1,0,0,0,0,128,0,-1--1--1,,1|(1013,-17)| 1,95,9,4,0,0,0,0,0,64,1,-1--1--1,,1|(782,308)| 10,96,Time,1129,94,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,97,96,91,0,0,0,0,0,64,0,-1--1--1,,1|(1146,64)| 1,98,91,2,1,0,0,0,0,128,0,-1--1--1,,1|(1358,122)| 10,99,Transport households final energy demand,1426,47,69,19,8,3,0,0,0,0,0,0 1,100,85,99,1,0,0,0,0,128,0,-1--1--1,,1|(1395,14)| 1,101,1,99,1,0,0,0,0,128,0,-1--1--1,,1|(1471,87)| 10,102,"Constant final energy intensity sectors&households TD?",763,-23,103,23,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,103,102,87,0,0,0,0,0,128,0,-1--1--1,,1|(848,32)| 1,104,76,87,0,0,0,0,0,64,0,-1--1--1,,1|(760,65)| 1,105,96,87,0,0,0,0,0,128,0,-1--1--1,,1|(1057,93)| 10,106,Implementation policy to improve energy intensity effciency H,302,522,78,28,8,3,0,0,0,0,0,0 1,107,32,106,1,0,0,0,0,128,0,-1--1--1,,1|(251,595)| 1,108,33,106,1,0,0,0,0,128,0,-1--1--1,,1|(238,407)| 10,109,Time,311,597,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,110,109,106,0,0,0,0,0,64,0,-1--1--1,,1|(308,574)| 10,111,Year to finish policy improve efficiency H,163,446,66,19,8,3,0,0,0,0,0,0 1,112,111,106,1,0,0,0,0,128,0,-1--1--1,,1|(197,509)| 10,113,exp rapid evolution improve efficiency H,112,522,66,19,8,3,0,0,0,0,0,0 10,114,exp slow evolution improve efficiency H,115,593,66,19,8,3,0,0,0,0,0,0 1,115,113,106,0,0,0,0,0,128,0,-1--1--1,,1|(194,522)| 1,116,114,106,1,0,0,0,0,128,0,-1--1--1,,1|(213,575)| 1,117,106,25,1,0,0,0,0,128,0,-1--1--1,,1|(368,597)| 10,118,Year to finish policy change energy H,1525,581,64,19,8,3,0,0,0,0,0,0 10,119,exp rapid evolution change energy H,1238,599,61,19,8,3,0,0,0,0,0,0 10,120,exp slow evolution change energy H,1369,627,59,19,8,3,0,0,0,0,0,0 1,121,118,47,0,0,0,0,0,128,0,-1--1--1,,1|(1473,555)| 1,122,119,47,0,0,0,0,0,128,0,-1--1--1,,1|(1316,563)| 1,123,120,47,1,0,0,0,0,128,0,-1--1--1,,1|(1375,582)| 10,124,Time,1433,582,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,125,124,47,0,0,0,0,0,64,0,-1--1--1,,1|(1425,562)| 10,126,share max of change vs historical mean H,324,367,74,19,8,3,0,0,0,0,0,0 1,127,8,20,1,0,0,0,0,128,0,-1--1--1,,1|(419,397)| 1,128,126,20,1,0,0,0,0,128,0,-1--1--1,,1|(354,431)| 10,129,Evol final energy intensity H delayed 1 yr,866,437,75,19,8,3,0,0,0,0,0,0 1,130,4,129,1,0,0,0,0,128,0,-1--1--1,,1|(858,358)| 1,131,129,27,1,0,0,0,0,128,0,-1--1--1,,1|(826,494)| 1,132,9,129,1,0,0,0,0,128,1,-1--1--1,,1|(821,386)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *FE INTENSITY - by fuel for sectors #I $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Evol final energy intensity by sector and fuel,857,259,106,60,3,131,0,0,0,0,0,0 12,2,48,514,274,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(699,274)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(579,274)| 11,5,48,641,274,6,8,34,3,0,0,1,0,0,0 10,6,inertial rate energy intensity TOP DOWN,641,301,72,19,40,3,0,0,-1,0,0,0 10,7,historical mean rate energy intensity,469,362,61,19,8,3,0,0,0,0,0,0 10,8,Initial energy intensity by fuel and sector 1995,839,402,78,19,8,3,0,0,0,0,0,0 1,9,7,6,1,0,0,0,0,128,0,-1--1--1,,1|(512,313)| 1,10,1,6,1,0,0,0,0,128,0,-1--1--1,,1|(751,317)| 1,11,8,1,1,0,0,0,0,128,1,-1--1--1,,1|(884,353)| 10,12,Global energy intensity by sector,983,407,57,19,8,3,0,0,0,0,0,0 1,13,1,12,1,0,0,0,0,128,0,-1--1--1,,1|(937,349)| 10,14,Initial global energy intensity by sector 2009,734,483,76,19,8,3,0,0,0,0,0,0 10,15,min energy intensity vs intial,600,463,62,19,8,3,0,0,0,0,0,0 10,16,available improvement efficiency,679,383,71,19,8,3,0,0,0,0,0,0 1,17,15,16,1,0,0,0,0,128,0,-1--1--1,,1|(591,424)| 1,18,14,16,1,0,0,0,0,128,0,-1--1--1,,1|(729,442)| 1,19,12,16,1,0,0,0,0,128,0,-1--1--1,,1|(880,357)| 10,20,Efficiency energy aceleration,498,546,54,19,8,3,0,0,0,0,0,0 10,21,Energy cost pressure,703,699,38,19,8,3,0,0,0,0,0,0 10,22,abundance of energy,909,719,43,19,8,3,0,0,0,0,0,0 1,23,21,25,1,0,0,0,0,128,0,-1--1--1,,1|(614,669)| 1,24,22,21,1,0,0,0,0,128,0,-1--1--1,,1|(824,678)| 10,25,Pressure to improve energy intensity efficiency,513,697,80,19,8,3,0,0,0,0,0,0 10,26,Maximun yearly aceleratuin of intensity improvement,708,577,70,28,8,3,0,0,0,0,0,0 1,27,25,20,1,0,0,0,0,128,0,-1--1--1,,1|(483,626)| 1,28,26,20,1,0,0,0,0,128,0,-1--1--1,,1|(607,567)| 1,29,20,6,1,0,0,0,0,128,0,-1--1--1,,1|(519,447)| 10,30,Implementation policy to improve energy intensity effciency,344,704,78,28,8,3,0,0,0,0,0,0 1,31,30,25,1,0,0,0,0,128,0,-1--1--1,,1|(473,732)| 12,32,48,1318,298,10,8,0,3,0,0,-1,0,0,0 1,33,35,32,4,0,0,22,0,0,0,-1--1--1,,1|(1224,291)| 1,34,35,1,100,0,0,22,0,0,0,-1--1--1,,1|(1046,291)| 11,35,48,1135,291,6,8,34,3,0,0,1,0,0,0 10,36,Decrease of intensity due to energy a technology change TOP DOWN,1135,327,88,28,40,3,0,0,-1,0,0,0 12,37,48,1318,201,10,8,0,3,0,0,-1,0,0,0 1,38,40,1,4,0,0,22,0,0,0,-1--1--1,,1|(1046,205)| 1,39,40,37,100,0,0,22,0,0,0,-1--1--1,,1|(1225,205)| 11,40,48,1136,205,6,8,34,3,0,0,1,0,0,0 10,41,Increase of intensity due to energy a technology change TOP DOWN,1136,241,87,28,40,3,0,0,-1,0,0,0 10,42,Pressure to change energy technology,1284,456,60,19,8,3,0,0,0,0,0,0 10,43,Implementatio policy to change final energy,1451,562,74,19,8,3,0,0,0,0,0,0 1,44,36,41,1,0,0,0,0,128,0,-1--1--1,,1|(1158,270)| 1,45,42,36,1,0,0,0,0,128,0,-1--1--1,,1|(1258,423)| 1,46,43,42,1,0,0,0,0,128,0,-1--1--1,,1|(1373,512)| 1,47,1,36,1,0,0,0,0,128,0,-1--1--1,,1|(951,323)| 1,48,12,36,1,0,0,0,0,128,0,-1--1--1,,1|(1044,370)| 10,49,abundance gases,1105,695,74,11,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,50,abundance liquids,1036,721,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,51,abundance solids,1037,657,66,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,52,51,22,1,0,0,0,0,128,0,-1--1--1,,1|(931,671)| 1,53,49,22,1,0,0,0,0,128,0,-1--1--1,,1|(962,689)| 1,54,50,22,1,0,0,0,0,128,0,-1--1--1,,1|(966,714)| 10,55,Time,679,422,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,56,55,16,0,0,0,0,0,64,0,-1--1--1,,1|(679,413)| 1,57,16,6,1,0,0,0,0,128,0,-1--1--1,,1|(636,346)| 10,58,Historic final energy intensity by sector and fuel,479,162,71,28,8,3,0,0,-1,0,0,0 10,59,historic rate final energy intensity,586,206,52,19,8,3,0,0,0,0,0,0 1,60,58,59,1,0,0,0,0,128,0,-1--1--1,,1|(572,166)| 10,61,Time,586,243,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,61,59,0,0,0,0,0,64,0,-1--1--1,,1|(586,235)| 1,63,59,6,1,0,0,0,0,128,0,-1--1--1,,1|(638,227)| 1,64,61,6,0,0,0,0,0,64,0,-1--1--1,,1|(604,262)| 1,65,8,6,0,0,0,0,0,128,0,-1--1--1,,1|(746,354)| 12,66,48,833,54,10,8,0,3,0,0,-1,0,0,0 1,67,69,1,4,0,0,22,0,0,0,-1--1--1,,1|(833,166)| 1,68,69,66,100,0,0,22,0,0,0,-1--1--1,,1|(833,91)| 11,69,48,833,127,8,6,33,3,0,0,4,0,0,0 10,70,rate change intensity BOTTOM UP,905,127,64,19,40,3,0,0,-1,0,0,0 10,71,inland transport variation intensity,1018,61,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,72,71,70,0,0,0,0,0,128,0,-1--1--1,,1|(967,90)| 10,73,Activate BOTTOM UP method,680,126,64,19,8,3,0,0,0,0,0,0 1,74,73,70,1,0,0,0,0,128,0,-1--1--1,,1|(791,94)| 1,75,73,36,1,0,0,0,0,128,0,-1--1--1,,1|(982,210)| 1,76,73,6,1,0,0,0,0,128,0,-1--1--1,,1|(659,181)| 1,77,70,6,1,0,0,0,0,128,0,-1--1--1,,1|(723,170)| 10,78,Year policy to improve efficiency,329,787,58,19,8,3,0,0,0,0,0,0 1,79,78,30,1,0,0,0,0,128,0,-1--1--1,,1|(341,748)| 10,80,Policy to improve efficiency speed,405,615,56,19,8,3,0,0,0,0,0,0 1,81,80,30,1,0,0,0,0,128,0,-1--1--1,,1|(374,644)| 10,82,Maximun yearly aceleration of intensity improvement pct,945,585,89,19,8,3,0,0,0,0,0,0 1,83,82,26,1,0,0,0,0,128,0,-1--1--1,,1|(841,589)| 10,84,Year policy change energy,1610,636,61,19,8,3,0,0,0,0,0,0 1,85,84,43,1,0,0,0,0,128,0,-1--1--1,,1|(1523,615)| 10,86,Policy change energy speed,1613,572,44,19,8,3,0,0,0,0,0,0 1,87,86,43,0,0,0,0,0,128,0,-1--1--1,,1|(1553,568)| 10,88,minimum fraction,1052,468,53,11,8,3,0,0,0,0,0,0 1,89,88,36,0,0,0,0,0,128,0,-1--1--1,,1|(1084,412)| 10,90,Max yearly change,1184,499,59,11,8,3,0,0,0,0,0,0 1,91,90,36,1,0,0,0,0,128,0,-1--1--1,,1|(1165,415)| 10,92,efficiency rate of substitution,1147,144,53,19,8,3,0,0,0,0,0,0 1,93,92,41,1,0,0,0,0,128,0,-1--1--1,,1|(1108,180)| 10,94,Evol final energy intensity by sector and fuel 2,700,36,72,18,8,131,0,0,0,0,0,0 1,95,1,94,0,0,0,0,0,64,0,-1--1--1,,1|(767,132)| 10,96,"Constant final energy intensity sectors&households TD?",471,57,95,25,8,131,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,97,96,94,0,0,0,0,0,64,0,-1--1--1,,1|(590,46)| 10,98,Time,676,87,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,99,98,94,0,0,0,0,0,64,0,-1--1--1,,1|(683,71)| 1,100,58,94,0,0,0,0,0,128,0,-1--1--1,,1|(591,97)| 1,101,73,94,0,0,0,0,0,128,0,-1--1--1,,1|(688,87)| 10,102,Year to finish policy improve efficiency,213,633,64,19,8,3,0,0,0,0,0,0 10,103,exp rapid evolution improve efficiency,175,714,61,19,8,3,0,0,0,0,0,0 10,104,exp slow evolution improve efficiency,180,797,59,19,8,3,0,0,0,0,0,0 1,105,102,30,1,0,0,0,0,128,0,-1--1--1,,1|(285,657)| 1,106,103,30,1,0,0,0,0,128,0,-1--1--1,,1|(230,703)| 1,107,104,30,1,0,0,0,0,128,0,-1--1--1,,1|(242,767)| 10,108,Time,443,661,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,109,108,30,0,0,0,0,0,64,0,-1--1--1,,1|(419,671)| 10,110,Year to finish policy change energy,1613,497,64,19,8,3,0,0,0,0,0,0 10,111,exp rapid evol change energy,1543,428,46,19,8,3,0,0,0,0,0,0 10,112,exp slow evol change energy,1417,440,46,19,8,3,0,0,0,0,0,0 1,113,112,43,1,0,0,0,0,128,0,-1--1--1,,1|(1428,489)| 1,114,111,43,1,0,0,0,0,128,0,-1--1--1,,1|(1487,490)| 1,115,110,43,1,0,0,0,0,128,0,-1--1--1,,1|(1537,519)| 10,116,Time,1451,600,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,117,116,43,0,0,0,0,0,64,0,-1--1--1,,1|(1451,592)| 1,118,7,20,1,0,0,0,0,128,0,-1--1--1,,1|(463,446)| 10,119,share max of change vs historical mean rate,332,456,74,19,8,3,0,0,0,0,0,0 1,120,119,20,1,0,0,0,0,128,0,-1--1--1,,1|(399,500)| 10,121,Evol final energy intensity by sector and fuel delayed 1yr,934,507,83,28,8,3,0,0,0,0,0,0 1,122,1,121,1,0,0,0,0,128,0,-1--1--1,,1|(916,426)| 1,123,121,26,1,0,0,0,0,128,0,-1--1--1,,1|(863,551)| 1,124,8,121,1,0,0,0,0,128,1,-1--1--1,,1|(881,453)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *E INTENSITIES - Aggregated indicators #I $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,TPES intensity EJ T$,674,327,47,19,8,3,0,0,-1,0,0,0 10,2,TPES intensity EJ T$ delayed 1yr,904,296,68,19,8,3,0,0,-1,0,0,0 10,3,TFES intensity EJ T$,682,560,47,19,8,3,0,0,-1,0,0,0 10,4,TFES intensity EJ T$ delayed 1yr,595,743,68,19,8,3,0,0,-1,0,0,0 10,5,Annual TFES intensity growth rate,769,792,66,19,8,131,0,0,-1,0,0,0 10,6,TPES EJ,549,257,39,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,1,0,0,0,0,0,0,0,-1--1--1,,1|(597,284)| 1,8,1,2,0,0,0,0,0,0,0,-1--1--1,,1|(771,313)| 10,9,GDP,561,490,27,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,10,9,3,0,0,0,0,0,0,0,-1--1--1,,1|(608,517)| 10,11,Real TFEC,512,599,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,12,11,3,0,0,0,0,0,0,0,-1--1--1,,1|(589,581)| 1,13,3,5,0,0,0,0,0,0,0,-1--1--1,,1|(722,669)| 1,14,3,4,0,0,0,0,0,0,0,-1--1--1,,1|(641,645)| 1,15,4,5,0,0,0,0,0,128,0,-1--1--1,,1|(675,765)| 1,16,9,1,1,0,0,0,0,128,0,-1--1--1,,1|(613,411)| 10,17,Annual TPES intensity growth rate,885,387,66,23,8,131,0,0,-1,0,0,0 1,18,1,17,0,0,0,0,0,0,0,-1--1--1,,1|(763,352)| 1,19,2,17,0,0,0,0,0,0,0,-1--1--1,,1|(896,332)| 10,20,TFES intensity EJ T$ without EROI,328,479,57,19,8,3,0,0,-1,0,0,0 10,21,EROI FC system from 2015,472,434,61,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,22,21,20,0,0,0,0,0,0,0,-1--1--1,,1|(405,455)| 10,23,Annual TFES intensity growth rate without EROI,349,374,84,25,8,131,0,0,-1,0,0,0 10,24,Cumulative TFEC intensity change from 2009 without EROI,126,482,107,28,8,131,0,0,-1,0,0,0 1,25,20,23,0,0,0,0,0,0,0,-1--1--1,,1|(336,436)| 10,26,Time,71,550,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,20,24,0,0,0,0,0,0,0,-1--1--1,,1|(259,479)| 1,28,26,24,0,0,0,0,0,128,0,-1--1--1,,1|(86,529)| 1,29,9,20,0,0,0,0,0,128,0,-1--1--1,,1|(466,485)| 1,30,11,20,0,0,0,0,0,128,0,-1--1--1,,1|(432,546)| 12,31,0,1297,307,192,185,3,188,0,0,1,0,0,0 TPES_intensity 10,32,"Constant final energy intensity sectors&households TD?",220,762,103,28,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 10,33,TFES intensity without EROI delayed 1yr,136,370,80,22,8,131,0,0,-1,0,0,0 1,34,20,33,0,0,0,0,0,128,0,-1--1--1,,1|(240,429)| 1,35,33,23,0,0,0,0,0,128,0,-1--1--1,,1|(233,371)| 10,36,TFEC intensity until 2009 without EROI,232,631,75,33,8,131,0,0,0,0,0,0 10,37,aux13,99,621,23,11,8,3,0,0,-1,0,0,0 1,38,36,37,1,0,0,0,0,128,0,-1--1--1,,1|(138,604)| 1,39,37,36,1,0,0,0,0,128,0,-1--1--1,,1|(138,641)| 10,40,TIME STEP,79,675,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,41,40,37,0,0,0,0,0,64,0,-1--1--1,,1|(86,654)| 1,42,20,36,0,0,0,0,0,128,0,-1--1--1,,1|(287,542)| 1,43,36,24,0,0,0,0,0,128,0,-1--1--1,,1|(181,559)| 1,44,26,36,0,0,0,0,0,128,0,-1--1--1,,1|(122,576)| 10,45,Cumulative TPES intensity change from 2009,944,174,67,28,8,3,0,0,-1,0,0,0 10,46,Time,851,117,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,47,46,45,0,0,0,0,0,128,0,-1--1--1,,1|(876,133)| 10,48,TPES intensity until 2009,771,187,59,32,8,131,0,0,0,0,0,0 10,49,aux14,628,176,27,11,8,3,0,0,-1,0,0,0 1,50,48,49,1,0,0,0,0,128,0,-1--1--1,,1|(663,141)| 1,51,49,48,1,0,0,0,0,128,0,-1--1--1,,1|(656,203)| 10,52,TIME STEP,493,177,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,53,52,49,0,0,0,0,0,64,0,-1--1--1,,1|(565,176)| 1,54,48,45,0,0,0,0,0,128,0,-1--1--1,,1|(846,181)| 1,55,46,48,0,0,0,0,0,128,0,-1--1--1,,1|(828,136)| 1,56,1,48,0,0,0,0,0,128,0,-1--1--1,,1|(713,269)| 1,57,1,45,0,0,0,0,0,128,0,-1--1--1,,1|(794,258)| 12,58,0,1772,306,277,185,3,188,0,0,1,0,0,0 Cumulative_TPES_intensity_change_from_2009 10,59,Cumulative TFEC intensity change from 2009,915,595,69,28,8,3,0,0,-1,0,0,0 10,60,Time,1011,689,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,61,60,59,0,0,0,0,0,128,0,-1--1--1,,1|(976,655)| 10,62,TFEC intensity until 2009,844,722,59,19,8,131,0,0,0,0,0,0 10,63,aux15,962,766,27,11,8,3,0,0,-1,0,0,0 1,64,62,63,1,0,0,0,0,128,0,-1--1--1,,1|(916,774)| 1,65,63,62,1,0,0,0,0,128,0,-1--1--1,,1|(928,733)| 10,66,TIME STEP,1003,835,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,67,66,63,0,0,0,0,0,64,0,-1--1--1,,1|(986,806)| 1,68,62,59,0,0,0,0,0,128,0,-1--1--1,,1|(873,669)| 1,69,60,62,0,0,0,0,0,128,0,-1--1--1,,1|(950,700)| 1,70,3,62,0,0,0,0,0,128,0,-1--1--1,,1|(758,636)| 1,71,3,59,0,0,0,0,0,128,0,-1--1--1,,1|(780,574)| 12,72,0,1300,654,195,158,3,188,0,0,1,0,0,0 TFES_intensity 12,73,0,1774,654,276,159,3,188,0,0,1,0,0,0 Cumulative_TFEC_intensity_change_from_2009 \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ECON - Confrontation of demand to limits #e,E,C,N $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,real FE consumption by fuel,2128,848,63,24,8,131,0,0,0,0,0,0 10,2,Required final energy by sector and fuel,1710,616,67,19,8,3,0,0,0,0,0,0 10,3,Real final energy by sector and fuel,1621,740,62,19,8,3,0,0,0,0,0,0 10,4,Required total output by sector,1378,497,52,19,8,3,0,0,0,0,0,0 10,5,Real total output by fuel and sector,1429,802,62,19,8,3,0,0,0,0,0,0 10,6,Real total output by sector,1288,712,53,19,8,3,0,0,0,0,0,0 10,7,Real demand by sector,1234,628,52,19,8,3,0,0,0,0,0,0 10,8,Real demand by sector delayed,1030,604,52,19,8,3,0,0,0,0,0,0 1,9,4,2,1,0,0,0,0,128,0,-1--1--1,,1|(1486,561)| 1,10,7,8,1,0,0,0,0,128,0,-1--1--1,,1|(1157,588)| 1,11,6,7,1,0,0,0,0,128,0,-1--1--1,,1|(1266,675)| 1,12,5,6,1,0,0,0,0,128,0,-1--1--1,,1|(1330,784)| 1,13,4,5,1,0,0,0,0,128,0,-1--1--1,,1|(1349,670)| 1,14,2,3,0,0,0,0,0,128,0,-1--1--1,,1|(1669,672)| 1,15,3,5,1,0,0,0,0,128,0,-1--1--1,,1|(1554,776)| 10,16,real FE consumption liquids EJ,2308,945,62,25,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,1,1,0,0,0,0,128,0,-1--1--1,,1|(2223,899)| 10,18,real FE consumption gases EJ,2297,1000,58,25,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,19,18,1,1,0,0,0,0,128,0,-1--1--1,,1|(2143,868)| 10,20,real FE consumption solids EJ,2187,997,58,25,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,21,20,1,1,0,0,0,0,128,0,-1--1--1,,1|(2151,946)| 10,22,Real demand,1057,680,42,11,8,3,0,0,0,0,0,0 10,23,Real total output,1267,790,52,11,8,3,0,0,0,0,0,0 1,24,7,22,1,0,0,0,0,128,0,-1--1--1,,1|(1127,652)| 1,25,6,23,1,0,0,0,0,128,0,-1--1--1,,1|(1283,738)| 10,26,Time,2055,500,26,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,27,GDP,1068,760,33,11,8,3,0,0,0,0,0,0 1,28,22,27,1,0,0,0,0,128,0,-1--1--1,,1|(1067,716)| 10,29,abundance gases,1630,1039,69,9,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,30,abundance liquids,1628,1003,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,31,Real TFEC,2051,952,58,19,8,131,0,0,0,0,0,0 1,32,1,31,0,0,0,0,0,128,0,-1--1--1,,1|(2092,896)| 10,33,Required TFED,2075,672,39,23,8,131,0,0,0,0,0,0 10,34,GDPpc,1081,823,40,11,8,3,0,0,-1,0,0,0 10,35,dollars to Tdollars,1113,873,46,24,8,131,0,0,-1,0,0,0 1,36,35,34,0,0,0,0,0,0,0,-1--1--1,,1|(1096,847)| 1,37,27,34,0,0,0,0,0,0,0,-1--1--1,,1|(1072,784)| 10,38,Population,1010,861,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,39,38,34,0,0,0,0,0,0,0,-1--1--1,,1|(1038,845)| 10,40,GDP delayed 1yr,930,728,55,11,8,3,0,0,-1,0,0,0 10,41,Annual GDP growth rate,937,792,45,19,8,131,0,0,-1,0,0,0 1,42,40,41,1,0,0,0,0,128,0,-1--1--1,,1|(929,751)| 12,43,0,1465,156,258,28,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Final demands by sector and final fuel 12,44,0,1688,913,158,34,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Detector of limiting final fuels (when its abundance is below 1) 1,45,27,41,1,0,0,0,0,128,0,-1--1--1,,1|(1007,776)| 1,46,27,40,1,0,0,0,0,128,0,-1--1--1,,1|(1011,733)| 12,47,0,734,324,233,206,3,188,0,16,1,0,0,0,0-0-0,0-0-0,|12|S|0-0-0 GDP 12,48,0,636,1016,229,204,3,188,0,16,1,0,0,0,0-0-0,0-0-0,|12|S|0-0-0 GDPpc 10,49,"unlimited NRE?",1926,1004,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 12,50,0,969,914,85,19,8,7,0,0,-1,0,0,0 Comment: all dollars of the model are in 1995 US$. 10,51,abundance solids,1641,963,72,15,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,52,Final energy intensity by sector and fuel,1555,488,66,19,8,3,0,0,0,0,0,0 1,53,52,5,1,0,0,0,0,128,0,-1--1--1,,1|(1429,688)| 1,54,52,2,1,0,0,0,0,128,0,-1--1--1,,1|(1665,536)| 10,55,"Constant final energy intensity sectors&households TD?",1986,276,101,26,8,130,0,3,0,0,0,0,128-128-128,0-0-0,|12||0-128-0 10,56,Demand by sector,1218,483,58,11,8,3,0,0,0,0,0,0 1,57,56,4,1,0,0,0,0,128,0,-1--1--1,,1|(1258,511)| 10,58,Required FED by fuel before heat correction,1995,500,78,20,8,131,0,0,0,0,0,0 10,59,share FEH over FED by final fuel,2278,652,73,19,8,130,0,1,0,0,0,0,128-128-128,0-0-0,|12||255-0-0 10,60,Required FED by fuel,2060,596,78,21,8,131,0,0,0,0,0,0 1,61,58,60,0,0,0,0,0,128,0,-1--1--1,,1|(2022,541)| 1,62,59,60,0,0,0,0,0,128,0,-1--1--1,,1|(2178,626)| 10,63,required FED sectors by fuel,1845,548,46,19,8,3,0,0,0,0,0,0 1,64,2,63,0,0,0,0,0,128,0,-1--1--1,,1|(1770,585)| 1,65,63,58,0,0,0,0,0,128,0,-1--1--1,,1|(1904,529)| 10,66,Households final energy demand,1821,415,66,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,67,0,256,592,229,209,3,188,0,0,1,0,0,0 Annual_GDP_growth_rate 1,68,60,33,1,0,0,0,0,128,0,-1--1--1,,1|(2048,632)| 10,69,Total FE Elec consumption EJ,2323,884,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,70,Total FE Heat consumption EJ,2310,824,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,71,70,1,0,0,0,0,0,128,0,-1--1--1,,1|(2229,834)| 1,72,69,1,0,0,0,0,0,128,0,-1--1--1,,1|(2236,867)| 12,73,0,2640,902,240,189,3,188,0,0,1,0,0,0 Total_final_energy_consumption 1,74,66,58,0,0,0,0,0,128,0,-1--1--1,,1|(1900,453)| 10,75,Required TFED before heat dem corr,2185,498,70,24,8,131,0,0,0,0,0,0 1,76,58,75,0,0,0,0,0,128,0,-1--1--1,,1|(2087,499)| 10,77,real FE consumption by fuel before heat correction,1986,788,75,28,8,3,0,0,0,0,0,0 1,78,1,77,1,0,0,0,0,128,0,-1--1--1,,1|(1987,800)| 1,79,59,77,0,0,0,0,0,128,0,-1--1--1,,1|(2148,712)| 10,80,"ratio FED for heat-nc vs FED for heat-com",2242,720,73,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,81,80,60,0,0,0,0,0,64,0,-1--1--1,,1|(2158,662)| 1,82,80,77,1,0,0,0,0,128,0,-1--1--1,,1|(2122,751)| 10,83,"activate ELF all scen?",1617,844,83,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 10,84,diff annual GDP growth rate,780,784,51,19,8,3,0,0,0,0,0,0 1,85,41,84,0,0,0,0,0,128,0,-1--1--1,,1|(868,788)| 10,86,Energy scarcity feedback shortage coeff,1772,696,77,19,8,3,0,0,0,0,0,0 1,87,77,86,0,0,0,0,0,64,0,-1--1--1,,1|(1874,740)| 1,88,58,86,0,0,0,0,0,64,0,-1--1--1,,1|(1888,593)| 10,89,CC impacts feedback shortage coeff,1776,766,70,19,8,3,0,0,0,0,0,0 10,90,"share E-losses CC",1783,832,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,91,90,89,0,0,0,0,0,64,0,-1--1--1,,1|(1780,805)| 1,92,89,3,0,0,0,0,0,128,0,-1--1--1,,1|(1701,753)| 1,93,86,3,0,0,0,0,0,128,0,-1--1--1,,1|(1701,716)| 10,94,Abundance heat,1770,980,42,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,95,Abundance electricity,1766,1024,42,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,96,EROI FC system from 2015,2120,427,66,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,97,96,58,0,0,0,0,0,128,0,-1--1--1,,1|(2063,460)| 10,98,"Activate energy scarcity feedback?",1910,853,71,28,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,99,98,86,1,0,0,0,0,128,0,-1--1--1,,1|(1883,778)| 10,100,Households total final energy demand,1759,279,68,19,8,3,0,0,0,0,0,0 1,101,66,100,0,0,0,0,0,128,0,-1--1--1,,1|(1792,353)| 10,102,required TFED sectors,1764,475,49,19,8,3,0,0,0,0,0,0 1,103,63,102,0,0,0,0,0,128,0,-1--1--1,,1|(1809,516)| 10,104,ratio FED households vs sectors,1585,295,57,30,8,131,0,0,0,0,0,0 1,105,100,104,0,0,0,0,0,128,0,-1--1--1,,1|(1673,286)| 1,106,102,104,0,0,0,0,0,128,0,-1--1--1,,1|(1684,395)| 10,107,Evol final energy intensity by sector and fuel 2,1513,383,71,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,108,107,52,0,0,0,0,0,128,0,-1--1--1,,1|(1532,433)| 10,109,TFEI sectors,1576,548,38,21,8,131,0,0,0,0,0,0 1,110,52,109,0,0,0,0,0,128,0,-1--1--1,,1|(1562,510)| 10,111,Desired annual GDP growth rate,743,708,70,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,112,111,84,0,0,0,0,0,128,0,-1--1--1,,1|(758,739)| 10,113,Desired GDP,899,648,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,114,Leontief matrix 1995,1154,259,48,19,8,3,0,0,0,0,0,0 10,115,Leontief matrix 1996,1154,259,48,19,8,3,0,0,0,0,0,0 10,116,Leontief matrix 1997,1154,259,48,19,8,3,0,0,0,0,0,0 10,117,Leontief matrix 1998,1154,259,48,19,8,3,0,0,0,0,0,0 10,118,Leontief matrix 1999,1154,259,48,19,8,3,0,0,0,0,0,0 10,119,Leontief matrix 2000,1154,259,48,19,8,3,0,0,0,0,0,0 10,120,Leontief matrix 2001,1154,259,48,19,8,3,0,0,0,0,0,0 10,121,Leontief matrix 2002,1154,259,48,19,8,3,0,0,0,0,0,0 10,122,Leontief matrix 2003,1154,259,48,19,8,3,0,0,0,0,0,0 10,123,Leontief matrix 2004,1154,259,48,19,8,3,0,0,0,0,0,0 10,124,Leontief matrix 2005,1154,259,48,19,8,3,0,0,0,0,0,0 10,125,Leontief matrix 2006,1154,259,48,19,8,3,0,0,0,0,0,0 10,126,Leontief matrix 2007,1154,259,48,19,8,3,0,0,0,0,0,0 10,127,Leontief matrix 2008,1154,259,48,19,8,3,0,0,0,0,0,0 10,128,Leontief matrix 2009,1154,259,48,19,8,131,0,0,0,0,0,0 10,129,Leontief matrix for Python,1212,333,61,18,8,131,0,0,0,0,0,0 1,130,114,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,131,115,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,132,116,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,133,117,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,134,118,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,135,119,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,136,120,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,137,121,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,138,122,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,139,123,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,140,124,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,141,125,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,142,126,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,143,127,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 1,144,128,129,0,0,0,0,0,64,0,-1--1--1,,1|(1178,290)| 10,145,Time,1260,242,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,146,145,129,0,0,0,0,0,64,0,-1--1--1,,1|(1241,277)| 10,147,Leontief Matrix,1290,442,55,11,8,3,0,0,0,0,0,0 1,148,129,147,0,0,0,0,0,128,0,-1--1--1,,1|(1248,385)| 1,149,147,4,0,0,0,0,0,128,0,-1--1--1,,1|(1321,461)| 10,150,IA matrix for Python,1236,865,54,28,8,131,0,0,0,0,0,0 10,151,IA matrix 1995,1214,973,49,11,8,3,0,0,0,0,0,0 10,152,IA matrix 1996,1214,973,49,11,8,3,0,0,0,0,0,0 10,153,IA matrix 1997,1214,973,49,11,8,3,0,0,0,0,0,0 10,154,IA matrix 1998,1214,973,49,11,8,3,0,0,0,0,0,0 10,155,IA matrix 1999,1214,973,49,11,8,3,0,0,0,0,0,0 10,156,IA matrix 2000,1214,973,49,11,8,3,0,0,0,0,0,0 10,157,IA matrix 2001,1214,973,49,11,8,3,0,0,0,0,0,0 10,158,IA matrix 2002,1214,973,49,11,8,3,0,0,0,0,0,0 10,159,IA matrix 2003,1214,973,49,11,8,3,0,0,0,0,0,0 10,160,IA matrix 2004,1214,973,49,11,8,3,0,0,0,0,0,0 10,161,IA matrix 2005,1214,973,49,11,8,3,0,0,0,0,0,0 10,162,IA matrix 2006,1214,973,49,11,8,3,0,0,0,0,0,0 10,163,IA matrix 2007,1214,973,49,11,8,3,0,0,0,0,0,0 10,164,IA matrix 2008,1214,973,49,11,8,3,0,0,0,0,0,0 10,165,IA matrix 2009,1214,973,49,11,8,3,0,0,0,0,0,0 1,166,151,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,167,152,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,168,153,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,169,154,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,170,155,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,171,156,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,172,157,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,173,158,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,174,159,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,175,160,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,176,161,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,177,162,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,178,163,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,179,164,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 1,180,165,150,0,0,0,0,0,64,0,-1--1--1,,1|(1221,934)| 10,181,Time,1334,896,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,182,181,150,0,0,0,0,0,64,0,-1--1--1,,1|(1305,887)| 10,183,IA Matrix,1172,667,32,11,8,3,0,0,0,0,0,0 1,184,150,183,0,0,0,0,0,128,0,-1--1--1,,1|(1203,764)| 1,185,183,7,0,0,0,0,0,128,0,-1--1--1,,1|(1190,655)| 10,186,demand by sector FD adjusted,1035,451,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,187,186,56,1,0,0,0,0,128,0,-1--1--1,,1|(1100,481)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TFES by final fuel #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,real FE consumption by fuel,421,440,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,share liquids vs TFES,232,423,48,19,8,3,0,0,0,0,0,0 1,3,1,2,0,0,0,0,0,128,0,-1--1--1,,1|(323,431)| 10,4,share electricity vs TFES,235,272,61,17,8,131,0,0,0,0,0,0 10,5,share heat vs TFES,243,342,48,19,8,3,0,0,0,0,0,0 10,6,share solids vs TFES,216,557,48,19,8,3,0,0,0,0,0,0 10,7,share gases vs TFES,227,492,48,19,8,3,0,0,0,0,0,0 1,8,1,5,0,0,0,0,0,128,0,-1--1--1,,1|(338,394)| 1,9,1,4,0,0,0,0,0,128,0,-1--1--1,,1|(331,359)| 1,10,1,7,0,0,0,0,0,128,0,-1--1--1,,1|(320,466)| 1,11,1,6,0,0,0,0,0,128,0,-1--1--1,,1|(324,495)| 12,12,10225148,769,532,245,168,3,188,0,0,1,0,0,0 Share_final_energy_vs_TFES 12,13,4654304,767,192,244,167,3,188,0,0,1,0,0,0 Final_energy_consumption_by_fuel 10,14,Real TFEC,360,565,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,15,9832446,1247,304,222,206,3,188,0,0,1,0,0,0 Total_final_energy_consumption \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC - Electricity demand #EE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Total FE Elec demand EJ,759,500,68,20,8,131,0,0,0,0,0,0 10,2,Total FE Elec demand TWh,531,429,45,19,8,3,0,0,0,0,0,0 10,3,"share transm&distr elec losses initial",882,121,86,21,8,131,0,0,0,0,0,0 10,4,Electrical distribution losses TWh,711,383,66,19,8,3,0,0,0,0,0,0 10,5,Electrical distribution losses EJ,855,335,66,19,8,3,0,0,0,0,0,0 1,6,2,4,1,0,0,0,0,64,0,-1--1--1,,1|(653,423)| 1,7,2,1,1,0,0,0,0,64,0,-1--1--1,,1|(629,502)| 10,8,EJ per TWh,245,568,39,11,8,3,0,0,0,0,0,0 10,9,EJ per TWh,825,423,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,10,9,1,1,0,0,0,0,64,0,-1--1--1,,1|(770,457)| 1,11,4,5,0,0,0,0,0,128,0,-1--1--1,,1|(776,361)| 1,12,9,5,0,0,0,0,0,128,0,-1--1--1,,1|(835,389)| 12,13,0,1163,449,227,167,3,188,0,0,1,0,0,0 Electricity_demand 10,14,FE Elec demand consum EJ,223,387,53,19,8,131,0,0,0,0,0,0 10,15,FE demand Elec consum TWh,246,476,53,19,8,3,0,0,0,0,0,0 1,16,14,15,0,0,0,0,0,128,0,-1--1--1,,1|(232,424)| 1,17,8,15,0,0,0,0,0,128,0,-1--1--1,,1|(245,533)| 1,18,15,2,1,0,0,0,0,128,0,-1--1--1,,1|(417,482)| 10,19,"Max share transm&distr elec losses",400,235,78,20,8,131,0,0,0,0,0,0 12,20,48,498,172,10,8,0,3,0,0,-1,0,0,0 1,21,23,25,4,0,0,22,0,0,0,-1--1--1,,1|(658,170)| 1,22,23,20,100,0,0,22,0,0,0,-1--1--1,,1|(544,170)| 11,23,48,587,170,6,8,34,3,0,0,1,0,0,0 10,24,"variation share transm&distr elec losses",587,197,85,19,40,131,0,0,-1,0,0,0 10,25,"share transm&distr elec losses",793,170,70,25,3,131,0,0,0,0,0,0 10,26,Time,519,118,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,24,0,0,0,0,0,64,0,-1--1--1,,1|(544,148)| 10,28,"remaining share transm&distr elec losses",582,267,76,18,8,131,0,0,0,0,0,0 1,29,19,28,1,0,0,0,0,128,0,-1--1--1,,1|(477,260)| 1,30,25,28,1,0,0,0,0,128,0,-1--1--1,,1|(686,218)| 1,31,28,24,0,0,0,0,0,128,0,-1--1--1,,1|(583,239)| 10,32,"variation share transm&distr losses elec",642,113,77,18,8,131,0,0,0,0,0,0 1,33,32,24,0,0,0,0,0,128,0,-1--1--1,,1|(618,148)| 1,34,3,25,0,0,0,0,0,128,1,-1--1--1,,1|(847,140)| 1,35,3,32,0,0,0,0,0,128,0,-1--1--1,,1|(764,117)| 1,36,3,19,1,0,0,0,0,64,0,-1--1--1,,1|(553,41)| 1,37,25,4,1,0,0,0,0,128,0,-1--1--1,,1|(782,262)| 1,38,25,2,1,0,0,0,0,128,0,-1--1--1,,1|(663,297)| 10,39,Required FED by fuel,160,298,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,39,14,0,0,0,0,0,128,0,-1--1--1,,1|(186,336)| 10,41,share RES electricity generation,655,42,70,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,32,0,0,0,0,0,128,0,-1--1--1,,1|(649,71)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC - Electricity demand FF #EE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,demand Elec plants fossil fuels TWh,1124,203,75,20,8,131,0,0,0,0,0,0 10,2,PE demand oil Elec plants EJ,796,409,59,19,8,131,0,0,0,0,0,0 10,3,efficiency liquids for electricity,787,492,52,17,8,131,0,0,0,0,0,0 10,4,FE demand oil Elec plants TWh,802,292,59,19,8,131,0,0,0,0,0,0 10,5,share oil for Elec,672,288,45,19,8,131,0,0,0,0,0,0 10,6,Historic efficiency gas for electricity,763,607,59,20,8,131,0,0,0,0,0,0 10,7,PE demand gas Elec plants EJ,1048,434,50,19,8,131,0,0,0,0,0,0 10,8,FE demand gas Elec plants TWh,1147,294,66,19,8,131,0,0,0,0,0,0 10,9,"share gas/(coal +gas) for Elec",1225,394,48,19,8,131,0,0,0,0,0,0 10,10,"Hist share gas/(coal +gas) Elec",1344,335,62,19,8,131,0,0,0,0,0,0 10,11,share coal for Elec,1396,419,44,22,8,131,0,0,0,0,0,0 10,12,PE demand coal Elec plants EJ,1602,416,53,19,8,131,0,0,0,0,0,0 10,13,efficiency coal for electricity,1758,416,77,18,8,131,0,0,0,0,0,0 10,14,FE demand coal Elec plants TWh,1493,289,68,19,8,131,0,0,0,0,0,0 1,15,3,2,1,0,0,0,0,64,0,-1--1--1,,1|(789,463)| 10,16,Hist share oil Elec,607,157,67,13,8,131,0,0,0,0,0,0 1,17,10,9,0,0,0,0,0,64,0,-1--1--1,,1|(1290,361)| 1,18,9,11,1,0,0,0,0,64,0,-1--1--1,,1|(1347,394)| 1,19,13,12,1,0,0,0,0,64,0,-1--1--1,,1|(1703,442)| 10,20,Time,497,366,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,21,20,5,0,0,0,0,0,64,0,-1--1--1,,1|(568,333)| 10,22,Time,1238,320,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,23,22,9,0,0,0,0,0,64,0,-1--1--1,,1|(1233,346)| 10,24,EJ per TWh,1754,361,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,12,1,0,0,0,0,64,0,-1--1--1,,1|(1690,381)| 10,26,EJ per TWh,987,344,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,7,1,0,0,0,0,64,0,-1--1--1,,1|(981,377)| 1,28,5,4,0,0,0,0,0,64,0,-1--1--1,,1|(723,289)| 1,29,4,2,0,0,0,0,0,64,0,-1--1--1,,1|(799,343)| 1,30,9,8,0,0,0,0,0,64,0,-1--1--1,,1|(1190,349)| 1,31,8,7,0,0,0,0,0,64,0,-1--1--1,,1|(1101,358)| 1,32,11,14,0,0,0,0,0,64,0,-1--1--1,,1|(1440,358)| 1,33,14,12,0,0,0,0,0,64,0,-1--1--1,,1|(1542,347)| 10,34,Demand Elec NRE TWh,989,92,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,35,"future share gas/(coal+gas) for Elec",1276,464,73,19,8,131,0,0,0,0,0,0 1,36,35,9,0,0,0,0,0,128,0,-1--1--1,,1|(1254,434)| 1,37,26,2,0,0,0,0,0,128,0,-1--1--1,,1|(909,370)| 10,38,Max efficiency gas power plants,690,694,59,19,8,3,0,0,0,0,0,0 10,39,percent to share,968,564,51,11,8,3,0,0,0,0,0,0 12,40,48,836,647,10,8,0,3,0,0,-1,0,0,0 1,41,43,45,4,0,0,22,0,0,0,-1--1--1,,1|(957,645)| 1,42,43,40,100,0,0,22,0,0,0,-1--1--1,,1|(871,645)| 11,43,48,902,645,6,8,34,3,0,0,1,0,0,0 10,44,improvement efficiency gas for electricity,902,672,73,19,40,3,0,0,-1,0,0,0 10,45,efficiency gas for electricity,1068,643,62,24,3,131,0,0,0,0,0,0 1,46,6,44,0,0,0,0,0,128,0,-1--1--1,,1|(826,637)| 1,47,45,44,0,0,0,0,0,128,0,-1--1--1,,1|(997,654)| 1,48,39,44,0,0,0,0,0,64,0,-1--1--1,,1|(941,608)| 10,49,Time,888,591,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,44,0,0,0,0,0,64,0,-1--1--1,,1|(892,620)| 10,51,initial efficiency gas for electricity,1152,694,60,19,8,3,0,0,0,0,0,0 1,52,51,45,0,0,0,0,0,128,1,-1--1--1,,1|(1120,674)| 1,53,45,7,1,0,0,0,0,128,0,-1--1--1,,1|(1049,565)| 10,54,remaining efficiency improv gas for electricity,794,764,78,19,8,3,0,0,0,0,0,0 1,55,38,54,0,0,0,0,0,128,0,-1--1--1,,1|(735,725)| 1,56,45,54,1,0,0,0,0,128,0,-1--1--1,,1|(1055,745)| 1,57,54,44,0,0,0,0,0,128,0,-1--1--1,,1|(842,722)| 10,58,Efficiency improv gas for electricity,961,752,60,19,8,3,0,0,0,0,0,0 1,59,58,44,0,0,0,0,0,128,0,-1--1--1,,1|(935,717)| 10,60,Total gen losses demand for Elec plants EJ,1408,595,82,24,8,131,0,0,0,0,0,0 1,61,12,60,0,0,0,0,0,128,0,-1--1--1,,1|(1513,498)| 1,62,13,60,0,0,0,0,0,128,0,-1--1--1,,1|(1594,499)| 1,63,7,60,0,0,0,0,0,128,0,-1--1--1,,1|(1215,509)| 1,64,45,60,1,0,0,0,0,128,0,-1--1--1,,1|(1216,613)| 1,65,3,60,1,0,0,0,0,128,0,-1--1--1,,1|(1080,562)| 1,66,2,60,1,0,0,0,0,128,0,-1--1--1,,1|(1085,496)| 10,67,Total FE Elec demand TWh,769,188,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,68,FE nuclear Elec generation TWh,1145,112,82,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,69,68,1,0,0,0,0,0,128,0,-1--1--1,,1|(1136,150)| 10,70,PE losses uranium for Elec EJ,1605,615,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,71,70,60,0,0,0,0,0,128,0,-1--1--1,,1|(1523,606)| 1,72,39,45,0,0,0,0,0,64,1,-1--1--1,,1|(1003,592)| 1,73,34,1,1,0,0,0,0,128,0,-1--1--1,,1|(1035,124)| 10,74,PE losses BioE for Elec EJ,1486,690,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,75,74,60,0,0,0,0,0,128,0,-1--1--1,,1|(1453,650)| 10,76,FES Elec fossil fuel CHP plants TWh,931,230,67,18,8,131,0,0,0,0,0,0 1,77,26,76,1,0,0,0,0,128,0,-1--1--1,,1|(973,297)| 1,78,76,1,1,0,0,0,0,128,0,-1--1--1,,1|(992,214)| 10,79,demand Elec gas and coal TWh,1322,219,54,19,8,3,0,0,0,0,0,0 1,80,4,79,1,0,0,0,0,128,0,-1--1--1,,1|(1060,272)| 1,81,1,79,1,0,0,0,0,128,0,-1--1--1,,1|(1216,174)| 1,82,79,8,0,0,0,0,0,128,0,-1--1--1,,1|(1240,253)| 1,83,79,14,0,0,0,0,0,128,0,-1--1--1,,1|(1400,251)| 1,84,67,4,0,0,0,0,0,128,0,-1--1--1,,1|(782,233)| 10,85,FES Elec fossil fuel CHP plants EJ,923,163,66,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,86,Potential FE gen Elec fossil fuel CHP plants EJ,931,274,67,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,87,85,76,0,0,0,0,0,128,0,-1--1--1,,1|(925,190)| 10,88,"phase-out oil for electricity?",621,374,51,20,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,89,16,5,0,0,0,0,0,128,0,-1--1--1,,1|(634,213)| 1,90,88,5,0,0,0,0,0,128,0,-1--1--1,,1|(642,336)| 10,91,"start year policy phase-out oil for elec",474,228,67,19,8,131,0,0,0,0,0,0 10,92,"target year policy phase-out oil for elec",153,252,67,19,8,131,0,0,0,0,0,0 10,93,P share oil for Elec,464,302,59,11,8,3,0,0,0,0,0,0 10,94,"a lineal regr phase-out oil for elec",319,267,67,19,8,131,0,0,-1,0,0,0 10,95,"b lineal regr phase-out oil for elec",307,356,67,19,8,131,0,0,-1,0,0,0 1,96,94,95,0,0,0,0,0,0,0,-1--1--1,,1|(314,304)| 1,97,94,93,0,0,0,0,0,64,0,-1--1--1,,1|(395,285)| 1,98,95,93,1,0,0,0,0,64,0,-1--1--1,,1|(408,313)| 1,99,92,95,1,0,0,0,0,128,0,-1--1--1,,1|(212,304)| 1,100,92,94,1,0,0,0,0,128,0,-1--1--1,,1|(210,266)| 1,101,91,94,1,0,0,0,0,128,0,-1--1--1,,1|(453,213)| 10,102,share in target year oil for elec,152,350,60,19,8,131,0,0,0,0,0,0 1,103,102,94,0,0,0,0,0,128,0,-1--1--1,,1|(228,311)| 1,104,102,95,0,0,0,0,0,128,0,-1--1--1,,1|(219,352)| 1,105,16,94,1,0,0,0,0,128,0,-1--1--1,,1|(353,178)| 1,106,93,5,0,0,0,0,0,128,0,-1--1--1,,1|(568,295)| 1,107,91,5,0,0,0,0,0,64,0,-1--1--1,,1|(574,258)| 1,108,20,93,0,0,0,0,0,128,0,-1--1--1,,1|(483,340)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC - Nuclear #EE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,invest nuclear Tdolar,1503,249,43,19,8,131,0,0,0,0,0,0 10,2,life time nuclear,2120,470,45,30,8,131,0,0,0,0,0,0 10,3,Historic nuclear generation TWh,1618,264,52,19,8,131,0,0,0,0,0,0 10,4,invest cost nuclear,1385,222,59,15,8,131,0,0,0,0,0,0 1,5,4,1,1,0,0,0,0,64,0,-1--1--1,,1|(1441,255)| 10,6,replacement rate nuclear,1529,626,49,22,8,131,0,0,0,0,0,0 10,7,Cp nuclear initial,1170,71,52,11,8,131,0,0,0,0,0,0 10,8,Cp exogenous RES elec dispatch reduction,1016,69,80,26,8,130,0,3,-1,0,0,0,92-92-92,0-0-0,|12||92-92-92 10,9,Cp nuclear,1100,145,36,11,8,3,0,0,0,0,0,0 1,10,8,9,0,0,0,0,0,128,0,-1--1--1,,1|(1060,109)| 1,11,7,9,0,0,0,0,0,128,0,-1--1--1,,1|(1139,102)| 10,12,abundance uranium,874,603,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,13,0,1439,36,140,25,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Nuclear infraestructure 10,14,effects shortage uranium,825,527,50,19,8,3,0,0,0,0,0,0 1,15,12,14,0,0,0,0,0,128,0,-1--1--1,,1|(853,570)| 10,16,extraction uranium EJ,736,593,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,14,0,0,0,0,0,128,0,-1--1--1,,1|(774,564)| 12,18,4785148,1024,895,314,260,3,188,0,0,1,0,0,0 Electricity_generation_from_nuclear 12,19,48,933,388,10,8,0,3,0,0,-1,0,0,0 1,20,22,24,4,0,0,22,0,0,0,-1--1--1,,1|(1073,388)| 1,21,22,19,100,0,0,22,0,0,0,-1--1--1,,1|(979,388)| 11,22,48,1021,388,6,8,34,3,0,0,1,0,0,0 10,23,new required capacity nuclear,1021,415,69,19,40,3,0,0,-1,0,0,0 10,24,required capacity nuclear TW,1178,393,58,25,3,131,0,0,0,0,0,0 1,25,27,30,4,0,0,22,0,0,0,-1--1--1,,1|(1359,393)| 1,26,27,24,100,0,0,22,0,0,0,-1--1--1,,1|(1270,393)| 11,27,35136,1310,393,6,8,34,3,0,0,1,0,0,0 10,28,new nuclear capacity under planning,1310,420,77,19,40,3,0,0,-1,0,0,0 1,29,24,28,1,0,0,0,0,128,0,-1--1--1,,1|(1221,448)| 10,30,Planned nuclear capacity TW,1478,403,75,33,3,131,0,0,0,0,0,0 1,31,33,36,4,0,0,22,0,0,0,-1--1--1,,1|(1710,396)| 1,32,33,30,100,0,0,22,0,0,0,-1--1--1,,1|(1602,396)| 11,33,35264,1657,396,6,8,34,3,0,0,1,0,0,0 10,34,Nuclear capacity under construction,1657,423,64,19,40,3,0,0,-1,0,0,0 1,35,30,34,1,0,0,0,0,128,0,-1--1--1,,1|(1556,484)| 10,36,installed capacity nuclear TW,1827,396,69,27,3,131,0,0,0,0,0,0 1,37,36,23,1,0,0,0,0,128,0,-1--1--1,,1|(1319,200)| 12,38,48,2076,398,10,8,0,3,0,0,-1,0,0,0 1,39,41,38,4,0,0,22,0,0,0,-1--1--1,,1|(2021,396)| 1,40,41,36,100,0,0,22,0,0,0,-1--1--1,,1|(1930,396)| 11,41,48,1971,396,6,8,34,3,0,0,1,0,0,0 10,42,wear nuclear,1971,416,83,12,40,131,0,0,-1,0,0,0 1,43,36,42,1,0,0,0,0,128,0,-1--1--1,,1|(1925,432)| 10,44,initial required capacity nuclear,1202,340,52,19,8,3,0,0,0,0,0,0 1,45,44,24,0,0,0,0,0,128,1,-1--1--1,,1|(1194,357)| 10,46,initial capacity in construction nuclear,1526,343,82,20,8,131,0,0,0,0,0,0 10,47,time planification nuclear,1328,296,63,21,8,131,0,0,0,0,0,0 1,48,47,28,0,0,0,0,0,128,0,-1--1--1,,1|(1319,352)| 10,49,Time,980,332,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,23,0,0,0,0,0,64,0,-1--1--1,,1|(994,363)| 12,51,48,1470,568,10,8,0,3,0,0,-1,0,0,0 1,52,54,30,4,0,0,22,0,0,0,-1--1--1,,1|(1470,463)| 1,53,54,51,100,0,0,22,0,0,0,-1--1--1,,1|(1470,531)| 11,54,48,1470,496,8,6,33,3,0,0,4,0,0,0 10,55,replacement nuclear capacity,1529,496,51,20,40,131,0,0,-1,0,0,0 1,56,34,55,0,0,0,0,0,128,0,-1--1--1,,1|(1600,455)| 1,57,6,55,0,0,0,0,0,128,0,-1--1--1,,1|(1529,567)| 1,58,42,55,1,0,0,0,0,128,0,-1--1--1,,1|(1749,473)| 10,59,nuclear overcapacity,1701,625,41,19,8,3,0,0,0,0,0,0 1,60,59,55,1,0,0,0,0,128,0,-1--1--1,,1|(1626,590)| 10,61,Time,1660,527,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,61,55,0,0,0,0,0,64,0,-1--1--1,,1|(1613,516)| 1,63,2,42,0,0,0,0,0,128,0,-1--1--1,,1|(2046,443)| 10,64,Time,1993,469,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,65,64,42,0,0,0,0,0,64,0,-1--1--1,,1|(1984,449)| 10,66,Cp nuclear,1878,522,44,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,67,66,34,0,0,0,0,0,128,0,-1--1--1,,1|(1782,479)| 1,68,61,34,0,0,0,0,0,128,0,-1--1--1,,1|(1658,485)| 10,69,initial capacity installed nuclear,1914,348,50,19,8,3,0,0,0,0,0,0 1,70,3,34,0,0,0,0,0,128,0,-1--1--1,,1|(1635,336)| 10,71,TWe per TWh,2033,306,47,11,8,3,0,0,-1,0,0,0 1,72,71,69,0,0,0,0,0,64,0,-1--1--1,,1|(1989,321)| 10,73,initial gen nuclear,2038,348,53,11,8,3,0,0,0,0,0,0 1,74,73,69,0,0,0,0,0,128,0,-1--1--1,,1|(1981,348)| 10,75,time construction nuclear,1690,332,54,19,8,3,0,0,0,0,0,0 1,76,75,34,0,0,0,0,0,128,0,-1--1--1,,1|(1676,370)| 1,77,46,30,0,0,0,0,0,64,1,-1--1--1,,1|(1511,361)| 10,78,potential generation nuclear elec TWh,2020,572,62,19,8,3,0,0,0,0,0,0 1,79,36,78,0,0,0,0,0,128,0,-1--1--1,,1|(1922,483)| 1,80,66,78,0,0,0,0,0,128,0,-1--1--1,,1|(1930,540)| 10,81,TWe per TWh,1775,567,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,82,81,78,0,0,0,0,0,64,0,-1--1--1,,1|(1887,568)| 1,83,78,59,1,0,0,0,0,128,0,-1--1--1,,1|(1881,627)| 10,84,PE demand uranium EJ,2024,694,46,19,8,3,0,0,0,0,0,0 10,85,efficiency uranium for electricity,1925,778,57,19,8,3,0,0,-1,0,0,0 1,86,85,84,0,0,0,0,0,64,0,-1--1--1,,1|(1968,740)| 10,87,EJ per TWh,2103,777,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,88,87,84,0,0,0,0,0,64,0,-1--1--1,,1|(2072,744)| 1,89,7,69,1,0,0,0,0,128,0,-1--1--1,,1|(1584,162)| 10,90,selection of nuclear scenario,1302,532,61,19,8,3,0,0,0,0,0,0 1,91,90,55,0,0,0,0,0,128,0,-1--1--1,,1|(1413,514)| 10,92,P nuclear elec gen,1010,491,57,11,8,3,0,0,0,0,0,0 10,93,"P nuclear scen3-4",1006,593,47,20,8,131,0,0,0,0,0,0 1,94,90,92,0,0,0,0,0,64,0,-1--1--1,,1|(1160,512)| 1,95,92,23,0,0,0,0,0,128,0,-1--1--1,,1|(1013,463)| 10,96,"start year nuclear growth scen3-4",1133,571,55,19,8,131,0,0,0,0,0,0 10,97,Time,922,544,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,98,97,92,0,0,0,0,0,64,0,-1--1--1,,1|(959,521)| 1,99,93,92,0,0,0,0,0,64,0,-1--1--1,,1|(1007,544)| 1,100,96,92,0,0,0,0,0,64,0,-1--1--1,,1|(1070,530)| 10,101,FE nuclear Elec generation TWh,1701,705,56,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,102,101,59,0,0,0,0,0,128,0,-1--1--1,,1|(1701,672)| 1,103,14,23,1,0,0,0,0,128,0,-1--1--1,,1|(888,451)| 10,104,min Cp nuclear,970,162,54,19,8,3,0,0,0,0,0,0 10,105,Cp limit nuclear,1075,248,49,11,8,3,0,0,0,0,0,0 1,106,104,105,0,0,0,0,0,128,0,-1--1--1,,1|(1021,204)| 1,107,9,105,0,0,0,0,0,128,0,-1--1--1,,1|(1089,189)| 1,108,105,23,0,0,0,0,0,128,0,-1--1--1,,1|(1051,320)| 1,109,105,55,1,0,0,0,0,128,0,-1--1--1,,1|(1301,343)| 12,110,48,1816,181,10,8,0,3,0,0,-1,0,0,0 1,111,113,110,4,0,0,22,0,0,0,-1--1--1,,1|(1814,221)| 1,112,113,36,100,0,0,22,0,0,0,-1--1--1,,1|(1814,317)| 11,113,48,1814,260,8,6,33,3,0,0,4,0,0,0 10,114,"nuclear capacity phase-out",1897,260,75,23,40,131,0,0,-1,0,0,0 10,115,Time,1876,160,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,116,115,114,0,0,0,0,0,64,0,-1--1--1,,1|(1883,197)| 1,117,69,36,0,0,0,0,0,64,1,-1--1--1,,1|(1883,365)| 1,118,36,114,0,0,0,0,0,128,0,-1--1--1,,1|(1859,332)| 1,119,34,1,1,0,0,0,0,128,0,-1--1--1,,1|(1589,328)| 1,120,55,1,1,0,0,0,0,128,0,-1--1--1,,1|(1464,373)| 10,121,"P nuclear scen3-4",2000,100,75,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,122,"start year nuclear growth scen3-4",2049,148,68,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,123,122,114,0,0,0,0,0,128,0,-1--1--1,,1|(1981,197)| 1,124,121,114,0,0,0,0,0,128,0,-1--1--1,,1|(1953,171)| 1,125,81,34,0,0,0,0,0,128,0,-1--1--1,,1|(1723,504)| 10,126,selection of nuclear scenario,2081,211,66,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,127,126,114,0,0,0,0,0,128,0,-1--1--1,,1|(2000,232)| 10,128,Demand Elec NRE TWh,1657,791,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,129,128,23,0,0,0,0,0,128,0,-1--1--1,,1|(1345,606)| 1,130,78,84,0,0,0,0,0,128,0,-1--1--1,,1|(2021,626)| 1,131,128,78,0,0,0,0,0,128,0,-1--1--1,,1|(1832,685)| 12,132,0,683,284,153,59,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-0 3 conditions limit the installation of more nuclear power: (1) uranium scarcity, (2) RES supply all required electricity, and (3) if the Cp of nuclear falls below "min Cp nuclear". \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC RES - Potential #EER, EAR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,max potential RES elec TWe,850,350,59,19,8,131,0,0,0,0,0,0 10,2,"max PE geot-elec TWth",509,209,55,17,8,131,0,0,-1,0,0,0 10,3,"max geot-elec TWe",691,215,45,19,8,3,0,0,-1,0,0,0 10,4,Efficiency conversion geot PE to Elec,491,147,67,19,8,3,0,0,-1,0,0,0 1,5,4,3,0,0,0,0,0,0,0,-1--1--1,,1|(589,180)| 1,6,2,3,1,0,0,0,0,128,0,-1--1--1,,1|(589,216)| 1,7,3,1,0,0,0,0,0,128,0,-1--1--1,,1|(764,277)| 10,8,max BioE TWe,694,344,52,11,8,3,0,0,-1,0,0,0 1,9,8,1,0,0,0,0,0,128,0,-1--1--1,,1|(761,346)| 10,10,max hydro TWe,812,155,52,11,8,3,0,0,-1,0,0,0 10,11,max oceanic TWe,924,197,57,11,8,3,0,0,-1,0,0,0 10,12,max onshore wind TWe,1032,248,58,19,8,3,0,0,-1,0,0,0 10,13,max offshore wind TWe,1109,326,59,19,8,3,0,0,-1,0,0,0 10,14,max solar PV on land TWe,787,443,56,19,8,3,0,0,-1,0,0,0 10,15,power density solar PV,654,494,45,19,8,3,0,0,-1,0,0,0 1,16,15,14,0,0,0,0,0,0,0,-1--1--1,,1|(711,472)| 1,17,14,1,0,0,0,0,0,128,0,-1--1--1,,1|(814,402)| 1,18,10,1,0,0,0,0,0,128,0,-1--1--1,,1|(828,241)| 1,19,11,1,0,0,0,0,0,128,0,-1--1--1,,1|(892,263)| 1,20,13,1,0,0,0,0,0,128,0,-1--1--1,,1|(986,336)| 1,21,12,1,0,0,0,0,0,128,0,-1--1--1,,1|(947,295)| 12,22,0,892,84,214,37,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Biophysical sustainable potentials of renewables for electricity considered (assuming optimal Cp) 10,23,max potential RES elec TWh,1021,413,59,19,8,3,0,0,0,0,0,0 1,24,1,23,0,0,0,0,0,128,0,-1--1--1,,1|(928,379)| 10,25,TWe per TWh,1164,373,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,26,25,23,0,0,0,0,0,64,0,-1--1--1,,1|(1109,388)| 10,27,"power density RES elec TWe/Mha",521,541,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,15,0,0,0,0,0,0,0,-1--1--1,,1|(584,517)| 10,29,max potential tot RES elec TWh,1277,454,53,19,8,3,0,0,0,0,0,0 1,30,23,29,0,0,0,0,0,128,0,-1--1--1,,1|(1145,432)| 10,31,remaining potential tot RES elec,1363,542,64,27,8,131,0,0,0,0,0,0 1,32,29,31,0,0,0,0,0,128,0,-1--1--1,,1|(1310,488)| 10,33,real generation RES elec TWh,1035,744,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,34,remaining potential hydro,796,700,59,19,8,131,0,0,0,0,0,0 1,35,23,34,1,0,0,0,0,128,0,-1--1--1,,1|(881,533)| 1,36,33,34,0,0,0,0,0,128,0,-1--1--1,,1|(917,722)| 10,37,"remaining potential geot-elec",882,640,59,19,8,131,0,0,0,0,0,0 1,38,23,37,0,0,0,0,0,64,0,-1--1--1,,1|(955,520)| 10,39,"remaining potential solar-elec PV",1284,746,59,19,8,131,0,0,0,0,0,0 10,40,remaining potential offshore wind,1231,692,59,19,8,131,0,0,0,0,0,0 10,41,remaining potential onshore wind,1170,641,59,19,8,131,0,0,0,0,0,0 10,42,remaining potential oceanic,1073,626,59,19,8,131,0,0,0,0,0,0 10,43,remaining potential BioE,981,606,59,19,8,131,0,0,0,0,0,0 1,44,23,43,0,0,0,0,0,64,0,-1--1--1,,1|(1002,502)| 1,45,23,42,0,0,0,0,0,64,0,-1--1--1,,1|(1044,512)| 1,46,33,42,0,0,0,0,0,128,0,-1--1--1,,1|(1051,691)| 1,47,33,37,0,0,0,0,0,128,0,-1--1--1,,1|(964,695)| 1,48,33,43,0,0,0,0,0,128,0,-1--1--1,,1|(1010,681)| 1,49,23,41,0,0,0,0,0,64,0,-1--1--1,,1|(1091,521)| 1,50,23,40,1,0,0,0,0,64,0,-1--1--1,,1|(1143,542)| 1,51,23,39,1,0,0,0,0,64,0,-1--1--1,,1|(1217,578)| 1,52,33,41,0,0,0,0,0,128,0,-1--1--1,,1|(1096,696)| 1,53,33,39,0,0,0,0,0,128,0,-1--1--1,,1|(1157,744)| 1,54,33,40,0,0,0,0,0,128,0,-1--1--1,,1|(1130,718)| 10,55,power density CSP,655,570,45,19,8,3,0,0,-1,0,0,0 1,56,27,55,0,0,0,0,0,128,0,-1--1--1,,1|(592,555)| 10,57,max CSP TWe,781,508,38,19,8,131,0,0,-1,0,0,0 1,58,55,57,0,0,0,0,0,128,0,-1--1--1,,1|(711,541)| 1,59,57,1,1,0,0,0,0,128,0,-1--1--1,,1|(859,445)| 10,60,remaining potential CSP,1416,747,59,19,8,131,0,0,0,0,0,0 1,61,23,60,1,0,0,0,0,128,0,-1--1--1,,1|(1236,545)| 1,62,33,60,1,0,0,0,0,128,0,-1--1--1,,1|(1239,784)| 10,63,FE tot generation all RES elec TWh,1437,453,73,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,64,63,31,0,0,0,0,0,128,0,-1--1--1,,1|(1408,488)| 10,65,max biogas EJ,1370,345,66,13,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,66,max potential PHS TWe,1395,393,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,67,share PES biogas for elec,1304,319,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,68,65,29,0,0,0,0,0,128,0,-1--1--1,,1|(1330,391)| 1,69,67,29,0,0,0,0,0,128,0,-1--1--1,,1|(1291,379)| 1,70,66,29,0,0,0,0,0,128,0,-1--1--1,,1|(1342,420)| 1,71,25,29,0,0,0,0,0,128,0,-1--1--1,,1|(1208,405)| 10,72,EJ per TWh,1234,503,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,73,72,29,0,0,0,0,0,64,0,-1--1--1,,1|(1246,487)| 10,74,EJ per TWh,458,349,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,75,74,8,0,0,0,0,0,64,0,-1--1--1,,1|(567,346)| 10,76,available potential FE solid bioE for elec EJ,470,393,75,24,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,77,76,8,0,0,0,0,0,64,0,-1--1--1,,1|(587,367)| 10,78,TWe per TWh,464,314,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,79,78,8,0,0,0,0,0,64,0,-1--1--1,,1|(574,328)| 10,80,max solar on land Mha,389,568,54,19,8,3,0,0,-1,0,0,0 10,81,max solar PV on land MHa,529,458,54,19,8,3,0,0,-1,0,0,0 1,82,80,81,0,0,0,0,0,128,0,-1--1--1,,1|(453,517)| 10,83,max CSP on land MHa,530,646,54,19,8,3,0,0,-1,0,0,0 1,84,80,83,0,0,0,0,0,64,0,-1--1--1,,1|(452,603)| 10,85,surface solar PV Mha,431,703,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,86,surface CSP Mha,375,463,45,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,87,86,81,0,0,0,0,0,128,0,-1--1--1,,1|(440,460)| 1,88,85,83,0,0,0,0,0,128,0,-1--1--1,,1|(474,677)| 1,89,81,14,0,0,0,0,0,128,0,-1--1--1,,1|(650,450)| 1,90,83,57,1,0,0,0,0,128,0,-1--1--1,,1|(699,604)| 10,91,Percent remaining potential tot RES elec,1525,611,69,19,8,3,0,0,0,0,0,0 1,92,31,91,0,0,0,0,0,128,0,-1--1--1,,1|(1446,577)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC RES - Capacities & generation #EER $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,48,464,612,10,8,0,3,0,0,-1,0,0,0 1,2,4,7,4,0,0,22,0,0,0,-1--1--1,,1|(601,612)| 1,3,4,1,100,0,0,22,0,0,0,-1--1--1,,1|(510,612)| 11,4,48,552,612,6,8,34,3,0,0,1,0,0,0 10,5,new required capacity RES elec,552,639,58,19,40,3,0,0,-1,0,0,0 10,6,past RES elec capacity growth,547,795,56,24,8,131,0,0,0,0,0,0 10,7,required capacity RES elec TW,703,617,58,25,3,131,0,0,0,0,0,0 10,8,initial required capacity RES elec,722,567,58,19,8,3,0,0,0,0,0,0 1,9,11,17,4,0,0,22,0,0,0,-1--1--1,,1|(893,617)| 1,10,11,7,100,0,0,22,0,0,0,-1--1--1,,1|(798,617)| 11,11,31408,841,617,6,8,34,3,0,0,1,0,0,0 10,12,new RES elec capacity under planning,841,645,76,20,40,131,0,0,-1,0,0,0 10,13,time planification RES elec,846,542,53,19,8,3,0,0,0,0,0,0 1,14,13,12,0,0,0,0,0,128,0,-1--1--1,,1|(844,586)| 1,15,7,12,1,0,0,0,0,128,0,-1--1--1,,1|(752,672)| 1,16,8,7,0,0,0,0,0,64,1,-1--1--1,,1|(716,582)| 10,17,RES elec planned capacity TW,1017,622,77,29,3,131,0,0,0,0,0,0 10,18,initial capacity in construction RES elec,1050,573,81,19,8,131,0,0,0,0,0,0 1,19,21,26,4,0,0,22,0,0,0,-1--1--1,,1|(1233,620)| 1,20,21,17,100,0,0,22,0,0,0,-1--1--1,,1|(1136,620)| 11,21,31392,1184,620,6,8,34,3,0,0,1,0,0,0 10,22,RES elec capacity under construction TW,1184,648,84,20,40,131,0,0,-1,0,0,0 10,23,time construction RES elec,1188,549,68,21,8,131,0,0,0,0,0,0 1,24,23,22,1,0,0,0,0,128,0,-1--1--1,,1|(1191,590)| 1,25,17,22,1,0,0,0,0,128,0,-1--1--1,,1|(1094,667)| 10,26,installed capacity RES elec TW,1341,624,65,26,3,131,0,0,0,0,0,0 1,27,26,5,1,0,0,0,0,128,0,-1--1--1,,1|(1055,695)| 12,28,48,1541,621,10,8,0,3,0,0,-1,0,0,0 1,29,31,28,4,0,0,22,0,0,0,-1--1--1,,1|(1507,620)| 1,30,31,26,100,0,0,22,0,0,0,-1--1--1,,1|(1438,620)| 11,31,48,1477,620,6,8,34,3,0,0,1,0,0,0 10,32,wear RES elec,1477,639,47,11,40,3,0,0,-1,0,0,0 10,33,lifetime RES elec,1459,540,53,11,8,3,0,0,0,0,0,0 1,34,33,32,1,0,0,0,0,128,0,-1--1--1,,1|(1475,584)| 1,35,26,32,1,0,0,0,0,128,0,-1--1--1,,1|(1422,663)| 12,36,48,1021,777,10,8,0,3,0,0,-1,0,0,0 1,37,39,17,4,0,0,22,0,0,0,-1--1--1,,1|(1023,686)| 1,38,39,36,100,0,0,22,0,0,0,-1--1--1,,1|(1023,751)| 11,39,48,1023,727,8,6,33,3,0,0,4,0,0,0 10,40,replacement capacity RES elec,1092,727,61,18,40,131,0,0,-1,0,0,0 1,41,32,40,1,0,0,0,0,128,0,-1--1--1,,1|(1406,725)| 10,42,replacement rate RES elec,1048,824,53,19,8,3,0,0,0,0,0,0 1,43,42,40,0,0,0,0,0,128,0,-1--1--1,,1|(1066,781)| 1,44,18,17,0,0,0,0,0,64,1,-1--1--1,,1|(1043,589)| 10,45,potential generation RES elec TWh,1297,474,62,19,8,3,0,0,0,0,0,0 1,46,26,45,1,0,0,0,0,128,0,-1--1--1,,1|(1308,561)| 10,47,Cp RES elec,1379,297,42,11,8,3,0,0,0,0,0,0 10,48,TWe per TWh,1168,420,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,49,48,45,0,0,0,0,0,128,0,-1--1--1,,1|(1216,440)| 10,50,"Cp-ini RES elec",1538,277,50,11,8,131,0,0,0,0,0,0 1,51,50,47,0,0,0,0,0,128,0,-1--1--1,,1|(1461,286)| 10,52,RES elec tot overcapacity,1490,411,41,19,8,3,0,0,0,0,0,0 10,53,FE real tot generation RES elec TWh,1156,267,76,18,8,131,0,0,0,0,0,0 1,54,53,52,1,0,0,0,0,128,0,-1--1--1,,1|(1333,325)| 1,55,52,40,1,0,0,0,0,128,0,-1--1--1,,1|(1543,643)| 10,56,abundance RES elec,962,287,52,19,8,3,0,0,0,0,0,0 1,57,53,56,0,0,0,0,0,128,0,-1--1--1,,1|(1053,276)| 10,58,abundance RES elec2,682,301,52,19,8,3,0,0,0,0,0,0 1,59,56,58,1,0,0,0,0,128,0,-1--1--1,,1|(813,273)| 1,60,58,5,1,0,0,0,0,128,0,-1--1--1,,1|(566,448)| 10,61,adapt growth RES elec,404,761,43,19,8,3,0,0,0,0,0,0 1,62,6,61,0,0,0,0,0,64,0,-1--1--1,,1|(475,778)| 10,63,Time,358,660,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,64,63,61,0,0,0,0,0,64,0,-1--1--1,,1|(376,700)| 10,65,Time dmnl,294,767,34,11,8,3,0,0,-1,0,0,0 1,66,65,61,0,0,0,0,0,64,0,-1--1--1,,1|(337,765)| 10,67,remaining potential RES elec after intermitt,421,445,79,25,8,131,0,0,0,0,0,0 10,68,remaining potential constraint on new RES elec capacity,417,549,92,22,8,131,0,0,0,0,0,0 1,69,67,68,0,0,0,0,0,128,0,-1--1--1,,1|(419,491)| 1,70,68,5,1,0,0,0,0,128,0,-1--1--1,,1|(476,586)| 10,71,potential tot generation RES elec TWh,1276,374,76,21,8,131,0,0,0,0,0,0 1,72,45,71,0,0,0,0,0,128,0,-1--1--1,,1|(1288,431)| 1,73,71,53,0,0,0,0,0,128,0,-1--1--1,,1|(1219,323)| 1,74,71,52,0,0,0,0,0,128,0,-1--1--1,,1|(1393,393)| 10,75,TWe per TWh,536,262,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,76,initial instal cap RES elec,1384,575,62,20,8,131,0,0,0,0,0,0 10,77,P RES elec growth,390,864,60,11,8,3,0,0,0,0,0,0 10,78,Time,1105,794,26,11,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,79,78,40,0,0,0,0,0,128,0,-1--1--1,,1|(1100,770)| 10,80,potential RES elec after intermitt TWh,425,337,72,27,8,131,0,0,0,0,0,0 1,81,80,67,0,0,0,0,0,128,0,-1--1--1,,1|(422,385)| 1,82,75,80,0,0,0,0,0,128,0,-1--1--1,,1|(497,287)| 10,83,EJ per TWh,672,300,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,84,TWe per TWh,672,300,56,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,85,max potential RES elec TWe,421,252,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,86,85,80,0,0,0,0,0,128,0,-1--1--1,,1|(421,283)| 1,87,63,5,0,0,0,0,0,128,0,-1--1--1,,1|(432,652)| 10,88,Time 95pc TS potential RES elec,312,374,59,19,8,3,0,0,0,0,0,0 1,89,67,88,0,0,0,0,0,128,0,-1--1--1,,1|(367,410)| 10,90,Time,225,322,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,91,90,88,0,0,0,0,0,64,0,-1--1--1,,1|(255,340)| 10,92,real generation RES elec TWh,1549,477,64,19,8,3,0,0,0,0,0,0 1,93,45,92,1,0,0,0,0,128,0,-1--1--1,,1|(1417,480)| 1,94,52,92,1,0,0,0,0,128,0,-1--1--1,,1|(1518,438)| 10,95,potential tot RES elec after intermitt,736,368,70,19,8,3,0,0,0,0,0,0 1,96,80,95,0,0,0,0,0,128,0,-1--1--1,,1|(574,351)| 10,97,remaining potential tot RES elec after intermitt,966,367,73,20,8,131,0,0,0,0,0,0 1,98,95,97,0,0,0,0,0,128,0,-1--1--1,,1|(842,367)| 1,99,53,97,1,0,0,0,0,128,0,-1--1--1,,1|(1071,318)| 10,100,Time,1494,686,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,101,100,32,0,0,0,0,0,64,0,-1--1--1,,1|(1488,668)| 12,102,0,574,173,299,42,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Infraestructures for electricity generation from RES (hydro, geothermal, solid biomass, oceanic, wind onshore, wind offshore and solar) 10,103,min Cp baseload RES,1276,218,54,19,8,3,0,0,0,0,0,0 1,104,103,47,0,0,0,0,0,128,0,-1--1--1,,1|(1326,257)| 12,105,0,1958,62,332,38,8,135,0,24,-1,0,0,0,-1--1--1,0-0-0,|20|I|0-0-0 Select one scenario or one RES source to visualize outputs 12,106,0,1965,822,340,240,3,188,0,0,1,0,0,0 Electricity_generation_from_RES_by_source 10,107,real Cp RES elec,1576,369,55,11,8,3,0,0,0,0,0,0 1,108,92,107,0,0,0,0,0,128,0,-1--1--1,,1|(1561,425)| 1,109,26,107,1,0,0,0,0,128,0,-1--1--1,,1|(1561,511)| 10,110,TWe per TWh,1556,316,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,111,110,107,0,0,0,0,0,64,0,-1--1--1,,1|(1563,335)| 1,112,47,45,1,0,0,0,0,128,0,-1--1--1,,1|(1388,392)| 10,113,EROI allocation rule per RES elec,654,708,61,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||255-0-0 10,114,adapt growth RES elec after allocation,487,700,70,21,8,131,0,0,0,0,0,0 1,115,113,114,0,0,0,0,0,128,0,-1--1--1,,1|(581,705)| 1,116,61,114,0,0,0,0,0,128,0,-1--1--1,,1|(437,735)| 10,117,activate EROI allocation rule,656,762,52,19,8,131,0,0,0,0,0,0 1,118,117,114,0,0,0,0,0,128,0,-1--1--1,,1|(581,734)| 1,119,114,5,0,0,0,0,0,128,0,-1--1--1,,1|(514,673)| 10,120,Cp baseload reduction,1549,214,52,19,8,131,0,0,0,0,0,0 1,121,50,120,0,0,0,0,0,128,0,-1--1--1,,1|(1540,256)| 10,122,Cp baseload reduction,317,280,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,123,122,80,0,0,0,0,0,128,0,-1--1--1,,1|(356,301)| 1,124,47,107,0,0,0,0,0,128,0,-1--1--1,,1|(1470,330)| 10,125,Time,1471,360,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,126,125,107,0,0,0,0,0,64,0,-1--1--1,,1|(1502,362)| 1,127,47,120,0,0,0,0,0,128,0,-1--1--1,,1|(1449,262)| 1,128,45,67,1,0,0,0,0,128,0,-1--1--1,,1|(878,417)| 10,129,potential generation RES elec TWh,1116,882,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,130,potential RES elec after intermitt TWh,966,882,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,131,129,42,0,0,0,0,0,128,0,-1--1--1,,1|(1087,857)| 1,132,130,42,0,0,0,0,0,128,0,-1--1--1,,1|(1000,856)| 10,133,new capacity installed growth rate RES elec,1260,712,69,19,8,3,0,0,0,0,0,0 1,134,26,133,0,0,0,0,0,128,0,-1--1--1,,1|(1302,666)| 10,135,threshold remaining potential new capacity,300,485,74,21,8,131,0,0,0,0,0,0 1,136,135,68,0,0,0,0,0,128,0,-1--1--1,,1|(350,513)| 10,137,table hist capacity RES elec,694,472,67,22,8,131,0,0,0,0,0,0 10,138,"total time plan+constr RES elec",952,493,71,21,8,131,0,0,0,0,0,0 1,139,13,138,0,0,0,0,0,128,0,-1--1--1,,1|(890,521)| 1,140,23,138,0,0,0,0,0,128,0,-1--1--1,,1|(1078,522)| 10,141,Historic new required capacity RES elec,589,534,70,20,8,131,0,0,0,0,0,0 1,142,137,141,0,0,0,0,0,128,0,-1--1--1,,1|(645,500)| 1,143,138,141,1,0,0,0,0,128,0,-1--1--1,,1|(768,497)| 10,144,Time,600,461,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,145,144,141,0,0,0,0,0,64,0,-1--1--1,,1|(596,486)| 12,146,0,540,496,82,19,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||255-0-0 1,147,141,5,0,0,0,0,0,128,0,-1--1--1,,1|(572,580)| 1,148,138,5,1,0,0,0,0,128,0,-1--1--1,,1|(725,527)| 1,149,76,26,0,0,0,0,0,128,1,-1--1--1,,1|(1370,592)| 1,150,137,8,0,0,0,0,0,64,0,-1--1--1,,1|(706,514)| 1,151,8,18,0,0,0,0,0,128,0,-1--1--1,,1|(867,569)| 12,152,0,806,324,40,20,8,3,0,0,-1,0,0,0 10,153,Total FE Elec demand after priorities TWh,1050,187,84,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,154,153,56,0,0,0,0,0,128,0,-1--1--1,,1|(1010,231)| 1,155,153,53,0,0,0,0,0,128,0,-1--1--1,,1|(1097,223)| 10,156,P hydro growth,270,891,49,11,8,3,0,0,0,0,0,0 1,157,156,77,0,0,0,0,0,128,0,-1--1--1,,1|(322,878)| 10,158,P geot growth,274,921,55,11,8,3,0,0,0,0,0,0 1,159,158,77,0,0,0,0,0,128,0,-1--1--1,,1|(325,895)| 10,160,"P solid bioE-elec growth",305,961,61,19,8,131,0,0,0,0,0,0 1,161,160,77,0,0,0,0,0,128,0,-1--1--1,,1|(345,913)| 10,162,P oceanic growth,374,1002,55,19,8,131,0,0,0,0,0,0 1,163,162,77,0,0,0,0,0,128,0,-1--1--1,,1|(381,935)| 10,164,P wind onshore growth,478,997,54,20,8,131,0,0,0,0,0,0 1,165,164,77,0,0,0,0,0,128,0,-1--1--1,,1|(434,931)| 10,166,P wind offshore growth,556,976,50,19,8,131,0,0,0,0,0,0 1,167,166,77,0,0,0,0,0,128,0,-1--1--1,,1|(472,919)| 10,168,P solar PV growth,573,942,50,19,8,131,0,0,0,0,0,0 1,169,168,77,0,0,0,0,0,128,0,-1--1--1,,1|(478,901)| 10,170,P CSP growth,597,906,35,19,8,131,0,0,0,0,0,0 1,171,170,77,0,0,0,0,0,128,0,-1--1--1,,1|(509,888)| 10,172,Cp exogenous RES elec reduction,1413,217,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,173,172,47,1,0,0,0,0,128,0,-1--1--1,,1|(1396,254)| 12,174,0,1964,329,339,247,3,188,0,0,1,0,0,0 RES_elec_installed_capacity_by_source 10,175,installed capacity RES elec delayed 1yr,1429,725,71,26,8,131,0,0,-1,0,0,0 1,176,26,175,0,0,0,0,0,128,0,-1--1--1,,1|(1379,669)| 1,177,175,133,0,0,0,0,0,128,0,-1--1--1,,1|(1350,719)| 10,178,constraint elec storage availability,846,755,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,179,178,40,0,0,0,0,0,128,0,-1--1--1,,1|(963,741)| 1,180,178,114,0,0,0,0,0,128,0,-1--1--1,,1|(677,729)| 10,181,Start year P growth RES elec,252,702,55,21,8,131,0,0,0,0,0,0 1,182,181,61,0,0,0,0,0,128,0,-1--1--1,,1|(326,731)| 1,183,77,61,0,0,0,0,0,128,0,-1--1--1,,1|(395,823)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC RES - Supply by techn #EER $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,75,0 10,1,PE Elec generation from RES EJ,331,453,70,19,8,131,0,0,0,0,0,0 10,2,"FE Elec generation from geot-elec TWh",1179,330,76,19,8,131,0,0,-1,0,0,0 10,3,FE Elec generation from hydro TWh,1179,264,60,19,8,131,0,0,-1,0,0,0 10,4,FE Elec generation from onshore wind TWh,1179,545,77,19,8,131,0,0,-1,0,0,0 10,5,FE Elec generation from oceanic TWh,1179,455,60,19,8,131,0,0,-1,0,0,0 10,6,FE Elec generation from bioE TWh,1179,396,60,19,8,131,0,0,-1,0,0,0 10,7,FE Elec generation from solar PV TWh,1193,668,74,20,8,131,0,0,-1,0,0,0 10,8,share Elec demand covered by RES,1637,377,65,19,8,131,0,0,0,0,0,0 10,9,Demand Elec NRE TWh,1628,475,43,19,8,3,0,0,0,0,0,0 10,10,Total FE Elec demand TWh,1759,422,49,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,10,8,1,0,0,0,0,64,0,-1--1--1,,1|(1706,384)| 1,12,10,9,1,0,0,0,0,64,0,-1--1--1,,1|(1718,458)| 12,13,0,433,799,145,20,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Primary energy RES ELEC 12,14,0,1131,808,135,18,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Final energy RES ELEC 10,15,FE Elec generation from offshore wind TWh,1179,604,77,19,8,131,0,0,-1,0,0,0 10,16,"PE geot-elec for Elec generation EJ",564,330,66,21,8,131,0,0,-1,0,0,0 1,17,16,1,0,0,0,0,0,64,0,-1--1--1,,1|(451,389)| 10,18,PE hydro for Elec generation EJ,551,261,57,19,8,3,0,0,-1,0,0,0 1,19,18,1,0,0,0,0,0,64,0,-1--1--1,,1|(446,352)| 10,20,PE oceanic for Elec generation EJ,552,448,63,19,8,3,0,0,-1,0,0,0 1,21,20,1,0,0,0,0,0,64,0,-1--1--1,,1|(451,449)| 10,22,PE offshore wind for Elec generation EJ,551,592,66,19,8,3,0,0,-1,0,0,0 1,23,22,1,0,0,0,0,0,64,0,-1--1--1,,1|(446,526)| 10,24,PE onshore wind for Elec generation EJ,551,520,66,19,8,3,0,0,-1,0,0,0 1,25,24,1,0,0,0,0,0,64,0,-1--1--1,,1|(447,488)| 10,26,PE solar PV for Elec generation EJ,557,676,60,19,8,131,0,0,-1,0,0,0 1,27,26,1,0,0,0,0,0,64,0,-1--1--1,,1|(448,569)| 10,28,PE bioE for Elec generation EJ,552,394,58,19,8,3,0,0,-1,0,0,0 1,29,28,1,0,0,0,0,0,128,0,-1--1--1,,1|(454,419)| 10,30,real generation RES elec TWh,955,453,68,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,31,PE real generation RES elec,763,453,58,19,8,131,0,0,-1,0,0,0 10,32,RES to fossil accounting,736,335,42,19,8,3,0,0,-1,0,0,0 10,33,efficiency conversion bioE to Elec,745,611,66,19,8,3,0,0,-1,0,0,0 1,34,33,31,0,0,0,0,0,0,0,-1--1--1,,1|(752,538)| 10,35,EJ per TWh,846,323,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,31,0,0,0,0,0,0,0,-1--1--1,,1|(810,378)| 1,37,32,31,0,0,0,0,0,0,0,-1--1--1,,1|(747,387)| 1,38,30,31,0,0,0,0,0,128,0,-1--1--1,,1|(861,453)| 10,39,PE BioW for Elec generation Mtoe,916,380,58,19,8,3,0,0,-1,0,0,0 10,40,MToe per EJ,1004,322,43,11,8,3,0,0,-1,0,0,0 1,41,40,39,0,0,0,0,0,0,0,-1--1--1,,1|(971,343)| 1,42,31,39,0,0,0,0,0,0,0,-1--1--1,,1|(832,419)| 10,43,EJ per TWh,554,299,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,44,EJ per TWh,549,366,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,45,EJ per TWh,551,714,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,46,EJ per TWh,562,558,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,47,EJ per TWh,563,630,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,48,EJ per TWh,560,477,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,49,EJ per TWh,559,423,48,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,31,18,0,0,0,0,0,128,0,-1--1--1,,1|(662,361)| 1,51,31,16,0,0,0,0,0,128,0,-1--1--1,,1|(670,396)| 1,52,31,28,0,0,0,0,0,128,0,-1--1--1,,1|(664,425)| 1,53,31,20,0,0,0,0,0,128,0,-1--1--1,,1|(666,450)| 1,54,31,24,0,0,0,0,0,128,0,-1--1--1,,1|(664,483)| 1,55,31,22,0,0,0,0,0,128,0,-1--1--1,,1|(662,518)| 1,56,31,26,0,0,0,0,0,128,0,-1--1--1,,1|(664,559)| 1,57,30,3,0,0,0,0,0,128,0,-1--1--1,,1|(1061,363)| 1,58,30,4,0,0,0,0,0,128,0,-1--1--1,,1|(1060,496)| 1,59,30,6,0,0,0,0,0,128,0,-1--1--1,,1|(1064,425)| 1,60,30,7,0,0,0,0,0,128,0,-1--1--1,,1|(1067,555)| 1,61,30,2,0,0,0,0,0,128,0,-1--1--1,,1|(1060,394)| 1,62,30,5,0,0,0,0,0,128,0,-1--1--1,,1|(1064,453)| 1,63,30,15,0,0,0,0,0,128,0,-1--1--1,,1|(1060,524)| 10,64,"max geot-elec TWe",1481,769,50,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,65,max solar PV on land TWe,1481,769,61,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,66,FE real tot generation RES elec TWh,1341,377,79,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,67,FE Elec generation from CSP TWh,1197,743,60,19,8,3,0,0,0,0,0,0 1,68,30,67,1,0,0,0,0,128,0,-1--1--1,,1|(1060,602)| 10,69,PE CSP for Elec generation EJ,557,734,67,19,8,131,0,0,-1,0,0,0 1,70,31,69,0,0,0,0,0,128,0,-1--1--1,,1|(664,587)| 1,71,69,1,0,0,0,0,0,128,0,-1--1--1,,1|(448,598)| 12,72,4785630,1541,717,258,186,3,188,0,0,1,0,0,0 Electricity_generation_from_RES 10,73,PE losses BioE for Elec EJ,933,656,95,15,8,131,0,0,0,0,0,0 1,74,6,73,0,0,0,0,0,128,0,-1--1--1,,1|(1059,522)| 1,75,31,73,1,0,0,0,0,128,0,-1--1--1,,1|(841,566)| 10,76,EJ per TWh,926,714,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,77,76,73,0,0,0,0,0,64,0,-1--1--1,,1|(928,693)| 12,78,7800328,1526,201,258,146,3,188,0,0,1,0,0,0 Share_Electricity_covered_by_RES 10,79,Total FE Elec demand TWh,978,164,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,80,Total FE Elec demand after priorities TWh,796,217,79,19,8,3,0,0,0,0,0,0 1,81,79,80,0,0,0,0,0,128,0,-1--1--1,,1|(901,186)| 10,82,FES elec from biogas TWh,891,61,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,83,FES elec from biogas TWh,1578,488,51,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,84,FES elec from RES with priority TWh,799,136,63,19,8,3,0,0,0,0,0,0 1,85,82,84,0,0,0,0,0,128,0,-1--1--1,,1|(850,94)| 1,86,84,80,0,0,0,0,0,128,0,-1--1--1,,1|(797,169)| 10,87,FES elec from RES with priority TWh,1338,470,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,88,FE tot generation all RES elec TWh,1499,422,69,19,8,3,0,0,0,0,0,0 1,89,66,88,0,0,0,0,0,128,0,-1--1--1,,1|(1414,398)| 1,90,87,88,0,0,0,0,0,128,0,-1--1--1,,1|(1411,447)| 1,91,88,9,0,0,0,0,0,128,0,-1--1--1,,1|(1558,446)| 1,92,88,8,0,0,0,0,0,128,0,-1--1--1,,1|(1560,401)| 10,93,PES tot biogas for elec,325,607,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,94,93,1,0,0,0,0,0,128,0,-1--1--1,,1|(327,536)| 10,95,FES elec from waste TWh,964,224,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,96,95,80,0,0,0,0,0,128,0,-1--1--1,,1|(901,221)| 1,97,95,9,1,0,0,0,0,128,0,-1--1--1,,1|(1532,503)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC RES: Overcap due to RES variability #EER $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,FE Elec generation from hydro TWh,333,244,69,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,"FE Elec generation from geot-elec TWh",338,311,75,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,3,FE Elec generation from bioE TWh,336,380,75,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,FE Elec generation from oceanic TWh,341,466,71,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,5,Elec generation dispatch from RES TWh,586,366,79,19,8,131,0,0,0,0,0,0 1,6,1,5,1,0,0,0,0,64,0,-1--1--1,,1|(486,264)| 1,7,2,5,1,0,0,0,0,64,0,-1--1--1,,1|(452,299)| 1,8,3,5,1,0,0,0,0,64,0,-1--1--1,,1|(451,404)| 1,9,4,5,1,0,0,0,0,64,0,-1--1--1,,1|(498,442)| 10,10,FE Elec generation from onshore wind TWh,344,632,81,17,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,11,FE Elec generation from solar PV TWh,345,535,81,17,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,12,Elec generation variable from RES TWh,595,605,75,20,8,131,0,0,0,0,0,0 1,13,10,12,1,0,0,0,0,64,0,-1--1--1,,1|(466,608)| 1,14,11,12,1,0,0,0,0,64,0,-1--1--1,,1|(549,573)| 10,15,Share variable RES elec generation vs total,741,445,93,21,8,131,0,0,0,0,0,0 10,16,FE Elec generation from NRE TWh,808,304,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,15,1,0,0,0,0,64,0,-1--1--1,,1|(788,380)| 1,18,5,15,1,0,0,0,0,64,0,-1--1--1,,1|(655,352)| 1,19,12,15,1,0,0,0,0,64,0,-1--1--1,,1|(700,527)| 10,20,FE Elec generation from offshore wind TWh,344,690,92,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,21,20,12,1,0,0,0,0,128,0,-1--1--1,,1|(410,687)| 10,22,Share variable RES elec vs total generation delayed 1yr,987,439,92,24,8,131,0,0,0,0,0,0 1,23,15,22,0,0,0,0,0,128,0,-1--1--1,,1|(857,442)| 10,24,Cp exogenous RES elec dispatch reduction,957,654,75,18,8,131,0,0,0,0,0,0 10,25,FE Elec generation from CSP TWh,334,579,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,26,25,12,1,0,0,0,0,128,0,-1--1--1,,1|(454,576)| 10,27,FES elec from biogas TWh,334,181,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,5,1,0,0,0,0,128,0,-1--1--1,,1|(539,255)| 10,29,Cp exogenous RES elec var reduction,1143,657,63,19,8,3,0,0,-1,0,0,0 12,30,0,1419,243,210,216,3,188,0,0,1,0,0,0 Share_variable_vs_total_Electricity_generation 10,31,Cp exogenous RES elec reduction,1056,739,63,19,8,3,0,0,0,0,0,0 1,32,24,31,0,0,0,0,0,128,0,-1--1--1,,1|(999,691)| 1,33,29,31,0,0,0,0,0,128,0,-1--1--1,,1|(1104,693)| 12,34,48,792,537,10,8,0,3,0,0,-1,0,0,0 1,35,37,39,4,0,0,22,0,0,0,-1--1--1,,1|(954,534)| 1,36,37,34,100,0,0,22,0,0,0,-1--1--1,,1|(841,534)| 11,37,48,887,534,6,8,34,3,0,0,1,0,0,0 10,38,increase variable RES share elec vs total generation,887,570,70,28,40,3,0,0,-1,0,0,0 10,39,Share variable RES elec generation vs total gen,1101,538,86,29,3,131,0,0,0,0,0,0 1,40,22,38,0,0,0,0,0,128,0,-1--1--1,,1|(942,496)| 1,41,15,38,1,0,0,0,0,128,0,-1--1--1,,1|(804,499)| 1,42,39,29,0,0,0,0,0,128,0,-1--1--1,,1|(1121,595)| 1,43,39,24,0,0,0,0,0,128,0,-1--1--1,,1|(1027,597)| 10,44,initial share variable RES elec gen vs total,1134,485,72,18,8,131,0,0,0,0,0,0 1,45,44,39,0,0,0,0,0,128,1,-1--1--1,,1|(1124,500)| 12,46,0,1420,658,209,191,3,188,0,0,1,0,0,0 Cp_exogenous_RES_elec_reduction 12,47,0,852,196,172,32,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Overcapacities in RES technologies due to the penetration of variable RES \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC RES - Total monetary investments #EER $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,invest bioW Tdolar,529,189,39,19,8,3,0,0,-1,0,0,0 10,2,"invest geot-elec Tdolar",529,127,50,19,8,131,0,0,-1,0,0,0 10,3,invest hydro Tdolar,529,60,39,19,8,3,0,0,-1,0,0,0 10,4,invest oceanic Tdolar,529,249,45,19,8,3,0,0,-1,0,0,0 10,5,invest solar Tdolar,529,425,58,11,8,3,0,0,-1,0,0,0 10,6,invest onshore wind Tdolar,529,307,46,19,8,131,0,0,-1,0,0,0 10,7,Invest RES for Elec,691,248,68,16,8,131,0,0,0,0,0,0 1,8,6,7,1,0,0,0,0,64,0,-1--1--1,,1|(649,281)| 1,9,1,7,1,0,0,0,0,64,0,-1--1--1,,1|(629,205)| 1,10,2,7,1,0,0,0,0,64,0,-1--1--1,,1|(600,126)| 1,11,3,7,1,0,0,0,0,64,0,-1--1--1,,1|(640,95)| 1,12,4,7,1,0,0,0,0,64,0,-1--1--1,,1|(648,237)| 1,13,5,7,1,0,0,0,0,64,0,-1--1--1,,1|(661,392)| 10,14,share tot monet invest Elec RES vs GDP,1121,193,67,18,8,131,0,0,0,0,0,0 10,15,Cumulated total monet invest RES for Elec,1167,328,69,26,3,131,0,0,0,0,0,0 12,16,48,810,324,10,8,0,3,0,0,-1,0,0,0 1,17,19,15,4,0,0,22,0,0,0,-1--1--1,,1|(1025,324)| 1,18,19,16,100,0,0,22,0,0,0,-1--1--1,,1|(880,324)| 11,19,48,946,324,6,8,34,3,0,0,1,0,0,0 10,20,Total monet invest RES for elec Tdolar,946,351,67,19,40,131,0,0,-1,0,0,0 10,21,invest offshore wind Tdolar,529,368,46,19,8,3,0,0,-1,0,0,0 1,22,21,7,1,0,0,0,0,128,0,-1--1--1,,1|(654,317)| 1,23,7,20,1,0,0,0,0,64,0,-1--1--1,,1|(869,286)| 1,24,19,14,1,0,0,0,0,128,0,-1--1--1,,1|(1042,278)| 12,25,0,1487,207,234,184,3,188,0,0,1,0,0,0 Cumulated_total_investment_RES_for_Electricity 12,26,0,1488,577,235,184,3,188,0,0,1,0,0,0 Share_of_GDP_of_investments_for_RES_for_Elec 10,27,share extra monet invest to cope with variable Elec RES,1070,449,95,20,8,131,0,0,0,0,0,0 1,28,20,27,1,0,0,0,0,128,0,-1--1--1,,1|(1000,406)| 10,29,invest RES elec Tdolar,345,220,50,19,8,3,0,0,-1,0,0,0 10,30,invest cost RES elec,301,125,50,19,8,3,0,0,-1,0,0,0 1,31,30,29,0,0,0,0,0,0,0,-1--1--1,,1|(319,166)| 10,32,RES elec capacity under construction TW,295,315,84,26,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,33,32,29,0,0,0,0,0,0,0,-1--1--1,,1|(318,270)| 1,34,29,3,0,0,0,0,0,128,0,-1--1--1,,1|(431,144)| 1,35,29,2,0,0,0,0,0,128,0,-1--1--1,,1|(430,176)| 1,36,29,1,0,0,0,0,0,128,0,-1--1--1,,1|(435,204)| 1,37,29,4,0,0,0,0,0,128,0,-1--1--1,,1|(432,232)| 1,38,29,6,0,0,0,0,0,128,0,-1--1--1,,1|(430,260)| 1,39,29,5,0,0,0,0,0,128,0,-1--1--1,,1|(435,321)| 1,40,29,21,0,0,0,0,0,128,0,-1--1--1,,1|(431,289)| 10,41,GDP,1130,91,42,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,14,0,0,0,0,0,128,0,-1--1--1,,1|(1126,131)| 10,43,invest CSP Tdolar,530,484,36,19,8,3,0,0,-1,0,0,0 1,44,29,43,1,0,0,0,0,128,0,-1--1--1,,1|(402,352)| 1,45,43,7,1,0,0,0,0,128,0,-1--1--1,,1|(693,391)| 10,46,Balancing costs,820,586,49,11,8,3,0,0,-1,0,0,0 10,47,Balancing costs ref,834,500,59,11,8,3,0,0,-1,0,0,0 1,48,47,46,0,0,0,0,0,0,0,-1--1--1,,1|(828,536)| 10,49,M per T,737,522,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,46,0,0,0,0,0,0,0,-1--1--1,,1|(772,549)| 10,51,Share variable RES elec generation vs total,619,583,77,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,52,51,46,0,0,0,0,0,0,0,-1--1--1,,1|(726,584)| 10,53,cumulated invest E grid,1096,647,67,29,3,131,0,0,0,0,0,0 12,54,48,762,642,10,8,0,3,0,0,-1,0,0,0 1,55,57,53,4,0,0,22,0,0,0,-1--1--1,,1|(961,645)| 1,56,57,54,100,0,0,22,0,0,0,-1--1--1,,1|(826,645)| 11,57,48,887,645,6,8,34,3,0,0,1,0,0,0 10,58,extra monet invest to cope with variable Elec RES,887,674,74,28,40,131,0,0,-1,0,0,0 10,59,TIME STEP,921,693,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,60,46,58,0,0,0,0,0,128,0,-1--1--1,,1|(842,615)| 10,61,Grid reinforcement costs,1170,770,62,19,8,3,0,0,-1,0,0,0 10,62,Grid reinforcement costs Tdollar,957,749,60,19,8,3,0,0,-1,0,0,0 10,63,G per T,1164,719,35,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,64,63,62,0,0,0,0,0,0,0,-1--1--1,,1|(1079,731)| 10,65,new capacity installed onshore wind TW,982,840,69,19,8,3,0,0,-1,0,0,0 1,66,65,62,0,0,0,0,0,0,0,-1--1--1,,1|(971,801)| 1,67,61,62,0,0,0,0,0,128,0,-1--1--1,,1|(1069,759)| 10,68,new RES elec capacity under planning,1174,843,83,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,69,68,65,0,0,0,0,0,0,0,-1--1--1,,1|(1077,841)| 1,70,62,58,0,0,0,0,0,128,0,-1--1--1,,1|(931,721)| 10,71,FE Elec generation from offshore wind TWh,636,768,83,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,72,71,58,0,0,0,0,0,64,0,-1--1--1,,1|(742,727)| 10,73,FE Elec generation from onshore wind TWh,643,687,83,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,74,73,58,0,0,0,0,0,64,0,-1--1--1,,1|(762,680)| 1,75,58,27,1,0,0,0,0,64,0,-1--1--1,,1|(1064,530)| 1,76,58,20,0,0,0,0,0,64,0,-1--1--1,,1|(915,514)| 10,77,Percent tot monet invest RESelec vs GDP,879,140,77,19,8,3,0,0,0,0,0,0 1,78,14,77,1,0,0,0,0,128,0,-1--1--1,,1|(998,184)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC - Storage demand and supply #EE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Total installed capacity RES elec var,511,249,70,19,8,3,0,0,-1,0,0,0 10,2,demand storage capacity,788,254,51,19,8,3,0,0,-1,0,0,0 10,3,"share capacity storage/RES elec var",683,321,67,19,8,3,0,0,-1,0,0,0 10,4,remaining potential elec storage by RES techn,1055,195,74,19,8,3,0,0,-1,0,0,0 10,5,installed capacity RES elec TW,507,155,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,5,1,0,0,0,0,0,0,0,-1--1--1,,1|(508,195)| 10,7,share Elec demand covered by RES,511,324,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,8,7,3,0,0,0,0,0,0,0,-1--1--1,,1|(589,322)| 1,9,3,2,0,0,0,0,0,0,0,-1--1--1,,1|(729,291)| 1,10,1,2,0,0,0,0,0,0,0,-1--1--1,,1|(652,251)| 1,11,2,4,0,0,0,0,0,0,0,-1--1--1,,1|(903,228)| 10,12,max capacity elec storage,1257,217,57,19,8,3,0,0,-1,0,0,0 1,13,12,4,0,0,0,0,0,0,0,-1--1--1,,1|(1171,207)| 10,14,Used EV batteries for elec storage,1472,197,64,19,8,3,0,0,-1,0,0,0 1,15,14,12,0,0,0,0,0,0,0,-1--1--1,,1|(1367,205)| 10,16,max capacity potential PHS,1254,127,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,12,0,0,0,0,0,0,0,-1--1--1,,1|(1254,165)| 10,18,constraint elec storage availability,915,405,58,19,8,3,0,0,-1,0,0,0 1,19,2,18,0,0,0,0,0,0,0,-1--1--1,,1|(846,324)| 10,20,"RES elec variables?",1012,363,37,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,21,20,18,0,0,0,0,0,0,0,-1--1--1,,1|(972,379)| 10,22,Total capacity elec storage TW,1124,423,60,19,8,3,0,0,-1,0,0,0 1,23,22,18,0,0,0,0,0,0,0,-1--1--1,,1|(1025,414)| 10,24,installed capacity PHS TW,1269,516,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,22,0,0,0,0,0,0,0,-1--1--1,,1|(1202,473)| 10,26,rt elec storage efficiency,1086,585,45,19,8,3,0,0,-1,0,0,0 10,27,rt storage efficiency EV batteries,887,559,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,26,0,0,0,0,0,0,0,-1--1--1,,1|(990,572)| 10,29,rt storage efficiency PHS,883,622,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,26,0,0,0,0,0,0,0,-1--1--1,,1|(981,604)| 1,31,22,26,0,0,0,0,0,0,0,-1--1--1,,1|(1106,497)| 1,32,24,26,0,0,0,0,0,128,0,-1--1--1,,1|(1181,549)| 10,33,EV batteries TW,1632,267,45,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,14,0,0,0,0,0,0,0,-1--1--1,,1|(1558,234)| 12,35,0,1468,40,123,21,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|14||0-0-0 Electric Vehicles (EV) batteries 10,36,ESOI elec storage,1704,467,58,11,8,3,0,0,-1,0,0,0 10,37,ESOI EV batteries,1838,423,36,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,38,37,36,0,0,0,0,0,0,0,-1--1--1,,1|(1776,442)| 10,39,ESOI PHS,1846,505,45,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,39,36,0,0,0,0,0,0,0,-1--1--1,,1|(1781,487)| 12,41,5178846,1057,849,222,203,3,188,0,0,1,0,0,0 Installed_capacity_electricity_storage 1,42,24,36,0,0,0,0,0,128,0,-1--1--1,,1|(1480,492)| 12,43,8193544,1490,849,201,202,3,188,0,0,1,0,0,0 ESOI_elec_storage 10,44,"\"abundance\" storage",863,489,40,19,8,3,0,0,0,0,0,0 1,45,2,44,0,0,0,0,0,64,0,-1--1--1,,1|(822,364)| 1,46,22,44,0,0,0,0,0,64,0,-1--1--1,,1|(990,456)| 10,47,Cp EV batteries required,1742,344,52,19,8,3,0,0,0,0,0,0 10,48,demand EV batteries for elec storage,1350,343,67,19,8,3,0,0,0,0,0,0 1,49,2,48,0,0,0,0,0,128,0,-1--1--1,,1|(1054,295)| 1,50,24,48,0,0,0,0,0,128,0,-1--1--1,,1|(1306,435)| 1,51,48,47,0,0,0,0,0,128,0,-1--1--1,,1|(1546,343)| 1,52,33,47,0,0,0,0,0,128,0,-1--1--1,,1|(1680,301)| 10,53,Cp EV batteries for elec storage,1778,199,78,19,8,3,0,0,0,0,0,0 1,54,47,53,0,0,0,0,0,128,0,-1--1--1,,1|(1757,278)| 1,55,53,14,0,0,0,0,0,128,0,-1--1--1,,1|(1624,198)| 1,56,14,22,0,0,0,0,0,128,0,-1--1--1,,1|(1303,306)| 1,57,14,26,1,0,0,0,0,128,0,-1--1--1,,1|(1334,546)| 1,58,14,36,0,0,0,0,0,128,0,-1--1--1,,1|(1586,330)| 1,59,22,36,0,0,0,0,0,128,0,-1--1--1,,1|(1408,443)| 10,60,real FE elec stored EV batteries TWh,1600,127,60,19,8,131,0,0,0,0,0,0 1,61,14,60,0,0,0,0,0,128,0,-1--1--1,,1|(1529,165)| 10,62,TWe per TWh,1612,182,56,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,63,62,60,0,1,0,0,0,64,0,-1--1--1,,1|(1608,165)| 10,64,max Cp EV batteries for elec storage,1819,123,80,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,65,64,53,0,0,0,0,0,128,0,-1--1--1,,1|(1801,155)| 12,66,0,541,469,147,38,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-0 If demand of electric storage < installed capacity: (1) more PHS is planned, (2) more use of EV batteries, and (3) limit penetration in the mix of RES elec variables \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC - PHS #EE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,819,49,122,22,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|14||0-0-0 Pumped hydro storage (PHS) 10,2,Cp PHS,1141,144,34,19,8,131,0,0,-1,0,0,0 10,3,max potential PHS TWe,393,56,46,21,8,131,0,0,0,0,0,0 10,4,max capacity potential PHS,443,158,45,19,8,3,0,0,0,0,0,0 1,5,2,4,1,0,0,0,0,128,0,-1--1--1,,1|(766,116)| 1,6,3,4,0,0,0,0,0,128,0,-1--1--1,,1|(414,101)| 10,7,lifetime RES elec,1433,290,44,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,8,48,436,430,10,8,0,3,0,0,-1,0,0,0 1,9,11,13,4,0,0,22,0,0,0,-1--1--1,,1|(570,431)| 1,10,11,8,100,0,0,22,0,0,0,-1--1--1,,1|(481,431)| 11,11,48,522,431,6,8,34,3,0,0,1,0,0,0 10,12,new required PHS capacity,522,458,59,19,40,3,0,0,-1,0,0,0 10,13,required capacity PHS,662,429,49,21,3,131,0,0,0,0,0,0 1,14,16,18,4,0,0,22,0,0,0,-1--1--1,,1|(847,426)| 1,15,16,13,100,0,0,22,0,0,0,-1--1--1,,1|(749,426)| 11,16,16976,793,426,6,8,34,3,0,0,1,0,0,0 10,17,new PHS capacity under planning,793,453,59,19,40,3,0,0,-1,0,0,0 10,18,PHS planned capacity,947,428,52,22,3,131,0,0,0,0,0,0 1,19,21,28,4,0,0,22,0,0,0,-1--1--1,,1|(1143,427)| 1,20,21,18,100,0,0,22,0,0,0,-1--1--1,,1|(1041,427)| 11,21,16928,1089,427,6,8,34,3,0,0,1,0,0,0 10,22,PHS capacity under construction,1089,454,64,19,40,3,0,0,-1,0,0,0 12,23,48,947,590,10,8,0,3,0,0,-1,0,0,0 1,24,26,18,4,0,0,22,0,0,0,-1--1--1,,1|(947,485)| 1,25,26,23,100,0,0,22,0,0,0,-1--1--1,,1|(947,557)| 11,26,48,947,527,8,6,33,3,0,0,4,0,0,0 10,27,replacement capacity PHS,999,527,44,19,40,3,0,0,-1,0,0,0 10,28,installed capacity PHS TW,1255,430,64,23,3,131,0,0,0,0,0,0 12,29,48,1453,430,10,8,0,3,0,0,-1,0,0,0 1,30,32,29,4,0,0,22,0,0,0,-1--1--1,,1|(1412,430)| 1,31,32,28,100,0,0,22,0,0,0,-1--1--1,,1|(1344,430)| 11,32,48,1375,430,6,8,34,3,0,0,1,0,0,0 10,33,wear PHS,1375,449,34,11,40,3,0,0,-1,0,0,0 1,34,7,33,1,0,0,0,0,128,0,-1--1--1,,1|(1432,404)| 1,35,28,33,1,0,0,0,0,128,0,-1--1--1,,1|(1285,470)| 1,36,18,22,1,0,0,0,0,128,0,-1--1--1,,1|(1022,475)| 1,37,13,17,1,0,0,0,0,128,0,-1--1--1,,1|(724,490)| 10,38,replacement rate PHS,1026,610,53,19,8,3,0,0,0,0,0,0 1,39,38,27,0,0,0,0,0,128,0,-1--1--1,,1|(1014,575)| 1,40,33,27,1,0,0,0,0,128,0,-1--1--1,,1|(1087,555)| 10,41,Time,1375,504,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,33,0,0,0,0,0,64,0,-1--1--1,,1|(1375,483)| 10,43,initial instal cap PHS,1314,388,48,19,8,131,0,0,0,0,0,0 1,44,43,28,0,0,0,0,0,64,1,-1--1--1,,1|(1293,402)| 10,45,Time,1093,582,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,46,45,27,0,0,0,0,0,64,0,-1--1--1,,1|(1059,561)| 10,47,time construction RES elec,1077,356,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,48,time planification RES elec,818,331,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,49,48,17,0,0,0,0,0,128,0,-1--1--1,,1|(807,385)| 1,50,47,22,0,0,0,0,0,128,0,-1--1--1,,1|(1081,398)| 1,51,28,12,1,0,0,0,0,128,0,-1--1--1,,1|(709,544)| 10,52,table hist capacity PHS,685,292,57,19,8,131,0,0,0,0,0,0 10,53,initial required capacity PHS,688,388,65,19,8,3,0,0,0,0,0,0 10,54,initial capacity in construction PHS,960,386,77,19,8,131,0,0,0,0,0,0 1,55,53,54,0,0,0,0,0,128,0,-1--1--1,,1|(811,387)| 1,56,52,53,0,0,0,0,0,128,0,-1--1--1,,1|(685,333)| 1,57,54,18,0,0,0,0,0,64,1,-1--1--1,,1|(960,402)| 1,58,53,13,0,0,0,0,0,64,1,-1--1--1,,1|(680,402)| 10,59,Historic new required capacity PHS,465,326,69,19,8,131,0,0,0,0,0,0 1,60,52,59,0,0,0,0,0,64,0,-1--1--1,,1|(587,306)| 10,61,Time,570,265,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,61,59,0,0,0,0,0,64,0,-1--1--1,,1|(530,288)| 10,63,"total time plan+constr RES elec",575,369,61,30,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,64,63,59,0,0,0,0,0,64,0,-1--1--1,,1|(518,350)| 1,65,59,12,0,0,0,0,0,128,0,-1--1--1,,1|(490,385)| 10,66,remaining potential PHS,501,227,45,19,8,3,0,0,0,0,0,0 1,67,4,66,0,0,0,0,0,128,0,-1--1--1,,1|(466,187)| 10,68,real FE elec stored PHS TWh,1020,219,57,21,8,131,0,0,0,0,0,0 1,69,2,68,0,0,0,0,0,64,0,-1--1--1,,1|(1087,176)| 1,70,28,68,0,0,0,0,0,64,0,-1--1--1,,1|(1141,328)| 10,71,TWe per TWh,1176,253,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,72,71,68,0,0,0,0,0,64,0,-1--1--1,,1|(1108,238)| 10,73,past PHS capacity growth,628,564,57,19,8,131,0,0,0,0,0,0 10,74,output PHS over lifetime,1321,241,60,19,8,3,0,0,0,0,0,0 1,75,22,74,0,0,0,0,0,128,0,-1--1--1,,1|(1199,352)| 1,76,2,74,0,0,0,0,0,128,0,-1--1--1,,1|(1223,188)| 1,77,7,74,1,0,0,0,0,128,0,-1--1--1,,1|(1361,281)| 10,78,EJ per TWh,1409,175,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,79,78,74,0,0,0,0,0,64,0,-1--1--1,,1|(1376,199)| 10,80,adapt growth PHS,467,540,59,19,8,3,0,0,0,0,0,0 1,81,73,80,0,0,0,0,0,128,0,-1--1--1,,1|(555,553)| 10,82,P PHS growth,542,605,52,11,8,131,0,0,0,0,0,0 1,83,82,80,0,0,0,0,0,128,0,-1--1--1,,1|(514,580)| 10,84,Time,351,506,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,85,84,80,0,0,0,0,0,64,0,-1--1--1,,1|(385,515)| 10,86,Time dmnl,415,597,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,87,86,80,0,0,0,0,0,64,0,-1--1--1,,1|(432,577)| 1,88,80,12,1,0,0,0,0,128,0,-1--1--1,,1|(512,505)| 1,89,63,12,1,0,0,0,0,128,0,-1--1--1,,1|(546,420)| 1,90,71,74,0,0,0,0,0,128,0,-1--1--1,,1|(1239,247)| 10,91,remaining potential constraint on new PHS capacity,317,299,73,28,8,3,0,0,-1,0,0,0 1,92,91,12,1,0,0,0,0,64,0,-1--1--1,,1|(382,386)| 1,93,66,91,0,0,0,0,0,64,0,-1--1--1,,1|(428,254)| 10,94,threshold remaining potential new capacity,284,220,75,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,95,94,91,0,0,0,0,0,64,0,-1--1--1,,1|(295,248)| 1,96,84,12,0,0,0,0,0,128,0,-1--1--1,,1|(413,488)| 1,97,28,66,1,0,0,0,0,128,0,-1--1--1,,1|(994,271)| 10,98,"\"abundance\" storage",286,556,45,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,99,98,80,0,0,0,0,0,128,0,-1--1--1,,1|(362,549)| 10,100,max potential PHS TWh,288,121,43,19,8,3,0,0,0,0,0,0 10,101,TWe per TWh,233,51,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,102,101,100,0,0,0,0,0,64,0,-1--1--1,,1|(252,76)| 10,103,Cp PHS,182,125,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,104,103,100,0,0,0,0,0,128,0,-1--1--1,,1|(225,123)| 10,105,max potential PHS TWh,960,687,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,106,real FE elec stored PHS TWh,1091,690,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,107,105,38,0,0,0,0,0,128,0,-1--1--1,,1|(987,653)| 1,108,106,38,0,0,0,0,0,128,0,-1--1--1,,1|(1062,655)| 1,109,4,100,0,0,0,0,0,128,0,-1--1--1,,1|(371,141)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC - Total FE elec generation #EE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,FE Elec generation from conv gas TWh,688,306,64,19,8,131,0,0,-1,0,0,0 10,2,FE Elec generation from coal TWh,688,367,60,19,8,131,0,0,-1,0,0,0 10,3,FE Elec generation from NRE TWh,1062,281,77,20,8,131,0,0,0,0,0,0 10,4,Total FE Elec generation TWh,1222,318,62,20,8,131,0,0,0,0,0,0 10,5,Total FE Elec demand TWh,1239,117,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,6,FE Elec generation from unconv gas TWh,670,190,71,19,8,131,0,0,-1,0,0,0 10,7,Abundance electricity,1322,204,43,20,8,131,0,0,0,0,0,0 1,8,4,7,1,0,0,0,0,64,0,-1--1--1,,1|(1280,242)| 1,9,5,7,1,0,0,0,0,64,0,-1--1--1,,1|(1274,159)| 10,10,Year scarcity Elec,1415,115,44,19,8,3,0,0,0,0,0,0 1,11,7,10,1,0,0,0,0,64,0,-1--1--1,,1|(1339,156)| 10,12,Time,1523,111,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,10,0,0,0,0,0,64,0,-1--1--1,,1|(1484,111)| 10,14,FE Elec generation from fossil fuels TWh,905,215,69,26,8,131,0,0,0,0,0,0 1,15,6,14,0,0,0,0,0,128,0,-1--1--1,,1|(781,201)| 1,16,1,14,0,0,0,0,0,128,0,-1--1--1,,1|(781,266)| 1,17,2,14,0,0,0,0,0,128,0,-1--1--1,,1|(785,298)| 1,18,14,3,1,0,0,0,0,128,0,-1--1--1,,1|(1030,222)| 10,19,FE Elec generation from total oil TWh,688,93,60,19,8,3,0,0,-1,0,0,0 1,20,19,14,0,0,0,0,0,128,0,-1--1--1,,1|(783,147)| 10,21,share RES electricity generation,1077,522,70,17,8,131,0,0,0,0,0,0 1,22,4,21,1,0,0,0,0,128,0,-1--1--1,,1|(1147,458)| 10,23,FE nuclear Elec generation TWh,688,437,52,19,8,3,0,0,-1,0,0,0 1,24,23,3,1,0,0,0,0,128,0,-1--1--1,,1|(981,374)| 12,25,2099060,946,807,194,156,3,188,0,0,1,0,0,0 Share_Electricity_covered_by_RES 12,26,3540278,1327,807,184,156,3,188,0,0,1,0,0,0 Abundance_electricity 12,27,1836832,559,805,188,158,3,188,0,0,1,0,0,0 Total_electricity_generation 10,28,efficiency liquids for electricity,489,41,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,29,28,19,0,0,0,0,0,0,0,-1--1--1,,1|(585,65)| 10,30,EJ per TWh,883,326,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,31,30,19,0,0,0,0,0,0,0,-1--1--1,,1|(793,218)| 10,32,share oil dem for Elec,489,111,71,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,33,32,19,0,0,0,0,0,0,0,-1--1--1,,1|(587,102)| 10,34,efficiency gas for electricity,484,172,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,35,34,6,0,0,0,0,0,0,0,-1--1--1,,1|(563,179)| 10,36,"share nat. gas dem for Elec",478,251,61,17,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,6,0,0,0,0,0,0,0,-1--1--1,,1|(563,223)| 1,38,30,6,0,0,0,0,0,128,0,-1--1--1,,1|(788,265)| 10,39,efficiency coal for electricity,489,431,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,39,2,0,0,0,0,0,0,0,-1--1--1,,1|(581,401)| 10,41,share coal dem for Elec,489,517,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,2,0,0,0,0,0,0,0,-1--1--1,,1|(582,446)| 1,43,30,2,0,0,0,0,0,128,0,-1--1--1,,1|(798,343)| 10,44,efficiency uranium for electricity,489,583,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,45,44,23,0,0,0,0,0,0,0,-1--1--1,,1|(582,514)| 10,46,extraction uranium EJ,489,623,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,47,46,23,0,0,0,0,0,0,0,-1--1--1,,1|(582,534)| 1,48,30,23,0,0,0,0,0,128,0,-1--1--1,,1|(798,374)| 10,49,efficiency gas for electricity,489,300,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,1,0,0,0,0,0,0,0,-1--1--1,,1|(578,302)| 10,51,"share nat. gas dem for Elec",495,380,62,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,52,51,1,0,0,0,0,0,0,0,-1--1--1,,1|(582,345)| 1,53,30,1,0,0,0,0,0,128,0,-1--1--1,,1|(800,317)| 10,54,real extraction unconv gas EJ,476,212,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,55,54,6,0,0,0,0,0,128,0,-1--1--1,,1|(555,203)| 10,56,FES Elec fossil fuel CHP plants TWh,930,100,71,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,57,56,14,0,0,0,0,0,128,0,-1--1--1,,1|(919,147)| 10,58,FES elec from waste TWh,1257,439,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,59,58,4,0,0,0,0,0,128,0,-1--1--1,,1|(1241,385)| 10,60,real extraction conv gas EJ,481,338,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,61,60,1,0,0,0,0,0,128,0,-1--1--1,,1|(570,324)| 10,62,extraction coal EJ,484,472,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,63,62,2,0,0,0,0,0,128,0,-1--1--1,,1|(579,422)| 10,64,PES oil EJ,483,75,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,65,64,19,0,0,0,0,0,128,0,-1--1--1,,1|(570,81)| 10,66,FE tot generation all RES elec TWh,772,525,73,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,67,66,21,0,0,0,0,0,128,0,-1--1--1,,1|(919,523)| 1,68,66,4,1,0,0,0,0,128,0,-1--1--1,,1|(989,424)| 10,69,FES elec from biogas TWh,1442,511,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,70,FES elec from BioW,1435,444,47,19,8,3,0,0,0,0,0,0 1,71,58,70,0,0,0,0,0,128,0,-1--1--1,,1|(1340,440)| 1,72,69,70,0,0,0,0,0,128,0,-1--1--1,,1|(1439,484)| 10,73,real generation RES elec TWh,1283,507,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,74,73,70,0,0,0,0,0,128,0,-1--1--1,,1|(1352,478)| 10,75,Total FE Elec consumption TWh,1422,301,58,19,8,131,0,0,0,0,0,0 1,76,4,75,0,0,0,0,0,128,0,-1--1--1,,1|(1317,309)| 10,77,"share transm&distr elec losses",1605,228,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,78,77,75,0,0,0,0,0,64,0,-1--1--1,,1|(1520,261)| 10,79,EJ per TWh,1440,354,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,80,3,4,1,0,0,0,0,128,0,-1--1--1,,1|(1181,273)| 10,81,Total FE Elec consumption EJ,1574,362,65,19,8,131,0,0,0,0,0,0 1,82,75,81,0,0,0,0,0,128,0,-1--1--1,,1|(1491,328)| 1,83,79,81,0,0,0,0,0,128,0,-1--1--1,,1|(1491,356)| 10,84,FE tot generation all RES elec TWh delayed 1yr,729,592,87,25,8,131,0,0,-1,0,0,0 10,85,Annual growth rate electricity generation RES elec tot,976,599,105,20,8,131,0,0,-1,0,0,0 1,86,84,85,0,0,0,0,0,128,0,-1--1--1,,1|(836,594)| 1,87,66,84,0,0,0,0,0,128,0,-1--1--1,,1|(756,549)| 1,88,66,85,0,0,0,0,0,128,0,-1--1--1,,1|(865,559)| 12,89,2622784,1707,807,194,156,3,188,0,0,1,0,0,0 Annual_growth_rate_electricity_generation_RES \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ELEC - Electricity related losses #EE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Elec gen related losses EJ,873,291,51,20,8,131,0,0,0,0,0,0 10,2,Electrical distribution losses EJ,830,554,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||92-92-92 10,3,Total PE for electricity consumption EJ,1106,468,74,20,8,131,0,0,0,0,0,0 10,4,Gen losses vs PE for elec,1058,347,49,20,8,131,0,0,0,0,0,0 10,5,Total FE Elec demand EJ,1286,318,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,1,4,1,0,0,0,0,64,0,-1--1--1,,1|(1005,304)| 10,7,Total electrical losses EJ,889,451,47,19,8,3,0,0,0,0,0,0 10,8,real PED intensity of Electricity,1162,202,65,19,8,3,0,0,-1,0,0,0 1,9,1,8,1,0,0,0,0,0,0,-1--1--1,,1|(1005,250)| 1,10,5,3,1,0,0,0,0,128,0,-1--1--1,,1|(1194,408)| 1,11,1,3,1,0,0,0,0,128,0,-1--1--1,,1|(983,375)| 1,12,3,4,0,0,0,0,0,128,0,-1--1--1,,1|(1084,413)| 10,13,PE losses coal for Elec EJ,509,557,57,19,8,3,0,0,-1,0,0,0 10,14,PE losses uranium for Elec EJ,655,565,58,19,8,3,0,0,-1,0,0,0 10,15,PE losses oil for Elec EJ,516,192,52,19,8,3,0,0,-1,0,0,0 10,16,PE losses uncon gas for Elec EJ,515,433,65,19,8,3,0,0,-1,0,0,0 10,17,PE losses conv gas for Elec EJ,517,278,61,19,8,3,0,0,-1,0,0,0 1,18,1,7,0,0,0,0,0,64,0,-1--1--1,,1|(880,364)| 1,19,2,7,0,0,0,0,0,128,0,-1--1--1,,1|(855,508)| 1,20,5,8,0,0,0,0,0,128,0,-1--1--1,,1|(1229,264)| 10,21,GDP,1089,118,42,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,22,21,8,0,0,0,0,0,128,0,-1--1--1,,1|(1116,150)| 10,23,PE losses BioE for Elec EJ,935,107,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,24,efficiency liquids for electricity,333,169,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,15,0,0,0,0,0,0,0,-1--1--1,,1|(425,180)| 10,26,share oil dem for Elec,329,212,66,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,15,0,0,0,0,0,0,0,-1--1--1,,1|(422,201)| 10,28,efficiency gas for electricity,322,443,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,29,28,16,0,0,0,0,0,0,0,-1--1--1,,1|(408,438)| 10,30,"share nat. gas dem for Elec",313,484,62,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,31,30,16,0,0,0,0,0,0,0,-1--1--1,,1|(405,460)| 10,32,efficiency gas for electricity,324,258,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,33,32,17,0,0,0,0,0,0,0,-1--1--1,,1|(412,266)| 10,34,"share nat. gas dem for Elec",317,343,68,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,35,34,17,0,0,0,0,0,0,0,-1--1--1,,1|(409,312)| 10,36,efficiency coal for electricity,311,584,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,13,0,0,0,0,0,0,0,-1--1--1,,1|(405,571)| 10,38,share coal dem for Elec,309,637,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,39,38,13,0,0,0,0,0,0,0,-1--1--1,,1|(402,599)| 10,40,efficiency uranium for electricity,578,653,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,41,40,14,0,0,0,0,0,0,0,-1--1--1,,1|(611,614)| 10,42,extraction uranium EJ,726,658,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,43,42,14,0,0,0,0,0,0,0,-1--1--1,,1|(694,617)| 10,44,real extraction unconv gas EJ,324,400,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,45,44,16,0,0,0,0,0,128,0,-1--1--1,,1|(405,413)| 10,46,extraction coal EJ,321,538,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,47,46,13,0,0,0,0,0,128,0,-1--1--1,,1|(405,546)| 10,48,real extraction conv gas EJ,304,301,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,49,48,17,0,0,0,0,0,128,0,-1--1--1,,1|(398,290)| 10,50,PES oil EJ,328,135,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,51,50,15,0,0,0,0,0,128,0,-1--1--1,,1|(407,158)| 10,52,PES tot biogas for elec,591,79,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,53,FES elec from biogas EJ,651,33,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,54,PES tot waste for elec,769,79,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,55,FES elec from waste EJ,843,40,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,56,PE losses biogas for elec,667,156,54,19,8,3,0,0,0,0,0,0 10,57,PE losses NRE elec generation,671,325,57,19,8,131,0,0,0,0,0,0 1,58,15,57,1,0,0,0,0,128,0,-1--1--1,,1|(598,243)| 1,59,17,57,0,0,0,0,0,128,0,-1--1--1,,1|(589,299)| 1,60,16,57,0,0,0,0,0,128,0,-1--1--1,,1|(586,382)| 1,61,13,57,1,0,0,0,0,128,0,-1--1--1,,1|(615,453)| 1,62,14,57,0,0,0,0,0,128,0,-1--1--1,,1|(662,451)| 1,63,57,1,0,0,0,0,0,128,0,-1--1--1,,1|(767,308)| 1,64,52,56,0,0,0,0,0,128,0,-1--1--1,,1|(623,112)| 1,65,53,56,0,0,0,0,0,128,0,-1--1--1,,1|(657,87)| 10,66,PE losses waste for elec,804,151,54,19,8,3,0,0,0,0,0,0 1,67,54,66,0,0,0,0,0,128,0,-1--1--1,,1|(783,108)| 1,68,55,66,0,0,0,0,0,128,0,-1--1--1,,1|(825,88)| 10,69,PE losses RES for elec,764,224,48,19,8,3,0,0,0,0,0,0 1,70,56,69,0,0,0,0,0,128,0,-1--1--1,,1|(709,185)| 1,71,66,69,0,0,0,0,0,128,0,-1--1--1,,1|(787,181)| 1,72,23,69,1,0,0,0,0,128,0,-1--1--1,,1|(868,166)| 1,73,69,1,0,0,0,0,0,128,0,-1--1--1,,1|(811,253)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES BIOE - Traditional biomass #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Population,776,503,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,PE traditional biomass EJ delayed 1yr,802,248,72,18,8,131,0,0,0,0,0,0 10,3,share global pop dependent on trad biomass,779,425,77,18,8,131,0,0,0,0,0,0 10,4,PEpc consumption people depending on trad biomass,504,451,103,26,8,131,0,0,0,0,0,0 12,5,5309408,1099,330,192,164,3,188,0,0,1,0,0,0 PE_traditional_biomass 10,6,Population dependent on trad biomass,773,342,69,19,8,3,0,0,0,0,0,0 10,7,People relying trad biomass ref,409,372,60,19,8,3,0,0,0,0,0,0 10,8,PE consumption trad biomass ref,404,525,52,19,8,3,0,0,0,0,0,0 1,9,7,4,0,0,0,0,0,128,0,-1--1--1,,1|(446,403)| 1,10,8,4,0,0,0,0,0,128,0,-1--1--1,,1|(442,495)| 10,11,share trad biomass vs solids in households,259,247,74,22,8,131,0,0,0,0,0,0 10,12,modern BioE in households,766,147,45,19,8,3,0,0,0,0,0,0 1,13,4,6,0,0,0,0,0,128,0,-1--1--1,,1|(640,395)| 1,14,6,3,0,0,0,0,0,128,0,-1--1--1,,1|(775,377)| 1,15,1,3,0,0,0,0,0,128,0,-1--1--1,,1|(776,474)| 10,16,Households final energy demand,284,151,66,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,12,1,0,0,0,0,128,0,-1--1--1,,1|(496,96)| 10,18,PE traditional biomass demand EJ,459,219,64,19,8,3,0,0,-1,0,0,0 1,19,16,18,0,0,0,0,0,128,0,-1--1--1,,1|(364,182)| 1,20,11,18,0,0,0,0,0,128,0,-1--1--1,,1|(357,233)| 10,21,PE traditional biomass consum EJ,630,258,62,19,8,131,0,0,-1,0,0,0 1,22,21,12,0,0,0,0,0,128,0,-1--1--1,,1|(692,206)| 1,23,21,6,0,0,0,0,0,128,0,-1--1--1,,1|(694,296)| 1,24,21,2,0,0,0,0,0,128,0,-1--1--1,,1|(703,254)| 1,25,18,21,0,0,0,0,0,128,0,-1--1--1,,1|(538,236)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES BIOE - Elec&Heat potential #EAR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"PE bioE residues for heat+elec EJ",564,178,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,"Max potential NPP bioE conventional for heat+elec",585,367,90,30,8,131,0,0,-1,0,0,0 10,3,"Total PE solid bioE potential heat+elec EJ",784,223,78,31,8,131,0,0,0,0,0,0 1,4,1,3,0,0,0,0,0,128,0,-1--1--1,,1|(663,198)| 10,5,available PE potential solid bioE for heat EJ,993,160,75,23,8,131,0,0,0,0,0,0 1,6,3,5,0,0,0,0,0,128,0,-1--1--1,,1|(883,193)| 10,7,available PE potential solid bioE for elec EJ,993,255,76,18,8,131,0,0,0,0,0,0 1,8,3,7,0,0,0,0,0,128,0,-1--1--1,,1|(882,237)| 10,9,PE bioE for Elec generation EJ,992,72,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,10,efficiency conversion bioE to Elec,1245,164,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,9,5,0,0,0,0,0,128,0,-1--1--1,,1|(992,107)| 10,12,"PES RES for heat-com by techn",1070,323,67,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,7,0,0,0,0,0,128,0,-1--1--1,,1|(1035,292)| 10,14,available potential FE solid bioE for elec EJ,1244,254,69,19,8,131,0,0,0,0,0,0 1,15,7,14,0,0,0,0,0,128,0,-1--1--1,,1|(1115,254)| 1,16,10,14,0,0,0,0,0,128,0,-1--1--1,,1|(1244,202)| 12,17,0,722,40,157,26,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Solid bioenergy potential available for heat and electricity uses 12,18,1442626,860,524,183,159,3,188,0,0,1,0,0,0 Available_solid_bioE_for_heat/elec 10,19,"PES RES for heat-nc by techn",892,332,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,7,0,0,0,0,0,128,0,-1--1--1,,1|(936,297)| 1,21,2,3,0,0,0,0,0,128,0,-1--1--1,,1|(677,299)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES BIOE - Crops for biofuels (compet) #EAR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,75,0 10,1,Land compet biofuels 2gen Mha,842,331,65,27,3,131,0,0,0,0,0,0 12,2,48,542,329,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(720,328)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(602,328)| 11,5,48,658,328,6,8,34,3,0,0,1,0,0,0 10,6,new biofuels 2gen land compet,658,347,98,11,40,131,0,0,-1,0,0,0 10,7,Land productivity biofuels 2gen EJ MHa,503,382,81,18,8,131,0,0,0,0,0,0 10,8,Additional land compet available for biofuels,240,670,85,20,8,131,0,0,0,0,0,0 10,9,Max land compet biofuels 2gen,250,531,57,19,8,3,0,0,0,0,0,0 1,10,8,9,1,0,0,0,0,64,0,-1--1--1,,1|(272,598)| 1,11,1,6,1,0,0,0,0,64,0,-1--1--1,,1|(705,293)| 10,12,P biofuels 3gen,1109,428,49,17,8,131,0,0,0,0,0,0 10,13,Land compet required dedicated crops for biofuels,1153,167,98,19,8,131,0,0,0,0,0,0 1,14,1,13,1,0,0,0,0,64,0,-1--1--1,,1|(963,243)| 10,15,Annual additional historic product biofuels 2gen,690,132,89,18,8,131,0,0,0,0,0,0 10,16,start year 3gen,1015,259,55,11,8,3,0,0,0,0,0,0 10,17,Biofuels land compet available,571,454,66,18,8,131,0,0,0,0,0,0 1,18,1,17,1,0,0,0,0,64,0,-1--1--1,,1|(728,409)| 1,19,9,17,1,0,0,0,0,64,0,-1--1--1,,1|(464,455)| 1,20,17,6,1,0,0,0,0,64,0,-1--1--1,,1|(585,398)| 10,21,Efficiency improvement biofuels 3gen,991,718,78,19,8,3,0,0,0,0,0,0 10,22,adapt growth biofuels 2gen,717,537,47,19,8,3,0,0,0,0,0,0 10,23,past biofuels 2gen,799,610,45,16,8,131,0,0,0,0,0,0 10,24,P biofuels 2gen,690,612,37,23,8,131,0,0,0,0,0,0 1,25,23,22,1,0,0,0,0,64,0,-1--1--1,,1|(742,549)| 1,26,24,22,1,0,0,0,0,64,0,-1--1--1,,1|(701,566)| 10,27,Time,582,546,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,22,1,0,0,0,0,64,0,-1--1--1,,1|(632,543)| 10,29,Time dmnl,820,557,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,22,1,0,0,0,0,64,0,-1--1--1,,1|(778,540)| 10,31,EJ per ktoe,373,211,37,11,8,3,0,0,0,0,0,0 10,32,Historic land compet available for biofuels 2gen,285,355,82,19,8,3,0,0,0,0,0,0 1,33,32,9,1,0,0,0,0,128,0,-1--1--1,,1|(245,423)| 1,34,31,32,1,0,0,0,0,64,0,-1--1--1,,1|(315,253)| 1,35,7,32,0,0,0,0,0,128,0,-1--1--1,,1|(401,369)| 1,36,22,6,1,0,0,0,0,128,0,-1--1--1,,1|(739,436)| 10,37,Land compet biofuels 3gen Mha,1246,332,65,29,3,131,0,0,0,0,0,0 1,38,40,37,4,0,0,22,0,0,0,-1--1--1,,1|(1115,331)| 1,39,40,1,100,0,0,22,0,0,0,-1--1--1,,1|(972,331)| 11,40,22496,1044,331,6,8,34,3,0,0,1,0,0,0 10,41,Land shifted to biofuels 3gen,1044,358,48,19,40,3,0,0,-1,0,0,0 10,42,Potential PEavail biofuels prod 3gen EJ,1275,486,71,20,8,131,0,0,0,0,0,0 1,43,37,42,0,0,0,0,0,128,0,-1--1--1,,1|(1259,406)| 1,44,21,42,1,0,0,0,0,128,0,-1--1--1,,1|(1264,581)| 1,45,16,41,0,0,0,0,0,128,0,-1--1--1,,1|(1026,297)| 10,46,Potential PEavail biofuels 2gen land compet EJ,950,467,81,23,8,131,0,0,0,0,0,0 1,47,1,46,0,0,0,0,0,128,0,-1--1--1,,1|(892,395)| 1,48,7,46,1,0,0,0,0,128,0,-1--1--1,,1|(719,422)| 1,49,1,41,0,0,0,0,0,128,0,-1--1--1,,1|(944,344)| 10,50,Annual shift from 2gen to 3gen,1106,289,54,19,8,3,0,0,0,0,0,0 1,51,50,41,0,0,0,0,0,128,0,-1--1--1,,1|(1079,318)| 10,52,Time,973,291,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,53,52,41,0,0,0,0,0,64,0,-1--1--1,,1|(998,315)| 1,54,37,17,1,0,0,0,0,64,0,-1--1--1,,1|(931,415)| 12,55,526272,1576,320,225,201,3,188,0,0,1,0,0,0 Land_for_dedicated_crops_for_biofuels 1,56,12,41,0,0,0,0,0,128,0,-1--1--1,,1|(1082,399)| 1,57,37,41,0,0,0,0,0,128,0,-1--1--1,,1|(1143,344)| 10,58,initial value land compet biofuels 2gen Mha,801,262,77,18,8,131,0,0,0,0,0,0 1,59,7,1,0,0,0,0,0,128,1,-1--1--1,,1|(673,356)| 1,60,58,1,0,0,0,0,0,64,1,-1--1--1,,1|(814,285)| 10,61,Annual additional historic land use biofuels 2gen,655,217,80,19,8,3,0,0,0,0,0,0 1,62,15,61,1,0,0,0,0,128,0,-1--1--1,,1|(685,165)| 1,63,61,6,1,0,0,0,0,128,0,-1--1--1,,1|(637,270)| 1,64,7,61,1,0,0,0,0,128,0,-1--1--1,,1|(532,278)| 1,65,31,61,0,0,0,0,0,128,0,-1--1--1,,1|(485,212)| 10,66,Biofuels 3gen land compet available,982,579,77,20,8,131,0,0,0,0,0,0 1,67,37,66,1,0,0,0,0,64,0,-1--1--1,,1|(1152,474)| 1,68,66,41,1,0,0,0,0,128,0,-1--1--1,,1|(1033,477)| 1,69,37,13,0,0,0,0,0,128,0,-1--1--1,,1|(1199,250)| 1,70,7,42,1,0,0,0,0,64,0,-1--1--1,,1|(932,505)| 10,71,"PE biofuels prod 2gen+3gen EJ",1383,662,69,21,8,131,0,0,0,0,0,0 10,72,"Max PEavail potential biofuels 2-3gen",432,546,74,21,8,131,0,0,0,0,0,0 1,73,9,72,0,0,0,0,0,128,0,-1--1--1,,1|(325,536)| 1,74,7,72,0,0,0,0,0,128,0,-1--1--1,,1|(471,456)| 1,75,21,72,1,0,0,0,0,64,0,-1--1--1,,1|(654,657)| 1,76,16,72,1,0,0,0,0,128,0,-1--1--1,,1|(759,417)| 1,77,27,72,0,0,0,0,0,128,0,-1--1--1,,1|(538,546)| 10,78,Historic produc biofuels 2gen,652,42,50,19,8,3,0,0,0,0,0,0 1,79,78,15,0,0,0,0,0,128,0,-1--1--1,,1|(668,81)| 10,80,Time,772,48,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,81,80,15,0,0,0,0,0,128,0,-1--1--1,,1|(739,81)| 10,82,check liquids,423,162,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,83,82,6,1,0,0,0,0,64,0,-1--1--1,,1|(523,260)| 10,84,"constrain liquids exogenous growth?",486,119,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,85,84,6,1,0,0,0,0,64,0,-1--1--1,,1|(534,237)| 10,86,land compet 2gen vs total land compet,1025,92,66,19,8,3,0,0,0,0,0,0 1,87,13,86,0,0,0,0,0,128,0,-1--1--1,,1|(1095,133)| 1,88,1,86,0,0,0,0,0,128,0,-1--1--1,,1|(931,213)| 1,89,86,41,0,0,0,0,0,64,0,-1--1--1,,1|(1033,218)| 10,90,initial value land compet biofuels 2gen ktoe,840,202,75,19,8,131,0,0,0,0,0,0 1,91,90,58,0,0,0,0,0,128,0,-1--1--1,,1|(823,226)| 1,92,31,58,0,0,0,0,0,128,0,-1--1--1,,1|(560,232)| 1,93,9,66,1,0,0,0,0,64,0,-1--1--1,,1|(485,708)| 10,94,Conv efficiency from NPP to biofuels,1355,775,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,95,94,71,0,0,0,0,0,64,0,-1--1--1,,1|(1366,726)| 10,96,PEavail biofuels 2gen land compet EJ,1154,617,80,19,8,131,0,0,0,0,0,0 1,97,46,96,0,0,0,0,0,128,0,-1--1--1,,1|(1048,539)| 10,98,PEavail biofuels 3gen land compet EJ,1431,568,68,19,8,131,0,0,0,0,0,0 1,99,96,71,0,0,0,0,0,128,0,-1--1--1,,1|(1267,638)| 1,100,98,71,0,0,0,0,0,128,0,-1--1--1,,1|(1410,607)| 1,101,42,98,0,0,0,0,0,128,0,-1--1--1,,1|(1347,524)| 10,102,share biofuels overcapacity,1242,704,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,103,102,96,0,0,0,0,0,64,0,-1--1--1,,1|(1202,665)| 1,104,102,98,0,0,0,0,0,128,0,-1--1--1,,1|(1330,640)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES BIOE - Crops for biofuels (marg) #EAR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Potential PEavail biofuels land marg EJ,890,326,80,26,3,131,0,0,0,0,0,0 12,2,48,578,322,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(754,326)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(637,326)| 11,5,48,693,326,6,8,34,3,0,0,1,0,0,0 10,6,new biofuels land marg,693,351,79,17,40,131,0,0,-1,0,0,0 10,7,Max PEavail potential biofuels marginal lands,382,491,71,19,8,131,0,0,0,0,0,0 10,8,Conv efficiency from NPP to biofuels,695,517,66,19,8,131,0,0,0,0,0,0 1,9,1,6,1,0,0,0,0,64,0,-1--1--1,,1|(763,376)| 1,10,8,7,1,0,0,0,0,64,0,-1--1--1,,1|(518,510)| 10,11,Land required biofuels land marg,905,440,58,19,8,131,0,0,0,0,0,0 1,12,8,11,1,0,0,0,0,64,0,-1--1--1,,1|(824,457)| 1,13,1,11,1,0,0,0,0,64,0,-1--1--1,,1|(873,366)| 10,14,Land occupation ratio biofuels marg land,1049,413,70,19,8,131,0,0,0,0,0,0 1,15,14,11,1,0,0,0,0,64,0,-1--1--1,,1|(1020,454)| 10,16,BioE potential NPP marginal lands,345,338,63,19,8,131,0,0,0,0,0,0 1,17,16,7,1,0,0,0,0,64,0,-1--1--1,,1|(342,371)| 10,18,BioE gen land marg available,553,425,62,19,8,3,0,0,0,0,0,0 1,19,7,18,0,0,0,0,0,64,0,-1--1--1,,1|(460,460)| 1,20,1,18,1,0,0,0,0,64,0,-1--1--1,,1|(800,417)| 1,21,18,6,1,0,0,0,0,64,0,-1--1--1,,1|(662,391)| 10,22,start production biofuels,488,268,50,19,8,131,0,0,0,0,0,0 1,23,22,6,0,0,0,0,0,128,0,-1--1--1,,1|(586,307)| 10,24,Time,699,400,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,6,0,0,0,0,0,64,0,-1--1--1,,1|(697,385)| 10,26,PE biofuels land marg EJ,1232,340,52,19,8,3,0,0,0,0,0,0 1,27,8,26,1,0,0,0,0,128,0,-1--1--1,,1|(1131,506)| 10,28,start year biofuels land marg,485,315,56,19,8,131,0,0,0,0,0,0 1,29,28,6,0,0,0,0,0,64,0,-1--1--1,,1|(570,329)| 10,30,adapt growth biofuels 2gen,818,193,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,31,30,6,0,0,0,0,0,64,0,-1--1--1,,1|(758,267)| 10,32,check liquids,595,183,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,33,32,6,0,0,0,0,0,64,0,-1--1--1,,1|(638,257)| 10,34,"constrain liquids exogenous growth?",671,211,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,35,34,6,0,0,0,0,0,64,0,-1--1--1,,1|(680,275)| 10,36,EJ per ktoe,860,249,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,6,0,0,0,0,0,64,0,-1--1--1,,1|(786,293)| 10,38,PEavail biofuels land marg EJ,1080,317,50,19,8,3,0,0,0,0,0,0 1,39,1,38,0,0,0,0,0,128,0,-1--1--1,,1|(993,321)| 1,40,38,26,0,0,0,0,0,128,0,-1--1--1,,1|(1148,326)| 10,41,share biofuels overcapacity,1095,248,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,38,0,0,0,0,0,128,0,-1--1--1,,1|(1089,275)| 10,43,Land productivity biofuels marg EJ MHa,248,138,71,19,8,131,0,0,0,0,0,0 10,44,ratio land productivity 2gen vs marg,368,201,69,19,8,3,0,0,0,0,0,0 1,45,43,44,0,0,0,0,0,128,0,-1--1--1,,1|(301,166)| 10,46,Land productivity biofuels 2gen EJ MHa,427,120,75,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,47,46,44,0,0,0,0,0,128,0,-1--1--1,,1|(401,154)| 1,48,44,6,1,0,0,0,0,128,0,-1--1--1,,1|(582,253)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES BIOE - Crop and forest residues #EAR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"PE bioE residues for heat+elec EJ",722,113,65,24,3,131,0,0,0,0,0,0 12,2,48,423,113,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(604,111)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(486,111)| 11,5,48,546,111,6,8,34,3,0,0,1,0,0,0 10,6,"new BioE residues for heat+elec",546,137,64,18,40,131,0,0,-1,0,0,0 10,7,Max NPP potential bioE residues,300,187,70,17,8,131,0,0,0,0,0,0 10,8,"P bioE residues for heat+elec",418,71,61,17,8,131,0,0,0,0,0,0 1,9,8,6,1,0,0,0,0,64,0,-1--1--1,,1|(510,83)| 1,10,1,6,1,0,0,0,0,64,0,-1--1--1,,1|(622,157)| 10,11,"BioE residues for heat+elec available",519,208,76,21,8,131,0,0,0,0,0,0 1,12,1,11,1,0,0,0,0,64,0,-1--1--1,,1|(635,192)| 1,13,11,6,0,0,0,0,0,64,0,-1--1--1,,1|(529,177)| 10,14,Potential PE cellulosic biofuel EJ,976,425,61,25,3,131,0,0,0,0,0,0 12,15,48,681,427,10,8,0,3,0,0,-1,0,0,0 1,16,18,14,4,0,0,22,0,0,0,-1--1--1,,1|(862,425)| 1,17,18,15,100,0,0,22,0,0,0,-1--1--1,,1|(744,425)| 11,18,48,804,425,6,8,34,3,0,0,1,0,0,0 10,19,new cellulosic biofuels,804,455,44,19,40,131,0,0,-1,0,0,0 10,20,Max NPP potential BioE residues for cellulosic biofuels,403,475,95,18,8,131,0,0,0,0,0,0 10,21,P cellulosic biofuels,897,364,36,19,8,131,0,0,0,0,0,0 10,22,PEavail cellulosic biofuel EJ,1213,428,63,22,8,131,0,0,0,0,0,0 10,23,Efficiency bioE residues to cellulosic liquids,1084,513,75,19,8,131,0,0,0,0,0,0 1,24,21,19,1,0,0,0,0,64,0,-1--1--1,,1|(823,399)| 1,25,14,19,1,0,0,0,0,64,0,-1--1--1,,1|(880,482)| 1,26,23,22,1,0,0,0,0,64,0,-1--1--1,,1|(1183,503)| 10,27,Time,826,356,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,19,1,0,0,0,0,64,0,-1--1--1,,1|(811,400)| 10,29,start year cellulosic biofuels,659,373,60,19,8,131,0,0,0,0,0,0 1,30,29,19,1,0,0,0,0,64,0,-1--1--1,,1|(763,371)| 10,31,Cellulosic biofuels available,769,511,58,16,8,131,0,0,0,0,0,0 1,32,14,31,1,0,0,0,0,64,0,-1--1--1,,1|(906,505)| 1,33,20,31,1,0,0,0,0,64,0,-1--1--1,,1|(629,535)| 1,34,31,19,1,0,0,0,0,64,0,-1--1--1,,1|(777,486)| 10,35,share cellulosic biofuels vs BioE residues,483,362,74,19,8,3,0,0,0,0,0,0 1,36,35,20,1,0,0,0,0,128,0,-1--1--1,,1|(444,422)| 1,37,7,20,1,0,0,0,0,128,0,-1--1--1,,1|(299,307)| 10,38,Max NPP potential BioE residues for heat and elec,458,282,83,18,8,131,0,0,0,0,0,0 1,39,7,38,0,0,0,0,0,128,0,-1--1--1,,1|(371,230)| 1,40,35,38,0,0,0,0,0,128,0,-1--1--1,,1|(472,328)| 1,41,38,11,0,0,0,0,0,128,0,-1--1--1,,1|(482,251)| 10,42,EJ per ktoe,726,395,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,43,42,19,0,0,0,0,0,64,0,-1--1--1,,1|(753,416)| 10,44,"start year BioE residues for heat+elec",647,36,79,20,8,131,0,0,0,0,0,0 10,45,EJ per ktoe,442,21,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,46,45,6,1,0,0,0,0,64,0,-1--1--1,,1|(502,61)| 1,47,44,6,0,0,0,0,0,64,0,-1--1--1,,1|(600,82)| 10,48,Time,529,39,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,49,48,6,0,0,0,0,0,64,0,-1--1--1,,1|(534,77)| 10,50,Max PEavail potential bioE residues for cellulosic biofuels,622,579,95,19,8,131,0,0,0,0,0,0 1,51,20,50,1,0,0,0,0,128,0,-1--1--1,,1|(484,537)| 1,52,23,50,1,0,0,0,0,128,0,-1--1--1,,1|(864,558)| 10,53,check liquids,613,460,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,54,53,19,0,0,0,0,0,64,0,-1--1--1,,1|(704,457)| 10,55,"constrain liquids exogenous growth?",629,495,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,56,55,19,0,0,0,0,0,64,0,-1--1--1,,1|(721,474)| 10,57,start production biofuels,676,291,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,58,57,6,0,0,0,0,0,64,0,-1--1--1,,1|(615,218)| 10,59,Conv efficiency from NPP to biofuels,1100,587,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,60,59,23,0,0,0,0,0,64,0,-1--1--1,,1|(1093,556)| 10,61,PE cellulosic biofuel EJ,1086,356,66,19,8,3,0,0,0,0,0,0 1,62,14,61,0,0,0,0,0,128,0,-1--1--1,,1|(1029,391)| 1,63,61,22,0,0,0,0,0,128,0,-1--1--1,,1|(1140,387)| 10,64,Potential PEavail cellulosic biofuel EJ,934,621,62,19,8,3,0,0,0,0,0,0 1,65,14,64,0,0,0,0,0,128,0,-1--1--1,,1|(955,519)| 1,66,59,64,0,0,0,0,0,128,0,-1--1--1,,1|(1019,603)| 10,67,share biofuels overcapacity,1096,269,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,68,67,61,0,0,0,0,0,128,0,-1--1--1,,1|(1091,305)| 10,69,ratio land productivity 2gen vs marg,787,254,64,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,70,69,6,0,0,0,0,0,128,0,-1--1--1,,1|(662,193)| 1,71,69,19,0,0,0,0,0,128,0,-1--1--1,,1|(794,352)| 1,72,57,19,0,0,0,0,0,128,0,-1--1--1,,1|(735,367)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES BIOE - Total biofuels liquids #EAR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Max PEavail biofuels potential,755,595,54,19,8,3,0,0,-1,0,0,0 10,2,Max PEavail potential bioE residues for cellulosic biofuels,605,517,91,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,3,2,1,0,0,0,0,0,0,0,-1--1--1,,1|(681,557)| 10,4,"Max PEavail potential biofuels 2-3gen",602,677,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,1,0,0,0,0,0,0,0,-1--1--1,,1|(671,639)| 10,6,Max PEavail potential biofuels marginal lands,578,605,76,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,1,0,0,0,0,0,0,0,-1--1--1,,1|(670,599)| 10,8,PE biomass for biofuels production EJ,758,342,71,19,8,3,0,0,-1,0,0,0 10,9,PE biofuels land marg EJ,583,351,56,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,10,9,8,0,0,0,0,0,0,0,-1--1--1,,1|(656,347)| 10,11,"PE biofuels prod 2gen+3gen EJ",632,399,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,12,11,8,0,0,0,0,0,0,0,-1--1--1,,1|(688,373)| 10,13,FES total biofuels production EJ,931,181,66,19,8,3,0,0,-1,0,0,0 10,14,PEavail cellulosic biofuel EJ,774,153,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,15,14,13,0,0,0,0,0,0,0,-1--1--1,,1|(842,164)| 10,16,Oil liquids saved by biofuels EJ,965,256,62,19,8,131,0,0,0,0,0,0 10,17,Additional PE production of bioenergy for biofuels,1006,349,81,19,8,3,0,0,0,0,0,0 1,18,16,17,0,0,0,0,0,128,0,-1--1--1,,1|(982,296)| 1,19,13,16,0,0,0,0,0,64,0,-1--1--1,,1|(944,212)| 1,20,8,17,0,0,0,0,0,64,0,-1--1--1,,1|(870,344)| 10,21,"FES total biofuels production Mb/d",1229,212,66,19,8,3,0,0,0,0,0,0 1,22,13,21,0,0,0,0,0,128,0,-1--1--1,,1|(1073,195)| 10,23,"Mb/d per EJ/year",1314,145,36,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,24,23,21,0,0,0,0,0,64,0,-1--1--1,,1|(1277,174)| 12,25,264128,1148,551,181,171,3,188,0,0,1,0,0,0 Total_biofuel_production 10,26,PEavail biofuels land marg EJ,829,93,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,13,0,0,0,0,0,128,0,-1--1--1,,1|(874,132)| 10,28,PE cellulosic biofuel EJ,591,284,45,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,29,28,8,0,0,0,0,0,128,0,-1--1--1,,1|(662,308)| 10,30,PEavail biofuels 2gen land compet EJ,1022,75,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,31,PEavail biofuels 3gen land compet EJ,1145,118,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,32,30,13,0,0,0,0,0,128,0,-1--1--1,,1|(981,122)| 1,33,31,13,0,0,0,0,0,128,0,-1--1--1,,1|(1044,147)| 10,34,PED liquids EJ,652,26,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,35,Potential PEavail biofuels 2gen land compet EJ,418,117,83,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,36,Potential PEavail biofuels land marg EJ,408,170,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,37,Potential PEavail biofuels prod 3gen EJ,416,267,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,38,Potential PEavail cellulosic biofuel EJ,407,223,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,39,Potential PEavail total biofuels,578,170,54,19,8,3,0,0,0,0,0,0 1,40,35,39,0,0,0,0,0,128,0,-1--1--1,,1|(505,145)| 1,41,36,39,0,0,0,0,0,128,0,-1--1--1,,1|(495,170)| 1,42,38,39,0,0,0,0,0,128,0,-1--1--1,,1|(489,197)| 1,43,37,39,0,0,0,0,0,128,0,-1--1--1,,1|(490,222)| 10,44,share biofuels overcapacity,641,98,55,19,8,131,0,0,0,0,0,0 1,45,39,44,0,0,0,0,0,128,0,-1--1--1,,1|(604,139)| 10,46,FES total biofuels production EJ 2,497,47,62,21,8,131,0,0,0,0,0,0 1,47,39,46,0,0,0,0,0,128,0,-1--1--1,,1|(541,115)| 1,48,34,46,1,0,0,0,0,128,0,-1--1--1,,1|(565,25)| 1,49,46,44,1,0,0,0,0,128,0,-1--1--1,,1|(554,65)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES BIOE - Biogas #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Historic biogas PES,694,336,50,19,8,131,0,0,0,0,0,0 10,2,growth biogas,471,530,46,18,8,131,0,0,0,0,0,0 10,3,PES Biogas EJ,861,391,52,25,3,131,0,0,0,0,0,0 12,4,48,492,394,10,8,0,3,0,0,-1,0,0,0 1,5,7,3,4,0,0,22,0,0,0,-1--1--1,,1|(735,394)| 1,6,7,4,100,0,0,22,0,0,0,-1--1--1,,1|(575,394)| 11,7,48,655,394,6,8,34,3,0,0,1,0,0,0 10,8,new PES biogas,655,412,65,10,40,131,0,0,-1,0,0,0 1,9,1,8,1,0,0,0,0,128,0,-1--1--1,,1|(685,361)| 10,10,max biogas EJ,492,340,49,20,8,131,0,0,0,0,0,0 1,11,10,8,1,0,0,0,0,128,0,-1--1--1,,1|(579,371)| 10,12,biogas evol,419,600,36,11,8,3,0,0,0,0,0,0 10,13,past biogas growth,575,598,44,18,8,131,0,0,0,0,0,0 1,14,12,2,1,0,0,0,0,128,0,-1--1--1,,1|(438,535)| 1,15,13,2,1,0,0,0,0,128,0,-1--1--1,,1|(518,543)| 1,16,3,8,1,0,0,0,0,128,0,-1--1--1,,1|(809,413)| 10,17,Time,688,462,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,18,17,8,0,0,0,0,0,64,0,-1--1--1,,1|(674,442)| 10,19,adapt growth biogas,593,481,59,19,8,3,0,0,0,0,0,0 1,20,2,19,0,0,0,0,0,128,0,-1--1--1,,1|(523,508)| 1,21,13,19,1,0,0,0,0,128,0,-1--1--1,,1|(595,550)| 1,22,19,8,0,0,0,0,0,128,0,-1--1--1,,1|(623,447)| 10,23,Time dmnl,463,448,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,24,23,19,0,0,0,0,0,64,0,-1--1--1,,1|(513,460)| 1,25,17,19,0,0,0,0,0,128,0,-1--1--1,,1|(663,466)| 12,26,0,661,784,222,162,3,188,0,0,1,0,0,0 Biogas_PES 10,27,"PES biogas for heat-com plants",1020,237,61,19,8,3,0,0,0,0,0,0 10,28,efficiency biogas for heat plants,1217,170,61,19,8,3,0,0,0,0,0,0 10,29,"share PES biogas for heat-com plants",1009,152,65,19,8,3,0,0,0,0,0,0 1,30,29,27,0,0,0,0,0,128,0,-1--1--1,,1|(1013,187)| 10,31,"FES biogas for heat-com plants",1209,232,61,19,8,3,0,0,0,0,0,0 1,32,27,31,0,0,0,0,0,128,0,-1--1--1,,1|(1107,234)| 1,33,28,31,0,0,0,0,0,128,0,-1--1--1,,1|(1214,194)| 10,34,"FES heat-com from biogas EJ",1386,201,47,19,8,3,0,0,0,0,0,0 1,35,31,34,1,0,0,0,0,128,0,-1--1--1,,1|(1274,219)| 10,36,PES biogas for elec plants,1026,539,61,19,8,3,0,0,0,0,0,0 10,37,share PES biogas for elec plants,1042,625,65,19,8,3,0,0,0,0,0,0 1,38,37,36,0,0,0,0,0,128,0,-1--1--1,,1|(1035,588)| 10,39,PES biogas for CHP,1016,372,46,19,8,3,0,0,0,0,0,0 10,40,share PES biogas for CHP,1007,455,54,19,8,131,0,0,0,0,0,0 10,41,share PES biogas TFC,822,580,54,19,8,3,0,0,0,0,0,0 1,42,40,39,0,0,0,0,0,128,0,-1--1--1,,1|(1010,420)| 10,43,Potential PES biogas for TFC,819,498,57,19,8,131,0,0,0,0,0,0 1,44,41,43,0,0,0,0,0,128,0,-1--1--1,,1|(820,545)| 10,45,efficiency biogas for elec plants,1202,614,61,19,8,3,0,0,0,0,0,0 10,46,efficiency biogas for heat CHP plants,1423,350,69,19,8,131,0,0,0,0,0,0 10,47,"FES heat-com from biogas in CHP plants",1253,307,70,20,8,131,0,0,0,0,0,0 10,48,FES elec from biogas in elec plants,1205,538,66,18,8,131,0,0,0,0,0,0 1,49,39,47,0,0,0,0,0,128,0,-1--1--1,,1|(1115,344)| 10,50,FES elec from biogas in CHP plants,1267,485,69,17,8,131,0,0,0,0,0,0 1,51,39,50,0,0,0,0,0,128,0,-1--1--1,,1|(1137,426)| 1,52,36,48,0,0,0,0,0,128,0,-1--1--1,,1|(1105,538)| 1,53,45,48,0,0,0,0,0,128,0,-1--1--1,,1|(1202,582)| 10,54,efficiency biogas for elec CHP plants,1438,418,71,17,8,131,0,0,0,0,0,0 1,55,46,47,0,0,0,0,0,128,0,-1--1--1,,1|(1345,330)| 1,56,54,50,0,0,0,0,0,128,0,-1--1--1,,1|(1359,448)| 1,57,47,34,1,0,0,0,0,128,0,-1--1--1,,1|(1323,254)| 10,58,FES elec from biogas EJ,1490,491,46,19,8,3,0,0,0,0,0,0 1,59,48,58,1,0,0,0,0,128,0,-1--1--1,,1|(1399,520)| 1,60,50,58,1,0,0,0,0,128,0,-1--1--1,,1|(1383,479)| 10,61,EJ per TWh,1555,536,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,3,27,0,0,0,0,0,128,0,-1--1--1,,1|(937,315)| 1,63,3,36,0,0,0,0,0,128,0,-1--1--1,,1|(940,463)| 1,64,3,39,0,0,0,0,0,128,0,-1--1--1,,1|(934,381)| 1,65,3,43,0,0,0,0,0,128,0,-1--1--1,,1|(841,441)| 10,66,"PES tot biogas for heat-com",1465,122,48,19,8,3,0,0,0,0,0,0 10,67,PES tot biogas for elec,1435,713,48,19,8,3,0,0,0,0,0,0 10,68,FES elec from biogas TWh,1475,599,46,19,8,3,0,0,0,0,0,0 1,69,61,68,0,0,0,0,0,128,0,-1--1--1,,1|(1526,559)| 1,70,58,68,0,0,0,0,0,128,0,-1--1--1,,1|(1483,538)| 10,71,share PES biogas for elec,1126,717,56,19,8,3,0,0,0,0,0,0 1,72,67,71,0,0,0,0,0,128,0,-1--1--1,,1|(1291,714)| 1,73,3,71,1,0,0,0,0,128,0,-1--1--1,,1|(930,612)| 10,74,Losses CHP biogas,1187,392,41,19,8,3,0,0,0,0,0,0 1,75,39,74,0,0,0,0,0,128,0,-1--1--1,,1|(1097,381)| 1,76,50,74,0,0,0,0,0,128,0,-1--1--1,,1|(1232,444)| 1,77,47,74,0,0,0,0,0,128,0,-1--1--1,,1|(1223,344)| 10,78,share efficiency biogas for elec in CHP plants,1637,391,71,19,8,3,0,0,0,0,0,0 1,79,46,78,0,0,0,0,0,128,0,-1--1--1,,1|(1522,368)| 1,80,54,78,0,0,0,0,0,128,0,-1--1--1,,1|(1530,405)| 10,81,share PES biogas for heat,1181,93,56,19,8,3,0,0,0,0,0,0 1,82,3,81,1,0,0,0,0,128,0,-1--1--1,,1|(928,150)| 1,83,66,81,1,0,0,0,0,128,0,-1--1--1,,1|(1337,88)| 1,84,50,67,1,0,0,0,0,0,0,-1--1--1,,1|(1358,591)| 1,85,36,67,1,0,0,0,0,0,0,-1--1--1,,1|(1207,670)| 1,86,78,67,1,0,0,0,0,0,0,-1--1--1,,1|(1589,599)| 1,87,47,66,1,0,0,0,0,0,0,-1--1--1,,1|(1416,277)| 1,88,27,66,1,0,0,0,0,0,0,-1--1--1,,1|(1211,131)| 1,89,78,66,1,0,0,0,0,0,0,-1--1--1,,1|(1613,284)| 10,90,Losses CHP biogas,1436,785,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,91,90,67,0,0,0,0,0,128,0,-1--1--1,,1|(1435,755)| 10,92,Losses CHP biogas,1465,35,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,93,92,66,0,0,0,0,0,128,0,-1--1--1,,1|(1465,71)| 10,94,PED gases,705,593,44,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,95,PES biogas for TFC,688,540,67,19,8,131,0,0,0,0,0,0 1,96,43,95,0,0,0,0,0,128,0,-1--1--1,,1|(761,516)| 1,97,94,95,0,0,0,0,0,128,0,-1--1--1,,1|(700,577)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *WASTE - PES & FES #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Historic PES waste EJ,590,256,53,23,8,131,0,0,0,0,0,0 10,2,PES waste EJ,856,323,54,20,3,131,0,0,0,0,0,0 12,3,48,636,322,10,8,0,3,0,0,-1,0,0,0 1,4,6,2,4,0,0,22,0,0,0,-1--1--1,,1|(766,322)| 1,5,6,3,100,0,0,22,0,0,0,-1--1--1,,1|(682,322)| 11,6,48,724,322,6,8,34,3,0,0,1,0,0,0 10,7,new waste supply EJ,724,347,45,17,40,131,0,0,-1,0,0,0 1,8,1,7,1,0,0,0,0,128,0,-1--1--1,,1|(635,274)| 10,9,Past waste growth,752,459,46,17,8,131,0,0,0,0,0,0 10,10,max waste,598,376,34,11,8,3,0,0,0,0,0,0 1,11,10,7,1,0,0,0,0,128,0,-1--1--1,,1|(676,345)| 1,12,2,7,1,0,0,0,0,128,0,-1--1--1,,1|(812,344)| 10,13,Time,769,263,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,14,13,7,0,0,0,0,0,64,0,-1--1--1,,1|(751,295)| 10,15,"PES waste for heat-com plants",1007,199,53,20,8,131,0,0,0,0,0,0 1,16,2,15,0,0,0,0,0,128,0,-1--1--1,,1|(925,265)| 10,17,efficiency waste for heat plants,1171,130,50,19,8,3,0,0,0,0,0,0 10,18,waste change,641,498,59,11,8,131,0,0,0,0,0,0 10,19,adapt growth waste,626,436,49,18,8,131,0,0,0,0,0,0 1,20,18,19,0,0,0,0,0,128,0,-1--1--1,,1|(636,477)| 1,21,9,19,0,0,0,0,0,128,0,-1--1--1,,1|(697,449)| 10,22,Time,492,461,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,23,22,19,0,0,0,0,0,64,0,-1--1--1,,1|(540,452)| 10,24,Time dmnl,493,410,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,19,0,0,0,0,0,64,0,-1--1--1,,1|(549,420)| 1,26,19,7,0,0,0,0,0,128,0,-1--1--1,,1|(669,395)| 10,27,Annual GDP growth rate,510,551,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,18,0,0,0,0,0,128,0,-1--1--1,,1|(578,523)| 10,29,P waste change,738,554,49,11,8,131,0,0,0,0,0,0 1,30,29,18,0,0,0,0,0,128,0,-1--1--1,,1|(695,529)| 12,31,0,733,753,210,183,3,188,0,0,1,0,0,0 PES_waste 10,32,initial PES waste,864,290,52,11,8,3,0,0,0,0,0,0 1,33,32,2,0,0,0,0,0,128,1,-1--1--1,,1|(865,297)| 1,34,29,7,1,0,0,0,0,128,0,-1--1--1,,1|(813,449)| 10,35,"share PES waste for heat-com plants",998,124,61,19,8,3,0,0,0,0,0,0 1,36,35,15,0,0,0,0,0,128,0,-1--1--1,,1|(1001,154)| 10,37,"FES waste for heat-com plants",1198,201,61,19,8,3,0,0,0,0,0,0 1,38,15,37,0,0,0,0,0,128,0,-1--1--1,,1|(1091,199)| 1,39,17,37,0,0,0,0,0,128,0,-1--1--1,,1|(1181,158)| 10,40,"FES heat-com from waste EJ",1480,207,46,19,8,3,0,0,0,0,0,0 1,41,37,40,1,0,0,0,0,128,0,-1--1--1,,1|(1323,193)| 10,42,PES waste for elec plants,1031,565,61,19,8,3,0,0,0,0,0,0 1,43,2,42,0,0,0,0,0,128,0,-1--1--1,,1|(939,438)| 10,44,share PES waste for elec plants,1027,627,65,19,8,3,0,0,0,0,0,0 1,45,44,42,0,0,0,0,0,128,0,-1--1--1,,1|(1028,602)| 10,46,PES waste for CHP plants,1035,326,61,19,8,3,0,0,0,0,0,0 10,47,share PES waste for CHP,1042,407,54,22,8,131,0,0,0,0,0,0 10,48,share PES waste TFC,891,528,65,19,8,3,0,0,0,0,0,0 1,49,47,46,0,0,0,0,0,128,0,-1--1--1,,1|(1039,371)| 1,50,2,46,0,0,0,0,0,128,0,-1--1--1,,1|(935,323)| 10,51,PES waste for TFC,886,450,46,19,8,3,0,0,0,0,0,0 1,52,48,51,0,0,0,0,0,128,0,-1--1--1,,1|(889,495)| 1,53,2,51,0,0,0,0,0,128,0,-1--1--1,,1|(868,380)| 10,54,efficiency waste for elec plants,1239,639,61,19,8,3,0,0,0,0,0,0 10,55,efficiency waste for heat CHP plants,1392,313,61,19,8,3,0,0,0,0,0,0 10,56,"FES heat-com from waste in CHP plants",1270,258,70,18,8,131,0,0,0,0,0,0 10,57,FES elec from waste in elec plants,1239,555,68,18,8,131,0,0,0,0,0,0 1,58,46,56,0,0,0,0,0,128,0,-1--1--1,,1|(1144,294)| 10,59,FES elec from waste in CHP plants,1248,413,66,19,8,131,0,0,0,0,0,0 1,60,46,59,0,0,0,0,0,128,0,-1--1--1,,1|(1134,366)| 1,61,42,57,0,0,0,0,0,128,0,-1--1--1,,1|(1124,560)| 1,62,54,57,0,0,0,0,0,128,0,-1--1--1,,1|(1239,603)| 10,63,efficiency waste for elec CHP plants,1385,362,61,19,8,3,0,0,0,0,0,0 1,64,55,56,0,0,0,0,0,128,0,-1--1--1,,1|(1335,287)| 1,65,63,59,0,0,0,0,0,128,0,-1--1--1,,1|(1323,385)| 1,66,56,40,0,0,0,0,0,128,0,-1--1--1,,1|(1380,231)| 10,67,FES elec from waste EJ,1476,463,47,19,8,3,0,0,0,0,0,0 1,68,57,67,1,0,0,0,0,128,0,-1--1--1,,1|(1404,543)| 1,69,59,67,1,0,0,0,0,128,0,-1--1--1,,1|(1368,434)| 10,70,FES elec from waste TWh,1585,502,46,19,8,3,0,0,0,0,0,0 1,71,67,70,0,0,0,0,0,128,0,-1--1--1,,1|(1524,479)| 10,72,EJ per TWh,1498,585,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,73,72,70,0,0,0,0,0,64,0,-1--1--1,,1|(1531,552)| 10,74,Losses CHP waste,1212,338,41,19,8,3,0,0,0,0,0,0 1,75,46,74,0,0,0,0,0,128,0,-1--1--1,,1|(1126,332)| 1,76,56,74,0,0,0,0,0,128,0,-1--1--1,,1|(1245,291)| 1,77,59,74,0,0,0,0,0,128,0,-1--1--1,,1|(1233,381)| 10,78,"PES tot waste for heat-com",1451,101,59,19,8,3,0,0,0,0,0,0 10,79,PES tot waste for elec,1424,713,59,19,8,3,0,0,0,0,0,0 1,80,15,78,1,0,0,0,0,128,0,-1--1--1,,1|(1183,86)| 10,81,share efficiency waste for elec in CHP plants,1681,344,77,19,8,3,0,0,0,0,0,0 1,82,63,81,0,0,0,0,0,64,0,-1--1--1,,1|(1518,353)| 1,83,55,81,0,0,0,0,0,64,0,-1--1--1,,1|(1521,326)| 1,84,81,78,1,0,0,0,0,128,0,-1--1--1,,1|(1657,195)| 1,85,56,78,0,0,0,0,0,128,0,-1--1--1,,1|(1354,184)| 1,86,42,79,1,0,0,0,0,64,0,-1--1--1,,1|(1216,666)| 1,87,81,79,1,0,0,0,0,64,0,-1--1--1,,1|(1642,547)| 1,88,59,79,0,0,0,0,0,64,0,-1--1--1,,1|(1331,556)| 10,89,Losses CHP waste,1451,36,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,90,89,78,0,0,0,0,0,128,0,-1--1--1,,1|(1451,61)| 10,91,Losses CHP waste,1420,795,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,92,91,79,0,0,0,0,0,128,0,-1--1--1,,1|(1421,760)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *PES solids biofuels & waste #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,PE bioE for Elec generation EJ,539,391,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,PES solids bioE EJ,843,326,64,19,8,3,0,0,0,0,0,0 1,3,1,2,1,0,0,0,0,128,0,-1--1--1,,1|(651,346)| 10,4,PE traditional biomass EJ delayed 1yr,1116,344,76,24,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,2,1,0,0,0,0,128,0,-1--1--1,,1|(936,311)| 10,6,"PES solids bioE & waste EJ",835,229,61,19,8,131,0,0,0,0,0,0 1,7,2,6,1,0,0,0,0,128,0,-1--1--1,,1|(829,290)| 10,8,Losses in charcoal plants EJ,837,411,59,19,8,3,0,0,0,0,0,0 1,9,8,2,0,0,0,0,0,128,0,-1--1--1,,1|(839,375)| 10,10,PES waste EJ,952,133,44,28,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,10,6,0,0,0,0,0,128,0,-1--1--1,,1|(893,181)| 10,12,"PES RES for heat-com by techn",535,293,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,2,0,0,0,0,0,128,0,-1--1--1,,1|(682,308)| 10,14,"PES RES for heat-nc by techn",568,205,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,15,14,2,0,0,0,0,0,128,0,-1--1--1,,1|(698,262)| 10,16,solid biofuels emissions relevant EJ,345,251,72,23,8,131,0,0,0,0,0,0 1,17,14,16,0,0,0,0,0,128,0,-1--1--1,,1|(470,224)| 1,18,12,16,0,0,0,0,0,128,0,-1--1--1,,1|(450,274)| 1,19,1,16,0,0,0,0,0,128,0,-1--1--1,,1|(450,327)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CHP plants - NRE FES com Heat and Elec #EE,EH $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"Share heat-com CHP plants NRE vs NRE tot heat-com generation",1397,55,115,22,8,131,0,0,0,0,0,0 10,2,"FED heat-com by NRE CHP plants EJ",1187,76,66,18,8,131,0,0,0,0,0,0 10,3,FED heat fossil fuels CHP plants EJ,1030,147,63,19,8,131,0,0,0,0,0,0 10,4,"Potential FES Heat-com nuclear CHP plants EJ",648,134,80,19,8,131,0,0,0,0,0,0 1,5,2,3,1,0,0,0,0,128,0,-1--1--1,,1|(1125,126)| 10,6,share CHP plants oil,1251,347,36,21,8,131,0,0,0,0,0,0 10,7,historic share CHP plants gas,988,289,49,18,8,131,0,0,0,0,0,0 10,8,share CHP plants coal,940,217,49,20,8,131,0,0,0,0,0,0 10,9,FED heat coal CHP plants EJ,844,352,61,21,8,131,0,0,0,0,0,0 10,10,FED heat gas CHP plants EJ,1118,360,58,21,8,131,0,0,0,0,0,0 10,11,FED heat liquids CHP plants EJ,1412,358,59,21,8,131,0,0,0,0,0,0 1,12,3,9,1,0,0,0,0,128,0,-1--1--1,,1|(871,229)| 1,13,8,9,1,0,0,0,0,128,0,-1--1--1,,1|(886,287)| 1,14,3,10,1,0,0,0,0,128,0,-1--1--1,,1|(1070,246)| 1,15,7,10,1,0,0,0,0,128,0,-1--1--1,,1|(1024,316)| 1,16,3,11,1,0,0,0,0,128,0,-1--1--1,,1|(1205,193)| 1,17,6,11,1,0,0,0,0,128,0,-1--1--1,,1|(1308,380)| 10,18,efficiency Heat coal CHP plants,706,421,62,19,8,3,0,0,0,0,0,0 10,19,efficiency Heat gas CHP plants,973,407,60,19,8,3,0,0,0,0,0,0 10,20,efficiency Heat oil CHP plants,1223,442,57,19,8,3,0,0,0,0,0,0 10,21,PED coal for CHP plants EJ,875,492,61,17,8,131,0,0,0,0,0,0 10,22,PED gas for CHP plants EJ,1109,491,60,19,8,131,0,0,0,0,0,0 10,23,PED oil for CHP plants EJ,1376,491,61,19,8,3,0,0,0,0,0,0 1,24,18,21,0,0,0,0,0,128,0,-1--1--1,,1|(786,454)| 1,25,9,21,1,0,0,0,0,128,0,-1--1--1,,1|(851,440)| 1,26,19,22,1,0,0,0,0,128,0,-1--1--1,,1|(1042,444)| 1,27,10,22,1,0,0,0,0,128,0,-1--1--1,,1|(1099,439)| 1,28,20,23,1,0,0,0,0,128,0,-1--1--1,,1|(1275,469)| 1,29,11,23,1,0,0,0,0,128,0,-1--1--1,,1|(1395,431)| 10,30,Potential FE gen Elec coal CHP plants EJ,819,629,69,21,8,131,0,0,0,0,0,0 10,31,Potential FE gen Elec gas CHP plants EJ,1067,626,71,21,8,131,0,0,0,0,0,0 10,32,Potential FE gen Elec liquids CHP plants EJ,1351,621,69,21,8,131,0,0,0,0,0,0 10,33,efficiency Elec coal CHP plants,678,576,61,19,8,3,0,0,0,0,0,0 10,34,efficiency Elec gas CHP plants,935,568,58,19,8,3,0,0,0,0,0,0 10,35,efficiency Elec oil CHP plants,1204,554,55,19,8,3,0,0,0,0,0,0 1,36,33,30,1,0,0,0,0,128,0,-1--1--1,,1|(709,616)| 1,37,21,30,1,0,0,0,0,128,0,-1--1--1,,1|(850,552)| 1,38,22,31,1,0,0,0,0,128,0,-1--1--1,,1|(1051,537)| 1,39,34,31,1,0,0,0,0,128,0,-1--1--1,,1|(951,585)| 1,40,23,32,1,0,0,0,0,128,0,-1--1--1,,1|(1341,548)| 1,41,35,32,1,0,0,0,0,128,0,-1--1--1,,1|(1260,571)| 10,42,Potential FE gen Elec fossil fuel CHP plants EJ,1056,711,83,21,8,131,0,0,0,0,0,0 1,43,30,42,1,0,0,0,0,128,0,-1--1--1,,1|(916,681)| 1,44,31,42,1,0,0,0,0,128,0,-1--1--1,,1|(991,661)| 1,45,32,42,1,0,0,0,0,128,0,-1--1--1,,1|(1253,665)| 10,46,"FED Heat-com NRE EJ",1025,28,57,17,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,47,Total gen losses demand for CHP plants EJ,550,495,65,29,8,131,0,0,0,0,0,0 1,48,21,47,1,0,0,0,0,128,0,-1--1--1,,1|(721,501)| 1,49,18,47,1,0,0,0,0,128,0,-1--1--1,,1|(631,447)| 1,50,33,47,1,0,0,0,0,128,0,-1--1--1,,1|(633,544)| 1,51,22,47,1,0,0,0,0,128,0,-1--1--1,,1|(838,492)| 1,52,19,47,1,0,0,0,0,128,0,-1--1--1,,1|(831,416)| 1,53,34,47,1,0,0,0,0,128,0,-1--1--1,,1|(753,542)| 1,54,23,47,1,0,0,0,0,128,0,-1--1--1,,1|(956,529)| 1,55,20,47,1,0,0,0,0,128,0,-1--1--1,,1|(902,436)| 1,56,35,47,1,0,0,0,0,128,0,-1--1--1,,1|(885,549)| 10,57,historic share CHP plants oil,1162,230,60,19,8,3,0,0,0,0,0,0 1,58,57,6,1,0,0,0,0,128,0,-1--1--1,,1|(1233,300)| 10,59,Time,1219,396,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,60,59,6,0,0,0,0,0,64,0,-1--1--1,,1|(1227,382)| 1,61,6,8,1,0,0,0,0,128,0,-1--1--1,,1|(1114,277)| 1,62,7,8,0,0,0,0,0,128,0,-1--1--1,,1|(968,259)| 10,63,FE nuclear Elec generation TWh,458,90,56,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,64,63,4,0,0,0,0,0,128,0,-1--1--1,,1|(533,106)| 10,65,FES Elec fossil fuel CHP plants EJ,1059,784,62,19,8,131,0,0,0,0,0,0 1,66,42,65,0,0,0,0,0,128,0,-1--1--1,,1|(1056,741)| 10,67,"FES heat-com fossil fuels CHP plants EJ",1355,170,65,19,8,131,0,0,0,0,0,0 1,68,3,67,1,0,0,0,0,128,0,-1--1--1,,1|(1194,172)| 1,69,46,2,0,0,0,0,0,128,0,-1--1--1,,1|(1097,48)| 1,70,1,2,0,0,0,0,0,128,0,-1--1--1,,1|(1274,66)| 10,71,share of heat production in CHP plants vs total nucelar elec generation,459,189,86,28,8,3,0,0,0,0,0,0 1,72,71,4,1,0,0,0,0,128,0,-1--1--1,,1|(533,174)| 10,73,Demand Elec NRE TWh,833,782,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,74,73,65,0,0,0,0,0,128,0,-1--1--1,,1|(932,782)| 10,75,EJ per TWh,1276,787,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,76,75,65,0,0,0,0,0,128,0,-1--1--1,,1|(1181,785)| 10,77,"FES Heat-com nuclear CHP plants EJ",887,90,78,19,8,131,0,0,0,0,0,0 1,78,4,77,0,0,0,0,0,128,0,-1--1--1,,1|(761,113)| 1,79,46,77,0,0,0,0,0,128,0,-1--1--1,,1|(964,55)| 1,80,77,3,0,0,0,0,0,128,0,-1--1--1,,1|(951,115)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *HEAT - Heat demand #EH $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"FED Heat-com EJ",543,267,47,19,8,131,0,0,-1,0,0,0 10,2,"Heat-com distribution losses",737,257,64,17,8,131,0,0,-1,0,0,0 1,3,1,2,1,0,0,0,0,0,0,-1--1--1,,1|(634,248)| 10,4,Share heat distribution losses,850,316,56,19,8,3,0,0,-1,0,0,0 1,5,4,2,1,0,0,0,0,0,0,-1--1--1,,1|(778,296)| 10,6,"Total FED Heat-com EJ",719,379,52,19,8,3,0,0,-1,0,0,0 1,7,1,6,0,0,0,0,0,0,0,-1--1--1,,1|(624,319)| 1,8,4,6,0,0,0,0,0,0,0,-1--1--1,,1|(790,344)| 10,9,"FED Heat-com NRE EJ",729,559,52,19,8,3,0,0,-1,0,0,0 10,10,"FED Heat-com plants fossil fuels EJ",729,642,63,20,8,131,0,0,-1,0,0,0 1,11,9,10,0,0,0,0,0,0,0,-1--1--1,,1|(729,593)| 12,12,0,1433,636,272,235,3,188,0,0,1,0,0,0 Heat_demand 10,13,"FES heat-com fossil fuels CHP plants EJ",502,606,69,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,14,13,10,0,0,0,0,0,128,0,-1--1--1,,1|(611,622)| 10,15,"FES heat-com from waste EJ",480,530,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,16,"Required heat-com",593,142,31,19,8,3,0,0,-1,0,0,0 1,17,16,1,1,0,0,0,0,128,0,-1--1--1,,1|(554,174)| 10,18,"FED Heat-nc EJ",921,251,50,19,8,131,0,0,-1,0,0,0 1,19,16,18,1,0,0,0,0,128,0,-1--1--1,,1|(787,223)| 10,20,"Total FED NRE Heat-nc",1194,247,47,24,8,131,0,0,-1,0,0,0 10,21,"Share FED heat-com vs total heat",982,431,71,20,8,131,0,0,-1,0,0,0 10,22,"Total FE real supply RES for heat-com EJ",965,537,74,19,8,3,0,0,0,0,0,0 10,23,"Total FE real supply RES for heat-nc EJ",1333,347,74,19,8,3,0,0,0,0,0,0 1,24,23,20,0,0,0,0,0,128,0,-1--1--1,,1|(1272,303)| 10,25,"PED coal Heat-nc",1338,151,58,11,8,3,0,0,0,0,0,0 1,26,20,25,0,0,0,0,0,128,0,-1--1--1,,1|(1269,196)| 10,27,"PED liquids Heat-nc",1353,254,53,25,8,131,0,0,0,0,0,0 10,28,"PED gas Heat-nc",1349,196,60,20,8,131,0,0,0,0,0,0 1,29,20,27,0,0,0,0,0,128,0,-1--1--1,,1|(1263,249)| 1,30,20,28,0,0,0,0,0,128,0,-1--1--1,,1|(1258,225)| 10,31,"Heat-nc distribution losses",1010,170,62,19,8,131,0,0,-1,0,0,0 1,32,18,31,0,0,0,0,0,128,0,-1--1--1,,1|(959,215)| 10,33,efficiency coal for heat plants,1494,61,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,34,efficiency liquids for heat plants,1521,311,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,35,efficiency gases for heat plants,1536,221,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,36,Total FED Heat EJ,1014,358,52,19,8,3,0,0,0,0,0,0 1,37,6,36,1,0,0,0,0,128,0,-1--1--1,,1|(837,377)| 1,38,34,27,0,0,0,0,0,128,0,-1--1--1,,1|(1442,283)| 1,39,35,28,0,0,0,0,0,128,0,-1--1--1,,1|(1446,209)| 1,40,33,25,0,0,0,0,0,128,0,-1--1--1,,1|(1415,106)| 10,41,"Total FED Heat-nc EJ",1075,251,49,19,8,3,0,0,-1,0,0,0 1,42,18,41,0,0,0,0,0,128,0,-1--1--1,,1|(991,251)| 1,43,41,20,0,0,0,0,0,128,0,-1--1--1,,1|(1128,249)| 1,44,41,31,0,0,0,0,0,128,0,-1--1--1,,1|(1046,215)| 10,45,"share FED coal vs NRE heat-nc",1521,117,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,46,"share FED gas vs NRE heat-nc",1531,182,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,47,"share FED liquids vs NRE heat-nc",1531,265,68,17,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,48,45,25,0,0,0,0,0,128,0,-1--1--1,,1|(1432,133)| 1,49,46,28,0,0,0,0,0,128,0,-1--1--1,,1|(1445,187)| 1,50,47,27,0,0,0,0,0,128,0,-1--1--1,,1|(1441,259)| 1,51,36,21,0,0,0,0,0,128,0,-1--1--1,,1|(1000,387)| 1,52,6,21,0,0,0,0,0,128,0,-1--1--1,,1|(834,401)| 10,53,"FE real generation RES heat-com EJ",1053,615,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,54,FE heat demand consum,830,145,79,19,8,131,0,0,0,0,0,0 10,55,Required FED by fuel,720,38,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,56,55,54,0,0,0,0,0,128,0,-1--1--1,,1|(769,86)| 1,57,54,18,1,0,0,0,0,128,0,-1--1--1,,1|(881,190)| 10,58,"FED Heat-com after priorities EJ",724,471,66,19,8,3,0,0,0,0,0,0 1,59,6,58,0,0,0,0,0,128,0,-1--1--1,,1|(720,418)| 1,60,15,58,0,0,0,0,0,128,0,-1--1--1,,1|(588,503)| 1,61,53,22,0,0,0,0,0,128,0,-1--1--1,,1|(1014,580)| 10,62,"FES heat-com from biogas EJ",486,478,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,63,62,58,0,0,0,0,0,128,0,-1--1--1,,1|(599,474)| 1,64,41,36,1,0,0,0,0,128,0,-1--1--1,,1|(1050,312)| 1,65,58,9,0,0,0,0,0,128,0,-1--1--1,,1|(725,508)| 1,66,4,41,0,0,0,0,0,128,0,-1--1--1,,1|(959,284)| 10,67,"FE real generation RES heat-nc EJ",1536,373,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,68,67,23,0,0,0,0,0,128,0,-1--1--1,,1|(1444,361)| 10,69,"FES Heat-com nuclear CHP plants EJ",493,676,77,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,70,69,10,1,0,0,0,0,128,0,-1--1--1,,1|(690,657)| 1,71,22,9,1,0,0,0,0,128,0,-1--1--1,,1|(814,539)| 10,72,Required FED by fuel before heat correction,420,79,75,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,73,72,16,0,0,0,0,0,0,0,-1--1--1,,1|(510,111)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *HEAT - Heat-com demand covered by fossil fuels #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,share liquids fot heat plants,978,305,50,19,8,3,0,0,0,0,0,0 10,2,"share gas/(coal+gas) for heat plants",1150,370,66,19,8,3,0,0,0,0,0,0 10,3,"share coal(coal+gas) for heat plants",1337,354,66,19,8,3,0,0,0,0,0,0 10,4,FED Heat liquids plants EJ,1000,388,59,19,8,3,0,0,0,0,0,0 10,5,FED Heat gas plants EJ,1266,417,50,19,8,3,0,0,0,0,0,0 10,6,FED Heat coal plants EJ,1460,415,53,19,8,3,0,0,0,0,0,0 1,7,1,4,1,0,0,0,0,128,0,-1--1--1,,1|(983,335)| 1,8,2,5,1,0,0,0,0,128,0,-1--1--1,,1|(1166,394)| 1,9,3,6,1,0,0,0,0,128,0,-1--1--1,,1|(1370,389)| 10,10,efficiency liquids for heat plants,864,516,63,19,8,3,0,0,0,0,0,0 10,11,efficiency gases for heat plants,1151,515,60,19,8,3,0,0,0,0,0,0 10,12,efficiency coal for heat plants,1415,512,56,19,8,3,0,0,0,0,0,0 10,13,PED oil for Heat plants EJ,1036,572,70,19,8,3,0,0,0,0,0,0 10,14,PED gases for Heat plants EJ,1271,577,68,19,8,3,0,0,0,0,0,0 10,15,PED coal for Heat plants EJ,1505,579,64,19,8,3,0,0,0,0,0,0 1,16,10,13,0,0,0,0,0,128,0,-1--1--1,,1|(942,541)| 1,17,4,13,1,0,0,0,0,128,0,-1--1--1,,1|(1007,498)| 1,18,11,14,1,0,0,0,0,128,0,-1--1--1,,1|(1191,540)| 1,19,5,14,1,0,0,0,0,128,0,-1--1--1,,1|(1279,518)| 1,20,12,15,1,0,0,0,0,128,0,-1--1--1,,1|(1425,559)| 1,21,6,15,1,0,0,0,0,128,0,-1--1--1,,1|(1505,515)| 10,22,"FED Heat-com plants fossil fuels EJ",1154,175,80,21,8,130,0,3,0,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,23,22,4,1,0,0,0,0,128,0,-1--1--1,,1|(1060,276)| 10,24,Total gen losses demand for Heat plants EJ,1228,673,83,29,8,131,0,0,0,0,0,0 1,25,13,24,1,0,0,0,0,128,0,-1--1--1,,1|(1082,638)| 1,26,14,24,1,0,0,0,0,128,0,-1--1--1,,1|(1246,609)| 1,27,15,24,1,0,0,0,0,128,0,-1--1--1,,1|(1441,637)| 1,28,12,24,1,0,0,0,0,128,0,-1--1--1,,1|(1371,587)| 1,29,11,24,1,0,0,0,0,128,0,-1--1--1,,1|(1159,579)| 1,30,10,24,1,0,0,0,0,128,0,-1--1--1,,1|(959,621)| 10,31,Historic share liquids for heat plants,913,215,66,19,8,3,0,0,0,0,0,0 1,32,31,1,1,0,0,0,0,128,0,-1--1--1,,1|(929,267)| 10,33,Time,722,397,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,1,0,0,0,0,0,64,0,-1--1--1,,1|(831,357)| 1,35,2,3,1,0,0,0,0,128,0,-1--1--1,,1|(1230,367)| 10,36,"FED Heat gas+coal EJ",1166,292,54,19,8,3,0,0,0,0,0,0 1,37,22,36,0,0,0,0,0,128,0,-1--1--1,,1|(1159,227)| 1,38,4,36,0,0,0,0,0,128,0,-1--1--1,,1|(1076,343)| 1,39,36,5,0,0,0,0,0,128,0,-1--1--1,,1|(1211,349)| 1,40,36,6,1,0,0,0,0,128,0,-1--1--1,,1|(1388,326)| 10,41,"phase-out oil for heat-com?",876,396,61,19,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,42,41,1,0,0,0,0,0,128,0,-1--1--1,,1|(921,355)| 10,43,"start year policy phase-out oil for heat",656,263,68,19,8,131,0,0,0,0,0,0 10,44,"target year policy phase-out oil for heat",335,287,68,19,8,131,0,0,0,0,0,0 10,45,P share oil for Heat,646,337,45,19,8,3,0,0,0,0,0,0 10,46,"a lineal regr phase-out oil for heat",501,302,68,19,8,131,0,0,-1,0,0,0 10,47,"b lineal regr phase-out oil for heat",489,391,68,19,8,131,0,0,-1,0,0,0 1,48,46,47,0,0,0,0,0,0,0,-1--1--1,,1|(496,339)| 1,49,46,45,0,0,0,0,0,64,0,-1--1--1,,1|(578,320)| 1,50,47,45,1,0,0,0,0,64,0,-1--1--1,,1|(590,348)| 1,51,44,47,1,0,0,0,0,128,0,-1--1--1,,1|(394,339)| 1,52,44,46,1,0,0,0,0,128,0,-1--1--1,,1|(392,301)| 1,53,43,46,1,0,0,0,0,128,0,-1--1--1,,1|(642,261)| 10,54,share in target year oil for heat,334,385,60,19,8,131,0,0,0,0,0,0 1,55,54,46,0,0,0,0,0,128,0,-1--1--1,,1|(410,346)| 1,56,54,47,0,0,0,0,0,128,0,-1--1--1,,1|(400,387)| 1,57,45,1,0,0,0,0,0,128,0,-1--1--1,,1|(802,321)| 1,58,31,46,1,0,0,0,0,128,0,-1--1--1,,1|(536,216)| 1,59,33,45,0,0,0,0,0,128,0,-1--1--1,,1|(695,375)| 1,60,43,1,0,0,0,0,0,64,0,-1--1--1,,1|(819,283)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *HEAT RES - Potential #EHR, EAR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,share PES biogas for heat,615,172,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,max biogas EJ,611,232,55,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,3,0,887,105,141,39,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Biophysical sustainable potentials of renewables for heat 10,4,max PE potential biogas for heat,797,202,58,18,8,131,0,0,0,0,0,0 1,5,1,4,0,0,0,0,0,128,0,-1--1--1,,1|(700,185)| 1,6,2,4,0,0,0,0,0,128,0,-1--1--1,,1|(695,218)| 10,7,max PE potential tot RES heat EJ,1032,284,55,19,8,3,0,0,0,0,0,0 10,8,remaining potential tot RES heat,1262,283,59,19,8,131,0,0,0,0,0,0 1,9,7,8,0,0,0,0,0,128,0,-1--1--1,,1|(1138,283)| 1,10,4,7,0,0,0,0,0,128,0,-1--1--1,,1|(905,240)| 10,11,Max PE potential RES for heat,788,375,56,19,8,3,0,0,-1,0,0,0 10,12,FE solar potential for heat,556,392,56,19,8,3,0,0,-1,0,0,0 1,13,12,11,0,0,0,0,0,0,0,-1--1--1,,1|(665,384)| 10,14,Geot PE potential for heat EJ,560,453,57,19,8,3,0,0,-1,0,0,0 1,15,14,11,0,0,0,0,0,0,0,-1--1--1,,1|(666,416)| 10,16,EJ per TWh,386,486,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,14,0,0,0,0,0,0,0,-1--1--1,,1|(461,471)| 10,18,Geot PE potential for heat TWth,401,444,68,19,8,3,0,0,-1,0,0,0 1,19,18,14,0,0,0,0,0,0,0,-1--1--1,,1|(479,447)| 10,20,TWe per TWh,394,525,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,21,20,14,0,0,0,0,0,0,0,-1--1--1,,1|(461,495)| 1,22,11,7,0,0,0,0,0,128,0,-1--1--1,,1|(902,331)| 10,23,Max FE potential RES for heat,794,478,56,19,8,3,0,0,-1,0,0,0 10,24,Efficiency RES heat,681,565,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,23,0,0,0,0,0,0,0,-1--1--1,,1|(731,525)| 1,26,11,23,0,0,0,0,0,0,0,-1--1--1,,1|(790,419)| 10,27,available PE potential solid bioE for heat EJ,550,320,88,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,28,"Max potential NPP bioE conventional for heat+elec",592,336,87,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,29,27,11,0,0,0,0,0,128,0,-1--1--1,,1|(675,348)| 10,30,"PES RES for heat-com by techn",1317,433,68,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,31,PES tot RES for heat,1259,373,53,19,8,3,0,0,0,0,0,0 1,32,30,31,0,0,0,0,0,128,0,-1--1--1,,1|(1292,407)| 1,33,31,8,0,0,0,0,0,128,0,-1--1--1,,1|(1259,334)| 10,34,"PES tot biogas for heat-com",1161,434,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,35,34,31,0,0,0,0,0,128,0,-1--1--1,,1|(1203,407)| 12,36,0,1108,628,209,162,3,188,0,0,1,0,0,0 Remaining_potential_RES_for_heat 10,37,"PES RES for heat-nc by techn",1444,400,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,38,37,31,0,0,0,0,0,128,0,-1--1--1,,1|(1355,387)| 10,39,Percent remaining potential tot RES heat,1286,202,70,19,8,3,0,0,0,0,0,0 1,40,8,39,0,0,0,0,0,128,0,-1--1--1,,1|(1271,249)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *HEAT RES-com - Capacities & generation #EHR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,48,210,413,10,8,0,3,0,0,-1,0,0,0 1,2,4,6,4,0,0,22,0,0,0,-1--1--1,,1|(471,413)| 1,3,4,1,100,0,0,22,0,0,0,-1--1--1,,1|(295,413)| 11,4,48,376,413,6,8,34,3,0,0,1,0,0,0 10,5,"new RES capacity for heat-com TW",376,440,59,19,40,3,0,0,-1,0,0,0 10,6,"installed capacity RES heat-com TW",627,413,66,28,3,131,0,0,0,0,0,0 12,7,48,921,416,10,8,0,3,0,0,-1,0,0,0 1,8,10,7,4,0,0,22,0,0,0,-1--1--1,,1|(862,417)| 1,9,10,6,100,0,0,22,0,0,0,-1--1--1,,1|(747,417)| 11,10,48,807,417,6,8,34,3,0,0,1,0,0,0 10,11,"wear RES capacity for heat-com TW",807,444,61,19,40,3,0,0,-1,0,0,0 10,12,"Historic RES capacity for heat-com",176,496,73,22,8,131,0,0,0,0,0,0 10,13,"initial value RES for heat-com",706,366,52,19,8,131,0,0,0,0,0,0 1,14,6,11,1,0,0,0,0,64,0,-1--1--1,,1|(702,445)| 12,15,48,616,555,10,8,0,3,0,0,-1,0,0,0 1,16,18,6,4,0,0,22,0,0,0,-1--1--1,,1|(615,467)| 1,17,18,15,100,0,0,22,0,0,0,-1--1--1,,1|(615,526)| 11,18,48,615,499,8,6,33,3,0,0,4,0,0,0 10,19,"replacement RES for heat-com TW",679,499,56,19,40,3,0,0,-1,0,0,0 1,20,11,19,1,0,0,0,0,64,0,-1--1--1,,1|(761,477)| 10,21,"adapt growth RES for heat-com",385,601,59,19,8,131,0,0,0,0,0,0 10,22,"past RES growth for heat-com",542,619,59,18,8,131,0,0,0,0,0,0 10,23,P RES for heat,440,676,54,11,8,131,0,0,0,0,0,0 1,24,22,21,1,0,0,0,0,64,0,-1--1--1,,1|(412,587)| 1,25,23,21,1,0,0,0,0,64,0,-1--1--1,,1|(415,645)| 10,26,Time dmnl,296,650,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,21,0,0,0,0,0,128,0,-1--1--1,,1|(326,632)| 1,28,13,6,0,0,0,0,0,64,1,-1--1--1,,1|(681,385)| 10,29,life time RES for heat,842,346,53,19,8,131,0,0,0,0,0,0 1,30,29,11,1,0,0,0,0,128,0,-1--1--1,,1|(832,395)| 1,31,21,5,1,0,0,0,0,64,0,-1--1--1,,1|(380,527)| 1,32,6,5,1,0,0,0,0,64,0,-1--1--1,,1|(539,453)| 10,33,Time,458,508,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,5,0,0,0,0,0,64,0,-1--1--1,,1|(426,482)| 1,35,33,21,0,0,0,0,0,128,0,-1--1--1,,1|(428,545)| 10,36,"potential FES RES for heat-com TWh",636,309,65,18,8,131,0,0,0,0,0,0 1,37,6,36,0,0,0,0,0,128,0,-1--1--1,,1|(630,362)| 10,38,Efficiency RES heat,1058,289,48,19,8,3,0,0,0,0,0,0 1,39,38,36,1,0,0,0,0,128,0,-1--1--1,,1|(823,263)| 10,40,remaining potential RES for heat,231,213,59,19,8,131,0,0,-1,0,0,0 10,41,Max FE potential RES for heat,175,139,60,19,8,2,0,1,0,0,0,0,128-128-128,0-0-0,|12||255-0-0 1,42,41,40,0,0,0,0,0,128,0,-1--1--1,,1|(198,170)| 10,43,P solar for heat,357,739,48,11,8,3,0,0,0,0,0,0 10,44,P geothermal for heat,483,748,51,20,8,131,0,0,0,0,0,0 1,45,44,23,0,0,0,0,0,128,0,-1--1--1,,1|(462,713)| 1,46,43,23,0,0,0,0,0,128,0,-1--1--1,,1|(392,711)| 10,47,"replacement RES for heat-com",697,586,56,19,8,3,0,0,0,0,0,0 1,48,47,19,0,0,0,0,0,128,0,-1--1--1,,1|(689,549)| 10,49,Efficiency solar panels for heat,1184,245,48,19,8,3,0,0,0,0,0,0 10,50,Losses solar for heat,1161,345,41,28,8,131,0,0,0,0,0,0 10,51,TWe per TWh,473,311,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,52,51,36,0,0,0,0,0,64,0,-1--1--1,,1|(543,310)| 10,53,"potential FES RES for heat-com EJ",692,223,70,19,8,131,0,0,0,0,0,0 1,54,36,53,0,0,0,0,0,128,0,-1--1--1,,1|(659,272)| 10,55,EJ per TWh,516,251,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,56,55,53,0,0,0,0,0,64,0,-1--1--1,,1|(586,240)| 1,57,53,40,0,0,0,0,0,128,0,-1--1--1,,1|(462,218)| 1,58,49,38,0,0,0,0,0,128,0,-1--1--1,,1|(1127,264)| 1,59,50,38,0,0,0,0,0,128,0,-1--1--1,,1|(1112,318)| 10,60,Efficiency geothermal for heat,1134,422,74,20,8,131,0,0,0,0,0,0 1,61,60,38,0,0,0,0,0,128,0,-1--1--1,,1|(1099,361)| 10,62,"FE real supply RES for heat-com tot EJ",703,50,68,21,8,131,0,0,0,0,0,0 10,63,"PES RES for heat-com by techn",1061,197,60,19,8,3,0,0,0,0,0,0 1,64,38,63,0,0,0,0,0,128,0,-1--1--1,,1|(1058,249)| 10,65,Time dmnl,416,167,43,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,66,49,63,1,0,0,0,0,128,0,-1--1--1,,1|(1138,221)| 10,67,P solid bioE for heat,574,745,53,19,8,131,0,0,0,0,0,0 1,68,67,23,0,0,0,0,0,128,0,-1--1--1,,1|(505,709)| 10,69,Efficiency conversion BioE plants to heat,1022,366,67,19,8,3,0,0,-1,0,0,0 1,70,69,38,0,0,0,0,0,128,0,-1--1--1,,1|(1036,333)| 10,71,Time,594,36,26,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,72,remaining potential constraint on new RES heat capacity,252,323,87,28,8,131,0,0,0,0,0,0 1,73,40,72,0,0,0,0,0,128,0,-1--1--1,,1|(238,256)| 10,74,threshold remaining potential new capacity,103,289,75,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||255-0-0 1,75,74,72,1,0,0,0,0,64,0,-1--1--1,,1|(134,327)| 1,76,72,5,1,0,0,0,0,128,0,-1--1--1,,1|(301,391)| 10,77,"abundance RES heat-com",513,63,52,19,8,3,0,0,0,0,0,0 10,78,"abundance RES heat-com2",361,131,52,19,8,3,0,0,0,0,0,0 1,79,77,78,1,0,0,0,0,128,0,-1--1--1,,1|(428,81)| 1,80,62,77,0,0,0,0,0,128,0,-1--1--1,,1|(606,56)| 1,81,78,5,0,0,0,0,0,128,0,-1--1--1,,1|(367,278)| 10,82,"potential FES tot RES for heat-com EJ",707,128,68,20,8,131,0,0,0,0,0,0 1,83,53,82,0,0,0,0,0,128,0,-1--1--1,,1|(698,182)| 1,84,82,62,0,0,0,0,0,128,0,-1--1--1,,1|(705,96)| 10,85,"RES heat-com tot overcapacity",891,84,65,20,8,131,0,0,0,0,0,0 1,86,82,85,0,0,0,0,0,128,0,-1--1--1,,1|(793,107)| 1,87,62,85,0,0,0,0,0,128,0,-1--1--1,,1|(791,65)| 1,88,85,19,1,0,0,0,0,128,0,-1--1--1,,1|(907,455)| 10,89,"FE real generation RES heat-com EJ",887,193,64,19,8,3,0,0,0,0,0,0 1,90,85,89,0,0,0,0,0,128,0,-1--1--1,,1|(889,132)| 1,91,53,89,0,0,0,0,0,128,0,-1--1--1,,1|(785,208)| 1,92,89,63,0,0,0,0,0,128,0,-1--1--1,,1|(969,194)| 1,93,12,5,0,0,0,0,0,128,0,-1--1--1,,1|(276,467)| 12,94,0,339,-19,211,33,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Infraestructures for commercial heat generation from RES (solar, geot and solids bioE) 10,95,"FED Heat-com after priorities EJ",661,-35,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,96,95,62,0,0,0,0,0,128,0,-1--1--1,,1|(677,0)| 1,97,95,77,0,0,0,0,0,128,0,-1--1--1,,1|(592,10)| 12,98,0,1497,124,264,216,3,188,0,0,1,0,0,0 RES_heat-com_installed_capacity_by_source 12,99,0,1499,571,266,227,3,188,0,0,1,0,0,0 Heat-com_generation_from_RES_by_source 10,100,"potential FES RES for heat-nc EJ",258,58,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,101,100,40,0,0,0,0,0,128,0,-1--1--1,,1|(245,128)| 10,102,Start year P growth RES heat,149,626,62,19,8,131,0,0,0,0,0,0 1,103,102,21,0,0,0,0,0,128,0,-1--1--1,,1|(261,614)| 10,104,Cp RES for heat,835,293,43,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,105,104,36,0,0,0,0,0,64,0,-1--1--1,,1|(753,298)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *HEAT RES-nc - Capacities & generation #EHR $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,75,0 12,1,48,466,514,10,8,0,3,0,0,-1,0,0,0 1,2,4,6,4,0,0,22,0,0,0,-1--1--1,,1|(727,514)| 1,3,4,1,100,0,0,22,0,0,0,-1--1--1,,1|(551,514)| 11,4,48,632,514,6,8,34,3,0,0,1,0,0,0 10,5,"new RES capacity for heat-nc TW",632,541,70,19,40,3,0,0,-1,0,0,0 10,6,"installed capacity RES heat-nc TW",883,514,66,28,3,131,0,0,0,0,0,0 12,7,48,1177,517,10,8,0,3,0,0,-1,0,0,0 1,8,10,7,4,0,0,22,0,0,0,-1--1--1,,1|(1118,518)| 1,9,10,6,100,0,0,22,0,0,0,-1--1--1,,1|(1003,518)| 11,10,48,1063,518,6,8,34,3,0,0,1,0,0,0 10,11,"wear RES capacity for heat-nc TW",1063,545,72,19,40,3,0,0,-1,0,0,0 10,12,"Historic RES capacity for heat-nc",432,597,70,19,8,131,0,0,0,0,0,0 10,13,"initial value RES for heat-nc",962,467,62,19,8,131,0,0,0,0,0,0 1,14,6,11,1,0,0,0,0,64,0,-1--1--1,,1|(958,546)| 12,15,48,872,656,10,8,0,3,0,0,-1,0,0,0 1,16,18,6,4,0,0,22,0,0,0,-1--1--1,,1|(871,568)| 1,17,18,15,100,0,0,22,0,0,0,-1--1--1,,1|(871,627)| 11,18,48,871,600,8,6,33,3,0,0,4,0,0,0 10,19,"replacement RES for heat-nc TW",935,600,67,19,40,3,0,0,-1,0,0,0 1,20,11,19,1,0,0,0,0,64,0,-1--1--1,,1|(1017,578)| 10,21,"adapt growth RES for heat-nc",641,702,59,19,8,131,0,0,0,0,0,0 10,22,"past RES growth for heat-nc",798,720,66,19,8,131,0,0,0,0,0,0 1,23,22,21,1,0,0,0,0,64,0,-1--1--1,,1|(668,688)| 10,24,Time dmnl,552,751,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,21,0,0,0,0,0,128,0,-1--1--1,,1|(582,733)| 1,26,13,6,0,0,0,0,0,64,1,-1--1--1,,1|(937,486)| 1,27,21,5,1,0,0,0,0,64,0,-1--1--1,,1|(636,628)| 1,28,6,5,1,0,0,0,0,64,0,-1--1--1,,1|(795,554)| 10,29,Time,714,609,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,5,0,0,0,0,0,64,0,-1--1--1,,1|(682,583)| 1,31,29,21,0,0,0,0,0,128,0,-1--1--1,,1|(684,646)| 10,32,"potential FES RES for heat-nc TWh",892,410,71,19,8,131,0,0,0,0,0,0 1,33,6,32,0,0,0,0,0,128,0,-1--1--1,,1|(886,464)| 10,34,"replacement RES for heat-nc",953,687,67,19,8,3,0,0,0,0,0,0 1,35,34,19,0,0,0,0,0,128,0,-1--1--1,,1|(945,650)| 10,36,TWe per TWh,729,412,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,32,0,0,0,0,0,64,0,-1--1--1,,1|(796,411)| 10,38,"potential FES RES for heat-nc EJ",948,324,71,19,8,131,0,0,0,0,0,0 1,39,32,38,0,0,0,0,0,128,0,-1--1--1,,1|(915,372)| 10,40,EJ per TWh,772,352,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,41,40,38,0,0,0,0,0,64,0,-1--1--1,,1|(841,341)| 10,42,"FE real supply RES for heat-nc tot EJ",959,151,74,19,8,131,0,0,0,0,0,0 10,43,"PES RES for heat-nc by techn",1317,281,66,19,8,3,0,0,0,0,0,0 10,44,Time dmnl,672,268,43,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,45,Time,850,137,26,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,46,"abundance RES heat-nc",769,164,52,19,8,3,0,0,0,0,0,0 10,47,"abundance RES heat-nc2",617,232,52,19,8,3,0,0,0,0,0,0 1,48,46,47,1,0,0,0,0,128,0,-1--1--1,,1|(684,182)| 1,49,42,46,0,0,0,0,0,128,0,-1--1--1,,1|(859,157)| 1,50,47,5,0,0,0,0,0,128,0,-1--1--1,,1|(623,379)| 10,51,"potential FES tot RES for heat-nc EJ",963,229,71,19,8,131,0,0,0,0,0,0 1,52,38,51,0,0,0,0,0,128,0,-1--1--1,,1|(954,283)| 1,53,51,42,0,0,0,0,0,128,0,-1--1--1,,1|(961,196)| 10,54,"RES heat-nc tot overcapacity",1147,185,58,19,8,131,0,0,0,0,0,0 1,55,51,54,0,0,0,0,0,128,0,-1--1--1,,1|(1054,207)| 1,56,42,54,0,0,0,0,0,128,0,-1--1--1,,1|(1054,167)| 1,57,54,19,1,0,0,0,0,128,0,-1--1--1,,1|(1163,556)| 10,58,"FE real generation RES heat-nc EJ",1143,294,64,19,8,3,0,0,0,0,0,0 1,59,54,58,0,0,0,0,0,128,0,-1--1--1,,1|(1145,232)| 1,60,38,58,0,0,0,0,0,128,0,-1--1--1,,1|(1042,309)| 1,61,58,43,0,0,0,0,0,128,0,-1--1--1,,1|(1222,288)| 1,62,12,5,0,0,0,0,0,128,0,-1--1--1,,1|(524,570)| 12,63,0,574,84,210,41,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Infraestructures for non-commercial heat generation from RES (solar, geot and solids bioE) 10,64,"Total FED Heat-nc EJ",910,66,41,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,65,64,42,0,0,0,0,0,128,0,-1--1--1,,1|(930,102)| 1,66,64,46,0,0,0,0,0,128,0,-1--1--1,,1|(845,111)| 10,67,P RES for heat,669,810,45,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,68,67,21,0,0,0,0,0,128,0,-1--1--1,,1|(656,762)| 10,69,Efficiency RES heat,1327,359,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,70,69,43,0,0,0,0,0,128,0,-1--1--1,,1|(1323,326)| 10,71,Efficiency solar panels for heat,1348,178,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,72,71,43,0,0,0,0,0,128,0,-1--1--1,,1|(1334,222)| 1,73,69,32,1,0,0,0,0,128,0,-1--1--1,,1|(1099,362)| 12,74,2490440,1715,221,263,207,3,188,0,0,1,0,0,0 RES_heat-nc_installed_capacity_by_source 12,75,4654078,1715,649,266,218,3,188,0,0,1,0,0,0 Heat-nc_generation_from_RES_by_source 10,76,remaining potential constraint on new RES heat capacity,452,401,88,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,77,76,5,0,0,0,0,0,128,0,-1--1--1,,1|(541,471)| 10,78,life time RES for heat,1139,472,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,79,78,11,0,0,0,0,0,128,0,-1--1--1,,1|(1106,503)| 10,80,Start year P growth RES heat,409,741,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,81,80,21,0,0,0,0,0,128,0,-1--1--1,,1|(522,721)| 10,82,"Cp-ini RES for heat",1177,397,48,19,8,3,0,0,-1,0,0,0 10,83,Cp RES for heat,1054,405,42,17,8,131,0,0,0,0,0,0 1,84,82,83,0,0,0,0,0,128,0,-1--1--1,,1|(1119,400)| 1,85,83,32,0,0,0,0,0,128,0,-1--1--1,,1|(994,406)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *HEAT - Total FE heat generation #EH $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"PES oil for Heat-com plants",772,446,57,17,8,131,0,0,-1,0,0,0 10,2,"share oil dem for Heat-com",597,490,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,3,2,1,0,0,0,0,0,0,0,-1--1--1,,1|(684,468)| 10,4,FES Heat from oil,946,468,49,19,8,3,0,0,-1,0,0,0 10,5,efficiency liquids for heat plants,756,504,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,5,4,0,0,0,0,0,128,0,-1--1--1,,1|(853,485)| 1,7,1,4,0,0,0,0,0,128,0,-1--1--1,,1|(856,456)| 10,8,"FES heat-com from waste EJ",749,565,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,9,"FES heat-com from biogas EJ",746,627,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,10,"FES heat-com fossil fuels CHP plants EJ",1120,221,69,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,11,Total FE Heat generation EJ,1249,491,58,19,8,131,0,0,0,0,0,0 10,12,Abundance heat,1282,399,37,19,8,3,0,0,0,0,0,0 1,13,11,12,1,0,0,0,0,64,0,-1--1--1,,1|(1298,448)| 10,14,Year scarcity Heat,1389,273,43,19,8,3,0,0,0,0,0,0 1,15,12,14,1,0,0,0,0,64,0,-1--1--1,,1|(1381,343)| 10,16,Time,1386,190,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,14,0,0,0,0,0,64,0,-1--1--1,,1|(1386,220)| 1,18,8,11,0,0,0,0,0,128,0,-1--1--1,,1|(989,529)| 10,19,"potential FES RES for heat-com TWh",1249,529,47,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,20,"share nat. gas dem for Heat-com",606,331,80,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,21,"share coal dem for Heat-com",614,158,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,22,"PES nat. gas",607,300,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,23,extraction coal EJ,616,111,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,24,PES oil EJ,598,456,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,1,1,0,0,0,0,128,0,-1--1--1,,1|(701,432)| 10,26,"PES coal for Heat-com plants",795,152,61,19,8,131,0,0,-1,0,0,0 10,27,FES Heat from coal,979,224,49,19,8,3,0,0,-1,0,0,0 1,28,26,27,0,0,0,0,0,128,0,-1--1--1,,1|(879,185)| 10,29,"PES nat. gas for Heat-com plants",805,265,65,19,8,3,0,0,-1,0,0,0 10,30,"FES Heat from nat. gas",937,332,49,19,8,3,0,0,-1,0,0,0 1,31,29,30,0,0,0,0,0,128,0,-1--1--1,,1|(864,295)| 1,32,23,26,0,0,0,0,0,128,0,-1--1--1,,1|(694,128)| 1,33,21,26,0,0,0,0,0,128,0,-1--1--1,,1|(696,155)| 1,34,22,29,0,0,0,0,0,128,0,-1--1--1,,1|(691,285)| 1,35,20,29,0,0,0,0,0,128,0,-1--1--1,,1|(698,300)| 10,36,efficiency coal for heat plants,1003,148,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,27,0,0,0,0,0,128,0,-1--1--1,,1|(993,179)| 10,38,efficiency gases for heat plants,782,342,65,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,39,38,30,0,0,0,0,0,128,0,-1--1--1,,1|(860,337)| 12,40,3540364,1627,193,174,166,3,188,0,0,1,0,0,0 Abundance_heat 10,41,FES RES for heat EJ,1008,602,59,27,8,131,0,0,0,0,0,0 1,42,9,41,1,0,0,0,0,128,0,-1--1--1,,1|(873,593)| 1,43,41,11,1,0,0,0,0,128,0,-1--1--1,,1|(1127,552)| 10,44,FES NRE for heat,1071,377,58,11,8,3,0,0,0,0,0,0 1,45,27,44,0,0,0,0,0,128,0,-1--1--1,,1|(1023,298)| 1,46,30,44,0,0,0,0,0,128,0,-1--1--1,,1|(1005,354)| 1,47,4,44,0,0,0,0,0,128,0,-1--1--1,,1|(1007,422)| 1,48,10,44,0,0,0,0,0,128,0,-1--1--1,,1|(1096,296)| 1,49,44,11,0,0,0,0,0,128,0,-1--1--1,,1|(1147,426)| 10,50,share RES heat generation,1276,607,66,19,8,131,0,0,0,0,0,0 1,51,11,50,1,0,0,0,0,128,0,-1--1--1,,1|(1279,539)| 1,52,41,50,1,0,0,0,0,128,0,-1--1--1,,1|(1131,603)| 12,53,3278190,1049,914,178,166,3,188,0,0,1,0,0,0 Share_heat_covered_by_RES 12,54,2295510,690,914,177,166,3,188,0,0,1,0,0,0 Total_FE_heat_generation 10,55,FES heat from BioW,545,619,47,19,8,3,0,0,0,0,0,0 1,56,8,55,0,0,0,0,0,128,0,-1--1--1,,1|(651,590)| 1,57,9,55,0,0,0,0,0,128,0,-1--1--1,,1|(649,622)| 10,58,"share coal dem for Heat-nc",629,65,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,59,"share liquids dem for Heat-nc",598,383,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,60,"share gases dem for Heat-nc",611,198,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,61,"PES coal for Heat-nc plants",793,85,59,19,8,131,0,0,-1,0,0,0 1,62,58,61,0,0,0,0,0,128,0,-1--1--1,,1|(706,73)| 1,63,23,61,0,0,0,0,0,128,0,-1--1--1,,1|(694,99)| 1,64,61,27,1,0,0,0,0,128,0,-1--1--1,,1|(914,130)| 10,65,Total FED Heat EJ,1451,399,56,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,66,65,12,0,0,0,0,0,128,0,-1--1--1,,1|(1364,399)| 10,67,"PES nat. gas for Heat-nc plants",783,214,53,19,8,131,0,0,-1,0,0,0 1,68,60,67,0,0,0,0,0,128,0,-1--1--1,,1|(695,205)| 1,69,67,30,1,0,0,0,0,128,0,-1--1--1,,1|(913,262)| 10,70,"PES oil for Heat-nc plants",782,394,53,19,8,131,0,0,-1,0,0,0 1,71,59,70,0,0,0,0,0,128,0,-1--1--1,,1|(685,387)| 1,72,70,4,1,0,0,0,0,128,0,-1--1--1,,1|(932,438)| 10,73,PES Liquids EJ,600,418,58,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,74,73,70,0,0,0,0,0,128,0,-1--1--1,,1|(686,406)| 10,75,PES gases,609,274,65,12,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,76,75,67,0,0,0,0,0,128,0,-1--1--1,,1|(679,249)| 10,77,"PED nat. gas for GTL EJ",603,236,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,78,77,67,0,0,0,0,0,128,0,-1--1--1,,1|(688,225)| 10,79,"FE real supply RES for heat-com tot EJ",742,680,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,80,79,41,0,0,0,0,0,128,0,-1--1--1,,1|(870,641)| 1,81,79,55,0,0,0,0,0,128,0,-1--1--1,,1|(643,649)| 10,82,Share heat distribution losses,1440,566,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,83,Total FE Heat consumption EJ,1475,495,64,21,8,131,0,0,0,0,0,0 1,84,11,83,0,0,0,0,0,128,0,-1--1--1,,1|(1352,492)| 1,85,82,83,0,0,0,0,0,128,0,-1--1--1,,1|(1453,537)| 10,86,"FE real supply RES for heat-nc tot EJ",738,725,79,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,87,86,41,0,0,0,0,0,128,0,-1--1--1,,1|(857,669)| 1,88,86,55,1,0,0,0,0,128,0,-1--1--1,,1|(597,675)| 10,89,"FES Heat-com nuclear CHP plants EJ",1226,309,77,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,90,89,44,0,0,0,0,0,128,0,-1--1--1,,1|(1145,344)| 12,91,4982070,1393,912,162,166,3,188,0,0,1,0,0,0 Heat_generation_from_NRE 12,92,2885434,1725,911,166,168,3,188,0,0,1,0,0,0 Heat_generation_from_RES 10,93,FES RES for heat delayed 1yr,973,697,81,19,8,131,0,0,-1,0,0,0 10,94,Annual growth rate RES for heat,1220,704,82,28,8,131,0,0,-1,0,0,0 1,95,93,94,0,0,0,0,0,128,0,-1--1--1,,1|(1089,699)| 1,96,41,93,0,0,0,0,0,128,0,-1--1--1,,1|(992,646)| 1,97,41,94,0,0,0,0,0,128,0,-1--1--1,,1|(1106,649)| 12,98,1246704,1857,569,192,167,3,188,0,0,1,0,0,0 Annual_growth_rate_RES_for_heat \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *HEAT - Total PES #EH $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,PES NRE heat,843,226,48,11,8,3,0,0,0,0,0,0 10,2,"PES coal for Heat-com plants",506,163,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,3,"PES coal for Heat-nc plants",506,350,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,"PES nat. gas for Heat-com plants",512,122,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,5,"PES nat. gas for Heat-nc plants",506,300,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,6,"PES oil for Heat-com plants",505,57,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,7,"PES oil for Heat-nc plants",512,240,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,8,"PES tot biogas for heat-com",549,507,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,9,"PES tot waste for heat-com",546,439,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,10,"PES RES for heat-com by techn",594,559,81,16,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,11,"PES NRE Heat-com",688,119,33,19,8,3,0,0,0,0,0,0 1,12,2,11,0,0,0,0,0,128,0,-1--1--1,,1|(602,139)| 1,13,4,11,0,0,0,0,0,128,0,-1--1--1,,1|(605,120)| 1,14,6,11,0,0,0,0,0,128,0,-1--1--1,,1|(601,89)| 10,15,"PES NRE Heat-nc",679,302,39,19,8,3,0,0,0,0,0,0 1,16,11,1,0,0,0,0,0,128,0,-1--1--1,,1|(765,172)| 1,17,15,1,0,0,0,0,0,128,0,-1--1--1,,1|(762,263)| 1,18,3,15,0,0,0,0,0,128,0,-1--1--1,,1|(592,325)| 1,19,5,15,0,0,0,0,0,128,0,-1--1--1,,1|(594,300)| 1,20,7,15,0,0,0,0,0,128,0,-1--1--1,,1|(594,270)| 10,21,TPES heat,942,340,35,11,8,3,0,0,0,0,0,0 1,22,1,21,0,0,0,0,0,128,0,-1--1--1,,1|(887,277)| 10,23,PES heat RES,762,459,46,11,8,3,0,0,0,0,0,0 1,24,8,23,0,0,0,0,0,128,0,-1--1--1,,1|(652,484)| 1,25,10,23,0,0,0,0,0,128,0,-1--1--1,,1|(675,510)| 1,26,9,21,0,0,0,0,0,128,0,-1--1--1,,1|(750,387)| 1,27,23,21,0,0,0,0,0,128,0,-1--1--1,,1|(845,403)| 10,28,"PES RES for heat-nc by techn",653,606,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,29,28,23,0,0,0,0,0,128,0,-1--1--1,,1|(705,534)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES - PED from non-electric RES #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,PE traditional biomass EJ delayed 1yr,703,317,74,28,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,"PE supply from RES non-elec without trad bioE EJ",475,347,106,23,8,131,0,0,0,0,0,0 10,3,"PE supply RES non-Elec EJ",681,442,55,20,8,131,0,0,0,0,0,0 10,4,Max PEavail biofuels potential,237,467,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,5,"Max potential PE non-electric RES",407,501,55,19,8,3,0,0,0,0,0,0 1,6,4,5,0,0,0,0,0,128,0,-1--1--1,,1|(316,482)| 10,7,FES total biofuels production EJ,198,349,81,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,8,7,2,0,0,0,0,0,128,0,-1--1--1,,1|(317,348)| 12,9,1575408,1066,380,279,229,3,188,0,0,1,0,0,0 PES_from_RES_non-electric_(without_trad._biomass) 1,10,1,3,0,0,0,0,0,128,0,-1--1--1,,1|(692,376)| 1,11,2,3,0,0,0,0,0,128,0,-1--1--1,,1|(574,393)| 10,12,Losses in charcoal plants EJ,697,526,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,3,0,0,0,0,0,64,0,-1--1--1,,1|(690,491)| 10,14,max PE potential tot RES heat EJ,232,549,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,15,14,5,1,0,0,0,0,128,0,-1--1--1,,1|(360,533)| 10,16,PES tot RES for heat,388,255,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,2,0,0,0,0,0,128,0,-1--1--1,,1|(424,293)| 10,18,PES biogas for TFC,546,260,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,19,18,2,0,0,0,0,0,128,0,-1--1--1,,1|(516,296)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *RES - PES #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,share RES for Elec vs TPE RES,550,165,61,19,8,3,0,0,0,0,0,0 10,2,TPE from RES Mtoe,552,433,48,19,8,3,0,0,0,0,0,0 10,3,TPE from RES EJ,549,342,48,19,8,3,0,0,0,0,0,0 10,4,MToe per EJ,369,417,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,5,1640944,1057,517,191,159,3,188,0,0,1,0,0,0 TPE_from_RES 12,6,3081478,1055,183,189,168,3,188,0,0,1,0,0,0 Share_RES_for_Elec_vs._TPE_RES 10,7,PE Elec generation from RES EJ,372,240,65,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,8,"PE supply RES non-Elec EJ",714,243,54,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,7,1,0,0,0,0,0,128,0,-1--1--1,,1|(454,205)| 1,10,8,1,0,0,0,0,0,128,0,-1--1--1,,1|(638,206)| 1,11,8,3,0,0,0,0,0,128,0,-1--1--1,,1|(637,288)| 1,12,7,3,0,0,0,0,0,128,0,-1--1--1,,1|(453,287)| 1,13,4,2,0,0,0,0,0,128,0,-1--1--1,,1|(455,423)| 1,14,3,2,0,0,0,0,0,128,0,-1--1--1,,1|(549,380)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *LAND - RES Land-use #L $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,surface onshore wind Mha,531,437,50,19,8,131,0,0,-1,0,0,0 10,2,surface solar PV Mha,533,508,59,18,8,131,0,0,-1,0,0,0 10,3,Total land requirements renew Mha,790,374,86,18,8,131,0,0,0,0,0,0 1,4,1,3,1,0,0,0,0,64,0,-1--1--1,,1|(637,418)| 1,5,2,3,1,0,0,0,0,64,0,-1--1--1,,1|(620,468)| 10,6,Global arable land,390,93,37,19,8,131,0,0,0,0,0,0 10,7,share land RES land compet vs arable,155,254,77,22,8,131,0,0,0,0,0,0 1,8,6,7,1,0,0,0,0,64,0,-1--1--1,,1|(197,143)| 10,9,urban surface 2008,898,530,43,19,8,3,0,0,0,0,0,0 10,10,Land compet required dedicated crops for biofuels,533,262,96,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,11,Share land compet biofuels,623,131,60,19,8,3,0,0,0,0,0,0 1,12,10,11,1,0,0,0,0,128,0,-1--1--1,,1|(541,185)| 1,13,6,11,1,0,0,0,0,64,0,-1--1--1,,1|(482,113)| 1,14,10,3,1,0,0,0,0,128,0,-1--1--1,,1|(650,285)| 1,15,10,7,1,0,0,0,0,128,0,-1--1--1,,1|(315,214)| 1,16,2,7,1,0,0,0,0,128,0,-1--1--1,,1|(269,455)| 10,17,share land total RES vs arable,931,237,48,19,8,3,0,0,0,0,0,0 1,18,6,17,1,0,0,0,0,128,0,-1--1--1,,1|(677,69)| 1,19,3,17,1,0,0,0,0,128,0,-1--1--1,,1|(875,320)| 10,20,share land total RES vs urban surface,945,427,65,19,8,3,0,0,0,0,0,0 1,21,3,20,1,0,0,0,0,128,0,-1--1--1,,1|(853,421)| 1,22,9,20,1,0,0,0,0,128,0,-1--1--1,,1|(936,489)| 12,23,7078914,1289,270,265,237,3,188,0,0,1,0,0,0 Renewables_land_occupati 10,24,surface RES elec,350,434,54,11,8,3,0,0,-1,0,0,0 1,25,24,1,0,0,0,0,0,64,0,-1--1--1,,1|(435,434)| 1,26,24,2,0,0,0,0,0,128,0,-1--1--1,,1|(426,464)| 10,27,installed capacity RES elec TW,339,359,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,24,0,0,0,0,0,0,0,-1--1--1,,1|(343,393)| 10,29,"power density RES elec TW/Mha",357,632,62,19,8,3,0,0,-1,0,0,0 10,30,"Cp-ini RES elec",181,585,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,31,30,29,0,0,0,0,0,0,0,-1--1--1,,1|(254,604)| 10,32,"power density RES elec TWe/Mha",198,674,62,19,8,3,0,0,-1,0,0,0 1,33,32,29,0,0,0,0,0,0,0,-1--1--1,,1|(270,654)| 1,34,29,24,0,0,0,0,0,128,0,-1--1--1,,1|(353,535)| 10,35,surface hydro Mha,536,643,41,19,8,3,0,0,-1,0,0,0 1,36,24,35,0,0,0,0,0,64,0,-1--1--1,,1|(434,529)| 1,37,35,3,1,0,0,0,0,128,0,-1--1--1,,1|(685,525)| 10,38,surface CSP Mha,547,583,53,19,8,131,0,0,-1,0,0,0 1,39,24,38,0,0,0,0,0,64,0,-1--1--1,,1|(436,500)| 1,40,38,3,0,0,0,0,0,128,0,-1--1--1,,1|(663,482)| 10,41,Land required biofuels land marg,788,470,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,3,0,0,0,0,0,64,0,-1--1--1,,1|(788,428)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *LIQUIDS - PED, PES & FES #E,D $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,75,0 10,1,Required FED by liquids EJ,888,167,57,19,8,3,0,0,-1,0,0,0 10,2,share liquids for final energy,1318,415,50,19,8,3,0,0,-1,0,0,0 1,3,1,2,1,0,0,0,0,0,0,-1--1--1,,1|(1193,221)| 10,4,PED liquids EJ,910,289,44,19,8,3,0,0,-1,0,0,0 1,5,4,2,1,0,0,0,0,0,0,-1--1--1,,1|(1052,389)| 10,6,Other liquids required EJ,734,258,41,19,8,3,0,0,-1,0,0,0 1,7,6,4,0,0,0,0,0,0,0,-1--1--1,,1|(813,271)| 10,8,PE demand oil Elec plants EJ,1103,224,64,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,4,0,0,0,0,0,0,0,-1--1--1,,1|(1008,255)| 10,10,PED oil for Heat plants EJ,1103,291,75,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,10,4,0,0,0,0,0,0,0,-1--1--1,,1|(997,290)| 10,12,PED oil for CHP plants EJ,1110,335,66,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,4,0,0,0,0,0,0,0,-1--1--1,,1|(1005,311)| 1,14,1,4,0,0,0,0,0,0,0,-1--1--1,,1|(897,221)| 10,15,Energy distr losses FF EJ,571,266,51,25,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,16,15,6,0,0,0,0,0,0,0,-1--1--1,,1|(650,262)| 10,17,"Non-energy use demand by final fuel EJ",607,196,71,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,18,17,6,0,0,0,0,0,0,0,-1--1--1,,1|(662,223)| 10,19,Transformation FF losses EJ,595,312,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,6,0,0,0,0,0,0,0,-1--1--1,,1|(661,285)| 10,21,PED total oil EJ,911,521,54,19,8,3,0,0,-1,0,0,0 10,22,Other liquids supply EJ,799,546,42,19,8,3,0,0,-1,0,0,0 10,23,"FES CTL+GTL EJ",606,434,51,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,24,23,22,0,0,0,0,0,0,0,-1--1--1,,1|(697,487)| 10,25,Oil refinery gains EJ,599,488,41,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,26,25,22,1,0,0,0,0,0,0,-1--1--1,,1|(676,483)| 10,27,FES total biofuels production EJ,605,540,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,22,0,0,0,0,0,0,0,-1--1--1,,1|(709,542)| 10,29,abundance liquids,418,526,56,11,8,3,0,0,-1,0,0,0 10,30,PES Liquids EJ,886,638,49,11,8,3,0,0,-1,0,0,0 1,31,30,29,1,0,0,0,0,0,0,-1--1--1,,1|(643,618)| 1,32,4,29,1,0,0,0,0,0,0,-1--1--1,,1|(641,358)| 10,33,Year scarcity liquids,416,610,43,19,8,3,0,0,-1,0,0,0 1,34,29,33,0,0,0,0,0,0,0,-1--1--1,,1|(417,557)| 10,35,Time,416,679,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,33,0,0,0,0,0,0,0,-1--1--1,,1|(416,656)| 10,37,"Total demand liquids mb/d",840,390,52,19,8,131,0,0,-1,0,0,0 10,38,"Mb/d per EJ/year",719,375,36,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,39,38,37,0,0,0,0,0,0,0,-1--1--1,,1|(764,380)| 1,40,4,37,0,0,0,0,0,0,0,-1--1--1,,1|(879,333)| 10,41,real FE consumption liquids EJ,1345,536,66,19,8,3,0,0,-1,0,0,0 1,42,2,41,1,0,0,0,0,0,0,-1--1--1,,1|(1333,470)| 1,43,30,41,1,0,0,0,0,128,0,-1--1--1,,1|(1110,615)| 1,44,22,30,0,0,0,0,0,0,0,-1--1--1,,1|(840,590)| 10,45,PES oil EJ,771,717,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,46,45,30,0,0,0,0,0,0,0,-1--1--1,,1|(827,677)| 10,47,check liquids,1010,704,41,11,8,3,0,0,-1,0,0,0 1,48,30,47,0,0,0,0,0,0,0,-1--1--1,,1|(941,667)| 10,49,PED liquids EJ,919,755,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,47,0,0,0,0,0,128,0,-1--1--1,,1|(964,728)| 10,51,"constrain liquids exogenous growth?",1109,756,62,19,8,3,0,0,-1,0,0,0 1,52,47,51,0,0,0,0,0,0,0,-1--1--1,,1|(1044,722)| 10,53,share oil dem for Elec,1367,188,61,19,8,3,0,0,-1,0,0,0 1,54,8,53,0,0,0,0,0,128,0,-1--1--1,,1|(1229,206)| 10,55,"share oil dem for Heat-com",1386,257,68,22,8,131,0,0,-1,0,0,0 1,56,10,55,0,0,0,0,0,128,0,-1--1--1,,1|(1241,274)| 10,57,PED total oil EJ,1525,212,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,58,57,53,0,0,0,0,0,128,0,-1--1--1,,1|(1453,201)| 1,59,57,55,0,0,0,0,0,128,0,-1--1--1,,1|(1479,226)| 10,60,"PED liquids Heat-nc",1126,384,42,17,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,61,60,4,0,0,0,0,0,128,0,-1--1--1,,1|(1026,340)| 10,62,"share liquids dem for Heat-nc",1393,326,54,19,8,131,0,0,-1,0,0,0 1,63,60,62,0,0,0,0,0,128,0,-1--1--1,,1|(1246,357)| 10,64,PES Liquids EJ,1548,320,58,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,65,64,62,0,0,0,0,0,128,0,-1--1--1,,1|(1475,322)| 10,66,Required FED by fuel,885,67,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,67,66,1,0,0,0,0,0,128,0,-1--1--1,,1|(885,110)| 1,68,6,41,0,0,0,0,0,128,0,-1--1--1,,1|(1032,393)| 1,69,6,2,1,0,0,0,0,128,0,-1--1--1,,1|(1139,426)| 10,70,PED NRE Liquids,905,461,58,11,8,3,0,0,0,0,0,0 1,71,4,70,0,0,0,0,0,128,0,-1--1--1,,1|(907,372)| 1,72,27,70,0,0,0,0,0,128,0,-1--1--1,,1|(762,498)| 1,73,70,21,0,0,0,0,0,128,0,-1--1--1,,1|(906,480)| 1,74,23,21,0,0,0,0,0,128,0,-1--1--1,,1|(750,474)| 10,75,Oil refinery gains EJ,920,577,41,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,76,75,21,0,0,0,0,0,64,0,-1--1--1,,1|(916,555)| 12,77,7472758,1399,724,171,150,3,188,0,0,1,0,0,0 FE_consumption_liquids \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *GASES - PED, PES & FES #E,D $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,PED gases,616,225,33,17,8,131,0,0,-1,0,0,0 10,2,Other gases required,423,230,61,21,8,131,0,0,-1,0,0,0 1,3,2,1,0,0,0,0,0,0,0,-1--1--1,,1|(526,227)| 10,4,PE demand gas Elec plants EJ,835,156,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,1,0,0,0,0,0,0,0,-1--1--1,,1|(721,191)| 10,6,PED gases for Heat plants EJ,837,224,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,1,0,0,0,0,0,0,0,-1--1--1,,1|(714,224)| 10,8,PED gas for CHP plants EJ,843,276,71,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,1,0,0,0,0,0,0,0,-1--1--1,,1|(717,248)| 10,10,Required FED by gas,618,133,44,19,8,3,0,0,-1,0,0,0 1,11,10,1,0,0,0,0,0,0,0,-1--1--1,,1|(617,173)| 10,12,"PED nat. gas for GTL EJ",772,393,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,1,0,0,0,0,0,0,0,-1--1--1,,1|(697,313)| 10,14,"PED nat. gas EJ",624,359,52,19,8,3,0,0,-1,0,0,0 1,15,1,14,0,0,0,0,0,0,0,-1--1--1,,1|(619,284)| 10,16,Energy distr losses FF EJ,247,237,50,22,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,2,0,0,0,0,0,0,0,-1--1--1,,1|(322,234)| 10,18,"Non-energy use demand by final fuel EJ",256,187,70,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,19,18,2,0,0,0,0,0,0,0,-1--1--1,,1|(336,207)| 10,20,Transformation FF losses EJ,242,286,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,21,20,2,0,0,0,0,0,0,0,-1--1--1,,1|(321,261)| 10,22,abundance gases,365,434,43,20,8,131,0,0,-1,0,0,0 1,23,1,22,1,0,0,0,0,0,0,-1--1--1,,1|(488,305)| 10,24,Year scarcity gases,375,507,64,19,8,131,0,0,-1,0,0,0 1,25,22,24,0,0,0,0,0,0,0,-1--1--1,,1|(368,464)| 10,26,Time,236,498,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,24,0,0,0,0,0,0,0,-1--1--1,,1|(279,500)| 10,28,PES gases,620,485,32,11,8,3,0,0,-1,0,0,0 10,29,"PES nat. gas",568,561,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,28,0,0,0,0,0,0,0,-1--1--1,,1|(592,524)| 1,31,28,22,1,0,0,0,0,128,0,-1--1--1,,1|(503,473)| 10,32,share gases for final energy,998,461,56,19,8,3,0,0,-1,0,0,0 1,33,10,32,1,0,0,0,0,0,0,-1--1--1,,1|(950,174)| 1,34,1,32,0,0,0,0,0,0,0,-1--1--1,,1|(799,338)| 10,35,real FE consumption gases EJ,858,554,73,25,8,131,0,0,-1,0,0,0 1,36,32,35,0,0,0,0,0,0,0,-1--1--1,,1|(938,500)| 1,37,28,35,0,0,0,0,0,0,0,-1--1--1,,1|(711,511)| 1,38,12,35,0,0,0,0,0,128,0,-1--1--1,,1|(809,464)| 1,39,12,32,0,0,0,0,0,128,0,-1--1--1,,1|(874,423)| 10,40,check gases,702,633,38,13,8,131,0,0,-1,0,0,0 1,41,28,40,0,0,0,0,0,0,0,-1--1--1,,1|(656,551)| 10,42,PED gases,602,688,39,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,43,42,40,0,0,0,0,0,128,0,-1--1--1,,1|(650,660)| 10,44,"constrain gas exogenous growth?",836,682,62,19,8,3,0,0,-1,0,0,0 1,45,40,44,0,0,0,0,0,0,0,-1--1--1,,1|(753,652)| 10,46,"share nat. gas dem for Elec",1081,157,59,18,8,131,0,0,-1,0,0,0 10,47,"share nat. gas dem for Heat-com",1099,240,75,20,8,131,0,0,-1,0,0,0 1,48,6,47,0,0,0,0,0,128,0,-1--1--1,,1|(959,231)| 10,49,"PED nat. gas EJ",1265,185,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,47,0,0,0,0,0,128,0,-1--1--1,,1|(1195,207)| 1,51,49,46,0,0,0,0,0,128,0,-1--1--1,,1|(1185,172)| 1,52,4,46,0,0,0,0,0,128,0,-1--1--1,,1|(949,156)| 10,53,"PED gas Heat-nc",863,326,33,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,54,53,1,0,0,0,0,0,128,0,-1--1--1,,1|(745,278)| 10,55,"share gases dem for Heat-nc",1099,306,59,19,8,131,0,0,-1,0,0,0 1,56,53,55,0,0,0,0,0,128,0,-1--1--1,,1|(961,318)| 10,57,PES gases,1224,352,43,11,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,58,57,55,0,0,0,0,0,128,0,-1--1--1,,1|(1179,335)| 1,59,12,55,0,0,0,0,0,128,0,-1--1--1,,1|(923,352)| 10,60,Required FED by fuel,614,32,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,61,60,10,0,0,0,0,0,128,0,-1--1--1,,1|(615,75)| 1,62,2,35,1,0,0,0,0,128,0,-1--1--1,,1|(561,381)| 1,63,2,32,1,0,0,0,0,128,0,-1--1--1,,1|(706,343)| 10,64,PES biogas for TFC,479,415,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,65,64,14,0,0,0,0,0,128,0,-1--1--1,,1|(544,389)| 1,66,64,28,0,0,0,0,0,128,0,-1--1--1,,1|(550,450)| 12,67,4392304,1301,558,172,147,3,188,0,0,1,0,0,0 FE_consumption_gases \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *SOLIDS - PED, PES & FES #E,D $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Required FED solids,465,123,44,19,8,3,0,0,-1,0,0,0 10,2,PED solids,451,241,36,11,8,3,0,0,-1,0,0,0 10,3,Other solids required,256,241,39,19,8,3,0,0,-1,0,0,0 1,4,3,2,0,0,0,0,0,0,0,-1--1--1,,1|(348,241)| 10,5,PED coal for CHP plants EJ,644,304,67,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,5,2,0,0,0,0,0,0,0,-1--1--1,,1|(541,270)| 10,7,PE demand coal Elec plants EJ,634,185,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,8,7,2,0,0,0,0,0,0,0,-1--1--1,,1|(538,213)| 10,9,PED coal for Heat plants EJ,633,244,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,10,9,2,0,0,0,0,0,0,0,-1--1--1,,1|(532,242)| 1,11,1,2,0,0,0,0,0,0,0,-1--1--1,,1|(458,179)| 10,12,Energy distr losses FF EJ,102,249,47,24,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,3,0,0,0,0,0,0,0,-1--1--1,,1|(176,245)| 10,14,"Non-energy use demand by final fuel EJ",117,188,78,22,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,15,14,3,0,0,0,0,0,0,0,-1--1--1,,1|(188,215)| 10,16,Transformation FF losses EJ,115,310,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,3,0,0,0,0,0,0,0,-1--1--1,,1|(178,278)| 10,18,PED coal EJ,440,358,41,11,8,3,0,0,-1,0,0,0 10,19,PES peat EJ,355,486,46,11,8,3,0,0,-1,0,0,0 1,20,19,18,0,0,0,0,0,0,0,-1--1--1,,1|(393,427)| 10,21,PED coal for CTL EJ,585,436,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,22,2,18,0,0,0,0,0,0,0,-1--1--1,,1|(446,292)| 10,23,Historic PES peat EJ,203,471,48,21,8,131,0,0,-1,0,0,0 1,24,23,19,0,0,0,0,0,0,0,-1--1--1,,1|(273,477)| 10,25,Time,320,406,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,26,25,19,0,0,0,0,0,0,0,-1--1--1,,1|(334,439)| 10,27,share solids for final energy,717,403,48,19,8,3,0,0,-1,0,0,0 1,28,2,27,1,0,0,0,0,0,0,-1--1--1,,1|(558,336)| 1,29,1,27,1,0,0,0,0,0,0,-1--1--1,,1|(722,164)| 10,30,real FE consumption solids EJ,769,490,66,19,8,3,0,0,-1,0,0,0 10,31,extraction coal EJ,746,556,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,32,31,30,0,0,0,0,0,0,0,-1--1--1,,1|(754,529)| 10,33,PE traditional biomass EJ delayed 1yr,605,544,80,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,30,0,0,0,0,0,0,0,-1--1--1,,1|(682,518)| 1,35,27,30,0,0,0,0,0,0,0,-1--1--1,,1|(738,440)| 10,36,PES solids,446,603,39,11,8,3,0,0,-1,0,0,0 1,37,19,36,0,0,0,0,0,0,0,-1--1--1,,1|(395,538)| 10,38,abundance solids,73,599,54,11,8,3,0,0,-1,0,0,0 1,39,2,38,1,0,0,0,0,0,0,-1--1--1,,1|(185,389)| 1,40,36,38,0,0,0,0,0,0,0,-1--1--1,,1|(273,601)| 1,41,31,36,0,0,0,0,0,128,0,-1--1--1,,1|(596,578)| 1,42,33,36,0,0,0,0,0,128,0,-1--1--1,,1|(518,576)| 1,43,21,30,0,0,0,0,0,128,0,-1--1--1,,1|(661,457)| 10,44,PES waste for TFC,299,354,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,45,44,18,0,0,0,0,0,128,0,-1--1--1,,1|(367,355)| 10,46,share coal dem for Elec,843,148,54,19,8,3,0,0,-1,0,0,0 1,47,7,46,0,0,0,0,0,128,0,-1--1--1,,1|(732,167)| 10,48,"share coal dem for Heat-com",904,223,66,18,8,131,0,0,-1,0,0,0 1,49,9,48,0,0,0,0,0,128,0,-1--1--1,,1|(762,234)| 10,50,PES waste for TFC,859,568,51,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,51,50,30,0,0,0,0,0,128,0,-1--1--1,,1|(819,533)| 10,52,"PED coal Heat-nc",593,127,36,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,53,52,2,0,0,0,0,0,128,0,-1--1--1,,1|(522,183)| 10,54,PED coal EJ,1006,160,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,55,54,46,0,0,0,0,0,128,0,-1--1--1,,1|(933,154)| 1,56,54,48,0,0,0,0,0,128,0,-1--1--1,,1|(966,184)| 10,57,"share coal dem for Heat-nc",807,93,59,19,8,131,0,0,-1,0,0,0 1,58,52,57,0,0,0,0,0,128,0,-1--1--1,,1|(681,113)| 1,59,54,57,0,0,0,0,0,128,0,-1--1--1,,1|(925,132)| 10,60,Losses in charcoal plants EJ,454,448,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,61,50,36,0,0,0,0,0,128,0,-1--1--1,,1|(653,584)| 1,62,60,18,0,0,0,0,0,128,0,-1--1--1,,1|(447,405)| 1,63,60,36,0,0,0,0,0,128,0,-1--1--1,,1|(450,522)| 1,64,33,18,0,0,0,0,0,128,0,-1--1--1,,1|(522,451)| 1,65,60,30,0,0,0,0,0,128,0,-1--1--1,,1|(603,467)| 1,66,21,27,0,0,0,0,0,128,0,-1--1--1,,1|(643,421)| 1,67,21,2,0,0,0,0,0,128,0,-1--1--1,,1|(518,340)| 1,68,19,30,0,0,0,0,0,128,0,-1--1--1,,1|(545,487)| 10,69,Required FED by fuel,471,44,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,70,69,1,0,0,0,0,0,128,0,-1--1--1,,1|(468,76)| 1,71,3,27,0,0,0,0,0,128,0,-1--1--1,,1|(475,317)| 1,72,3,30,0,0,0,0,0,128,0,-1--1--1,,1|(505,361)| 12,73,3409782,1267,396,190,149,3,188,0,0,1,0,0,0 FE_consumption_solids \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TRANSP - Transport energy demand #T $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Required final energy by sector and fuel,788,723,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,Required final energy inland transport,792,533,67,19,8,3,0,0,0,0,0,0 1,3,1,2,1,0,0,0,0,128,0,-1--1--1,,1|(752,663)| 10,4,Required final energy water transport,968,647,67,19,8,3,0,0,0,0,0,0 10,5,Required final energy air transport,831,606,67,19,8,3,0,0,0,0,0,0 1,6,1,5,1,0,0,0,0,128,0,-1--1--1,,1|(814,673)| 1,7,1,4,1,0,0,0,0,128,0,-1--1--1,,1|(887,737)| 10,8,Required final energy other transport,1079,578,69,20,8,131,0,0,0,0,0,0 1,9,1,8,1,0,0,0,0,128,0,-1--1--1,,1|(975,762)| 10,10,Transport households final energy demand,1250,575,73,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,11,Total transport FED by fuel,1004,350,47,19,8,3,0,0,0,0,0,0 1,12,10,11,1,0,0,0,0,128,0,-1--1--1,,1|(1132,467)| 10,13,Transport TFED,1195,431,53,11,8,3,0,0,0,0,0,0 1,14,11,13,1,0,0,0,0,128,0,-1--1--1,,1|(1102,375)| 10,15,Share demand electricity in transport,1135,222,68,19,8,3,0,0,0,0,0,0 10,16,Share demand liquids in transport,1379,324,68,19,8,3,0,0,0,0,0,0 10,17,Share demand gas in transport,1278,244,59,19,8,3,0,0,0,0,0,0 10,18,GDP,1298,486,27,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,19,Transport TFED energy intensity,1345,424,54,19,8,3,0,0,0,0,0,0 1,20,18,19,0,0,0,0,0,128,0,-1--1--1,,1|(1313,464)| 1,21,13,19,1,0,0,0,0,128,0,-1--1--1,,1|(1235,442)| 10,22,Share demand solids in transport,978,239,66,19,8,3,0,0,0,0,0,0 10,23,Share demand heat in transport,953,287,61,19,8,3,0,0,0,0,0,0 10,24,Share demand by fuel in transport,1184,334,56,19,8,3,0,0,0,0,0,0 1,25,11,24,0,0,0,0,0,128,0,-1--1--1,,1|(1082,342)| 1,26,13,24,0,0,0,0,0,128,0,-1--1--1,,1|(1190,393)| 1,27,24,16,0,0,0,0,0,128,0,-1--1--1,,1|(1268,329)| 1,28,24,17,0,0,0,0,0,128,0,-1--1--1,,1|(1225,293)| 1,29,24,15,0,0,0,0,0,128,0,-1--1--1,,1|(1162,284)| 1,30,24,22,0,0,0,0,0,128,0,-1--1--1,,1|(1087,289)| 1,31,24,23,0,0,0,0,0,128,0,-1--1--1,,1|(1077,312)| 12,32,0,436,257,233,194,3,188,0,0,1,0,0,0 Transport_final_energy_demand 12,33,0,456,681,212,192,3,188,0,0,1,0,0,0 TFED_intensity_of_Transport 12,34,0,1766,255,246,237,3,188,0,0,1,0,0,0 Share_demand_by_fuel_in_ 12,35,0,1769,728,250,213,3,188,0,0,1,0,0,0 Final_energy_demand_by_h 1,36,2,11,1,0,0,0,0,128,0,-1--1--1,,1|(892,446)| 1,37,5,11,1,0,0,0,0,128,0,-1--1--1,,1|(921,486)| 1,38,4,11,0,0,0,0,0,128,0,-1--1--1,,1|(984,505)| 1,39,8,11,0,0,0,0,0,128,0,-1--1--1,,1|(1043,470)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TRANSP - Households transport #T $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,H gas adapt growth,1015,548,39,19,8,131,0,0,0,0,0,0 10,2,H EV adapt growth,1005,265,39,19,8,131,0,0,0,0,0,0 10,3,H hyb adapt growth,990,457,40,19,8,131,0,0,0,0,0,0 10,4,effects shortage elec on EV,757,215,50,19,8,131,0,0,0,0,0,0 10,5,effects shortage gas H veh,1001,636,50,19,8,3,0,0,0,0,0,0 10,6,max percent 4 wheels,1497,264,40,20,3,3,0,0,0,0,0,0 10,7,max percent 2 wheels,1712,263,40,20,3,3,0,0,0,0,0,0 1,8,10,7,4,0,0,22,0,0,0,-1--1--1,,1|(1661,263)| 1,9,10,6,100,0,0,22,0,0,0,-1--1--1,,1|(1588,263)| 11,10,21552,1645,263,6,8,34,3,0,0,1,0,0,0 10,11,rate 4w to 2w,1645,282,45,11,40,3,0,0,-1,0,0,0 10,12,max percent 4 wheels,1120,295,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,13,policy 2wheels,1548,382,47,11,8,3,0,0,0,0,0,0 1,14,13,11,0,0,0,0,0,128,0,-1--1--1,,1|(1591,337)| 10,15,sum 4w shares,1192,362,47,11,8,3,0,0,0,0,0,0 10,16,share available 4w,1014,349,58,11,8,3,0,0,0,0,0,0 1,17,15,16,0,0,0,0,0,128,0,-1--1--1,,1|(1115,356)| 1,18,12,16,0,0,0,0,0,128,0,-1--1--1,,1|(1065,322)| 10,19,maximum 2w,1693,381,42,11,8,3,0,0,0,0,0,0 10,20,H 2wE adapt growth,977,746,43,19,8,131,0,0,0,0,0,0 10,21,effects shortage elec on EV,844,783,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,22,saving ratios V,652,139,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,23,percents H vehicles,1583,65,40,20,3,3,0,0,0,0,0,0 12,24,48,1376,74,10,8,0,3,0,0,-1,0,0,0 1,25,27,23,4,0,0,22,0,0,0,-1--1--1,,1|(1494,74)| 1,26,27,24,100,0,0,22,0,0,0,-1--1--1,,1|(1409,74)| 11,27,48,1439,74,6,8,34,3,0,0,1,0,0,0 10,28,var percents H vehicles,1439,101,47,19,40,3,0,0,-1,0,0,0 10,29,A1 coef tH,507,-159,36,11,8,3,0,0,0,0,0,0 10,30,A2 coef tH,896,-170,36,11,8,3,0,0,0,0,0,0 10,31,saving ratio 2wE,666,73,54,14,8,131,0,0,0,0,0,0 10,32,percents H vehicles,1132,418,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,33,32,15,0,0,0,0,0,128,0,-1--1--1,,1|(1160,390)| 10,34,percent 4w,1698,59,36,11,8,3,0,0,0,0,0,0 10,35,percent 2w,1698,102,36,11,8,3,0,0,0,0,0,0 1,36,23,34,0,0,0,0,0,128,0,-1--1--1,,1|(1635,62)| 1,37,23,35,0,0,0,0,0,128,0,-1--1--1,,1|(1636,81)| 1,38,11,28,1,0,0,0,0,128,0,-1--1--1,,1|(1609,177)| 10,39,Time,1443,216,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,39,28,0,0,0,0,0,64,0,-1--1--1,,1|(1441,169)| 10,41,percent all,1803,76,33,11,8,3,0,0,0,0,0,0 1,42,34,41,0,0,0,0,0,128,0,-1--1--1,,1|(1745,65)| 1,43,35,41,0,0,0,0,0,128,0,-1--1--1,,1|(1745,90)| 10,44,Number 2w,1363,-191,39,11,8,3,0,0,0,0,0,0 10,45,Number 4w,1361,-262,39,11,8,3,0,0,0,0,0,0 10,46,Number all,1405,-228,36,11,8,3,0,0,0,0,0,0 1,47,44,46,0,0,0,0,0,128,0,-1--1--1,,1|(1378,-205)| 1,48,45,46,0,0,0,0,0,128,0,-1--1--1,,1|(1377,-250)| 10,49,ratio N veh Demand H,1205,-245,36,19,8,3,0,0,0,0,0,0 10,50,Number vehicles H,1239,-165,33,19,8,3,0,0,0,0,0,0 1,51,49,50,0,0,0,0,0,128,0,-1--1--1,,1|(1218,-212)| 1,52,50,44,0,0,0,0,0,128,0,-1--1--1,,1|(1291,-176)| 1,53,50,45,0,0,0,0,0,128,0,-1--1--1,,1|(1299,-214)| 1,54,23,50,1,0,0,0,0,128,0,-1--1--1,,1|(1394,-77)| 10,55,P H vehicle,484,490,37,11,8,3,0,0,0,0,0,0 10,56,percent H vehicles initial,498,655,75,11,0,3,0,0,0,0,0,0 1,57,4,2,0,0,0,0,0,128,0,-1--1--1,,1|(879,239)| 10,58,max percent 2 wheels,1221,768,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,59,Abundance electricity,788,351,42,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,60,var IH liq2,982,-17,35,11,8,3,0,0,0,0,0,0 10,61,var IH E2,874,72,32,11,8,3,0,0,0,0,0,0 10,62,var IH gas2,884,161,38,11,8,3,0,0,0,0,0,0 1,63,28,60,1,0,0,0,0,128,0,-1--1--1,,1|(1210,-15)| 1,64,30,60,0,0,0,0,0,64,0,-1--1--1,,1|(935,-100)| 1,65,30,61,1,0,0,0,0,64,0,-1--1--1,,1|(894,-48)| 1,66,31,61,0,0,0,0,0,64,0,-1--1--1,,1|(774,72)| 1,67,22,61,0,0,0,0,0,64,0,-1--1--1,,1|(758,106)| 1,68,28,61,1,0,0,0,0,64,0,-1--1--1,,1|(1181,46)| 1,69,22,62,0,0,0,0,0,64,0,-1--1--1,,1|(770,149)| 1,70,28,62,1,0,0,0,0,64,0,-1--1--1,,1|(1163,130)| 10,71,Household demand total,1074,-198,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,72,71,50,0,0,0,0,0,128,0,-1--1--1,,1|(1156,-182)| 10,73,Abundance electricity,560,194,42,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,74,73,4,1,0,0,0,0,128,0,-1--1--1,,1|(657,212)| 10,75,abundance gases,892,683,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,76,75,5,0,0,0,0,0,128,0,-1--1--1,,1|(937,663)| 10,77,Energy intensity of households transport,548,-60,85,39,3,131,0,0,0,0,0,0 12,78,48,876,-49,10,8,0,3,0,0,-1,0,0,0 1,79,81,77,4,0,0,22,0,0,0,-1--1--1,,1|(689,-49)| 1,80,81,78,100,0,0,22,0,0,0,-1--1--1,,1|(812,-49)| 11,81,48,752,-49,6,8,34,3,0,0,1,0,0,0 10,82,variation energy intensity of households transport,752,-22,78,19,40,3,0,0,-1,0,0,0 1,83,62,82,0,0,0,0,0,128,0,-1--1--1,,1|(825,79)| 1,84,61,82,0,0,0,0,0,128,0,-1--1--1,,1|(823,33)| 1,85,60,82,0,0,0,0,0,128,0,-1--1--1,,1|(895,-19)| 10,86,Initial energy intensity 1995 H,553,-2,57,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,87,Initial energy intensity 1995 H,175,-6,57,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,88,percents H vehicles,1108,757,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,89,Time,1760,-70,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,90,hist var percent H,1662,-107,56,11,8,3,0,0,0,0,0,0 1,91,89,90,0,0,0,0,0,128,0,-1--1--1,,1|(1719,-85)| 10,92,aux hist H,1546,-86,32,11,8,3,0,0,0,0,0,0 1,93,90,92,0,0,0,0,0,128,0,-1--1--1,,1|(1598,-96)| 10,94,P elec,314,424,21,11,8,3,0,0,0,0,0,0 10,95,P hyb,314,467,20,11,8,3,0,0,0,0,0,0 10,96,P gas,332,505,19,11,8,3,0,0,0,0,0,0 10,97,P 2wE,331,555,23,11,8,3,0,0,0,0,0,0 1,98,94,55,0,0,0,0,0,128,0,-1--1--1,,1|(388,452)| 1,99,95,55,0,0,0,0,0,128,0,-1--1--1,,1|(383,475)| 1,100,96,55,0,0,0,0,0,128,0,-1--1--1,,1|(392,499)| 1,101,97,55,0,0,0,0,0,128,0,-1--1--1,,1|(399,526)| 10,102,P share 2 wheelers,340,604,59,11,8,3,0,0,0,0,0,0 10,103,P share 2 wheelers,1688,506,35,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,104,103,19,0,0,0,0,0,128,0,-1--1--1,,1|(1689,446)| 1,105,103,13,0,0,0,0,0,128,0,-1--1--1,,1|(1618,444)| 10,106,initial 2w percent,1462,325,53,11,8,3,0,0,0,0,0,0 1,107,106,7,0,0,0,0,0,128,1,-1--1--1,,1|(1582,294)| 1,108,106,6,0,0,0,0,0,128,1,-1--1--1,,1|(1473,305)| 1,109,106,13,0,0,0,0,0,128,0,-1--1--1,,1|(1498,349)| 1,110,102,55,0,0,0,0,0,128,0,-1--1--1,,1|(405,551)| 1,111,5,1,0,0,0,0,0,128,0,-1--1--1,,1|(1006,598)| 10,112,share available 2w,1216,697,58,11,8,3,0,0,0,0,0,0 1,113,58,112,0,0,0,0,0,128,0,-1--1--1,,1|(1218,735)| 1,114,88,112,0,0,0,0,0,128,0,-1--1--1,,1|(1162,726)| 1,115,92,28,0,0,0,0,0,128,0,-1--1--1,,1|(1498,-3)| 10,116,percents 4w H vehicles,1638,-30,47,19,8,3,0,0,0,0,0,0 10,117,percents 2w H vehicles,1718,8,47,19,8,3,0,0,0,0,0,0 1,118,23,116,1,0,0,0,0,128,0,-1--1--1,,1|(1598,23)| 1,119,23,117,1,0,0,0,0,128,0,-1--1--1,,1|(1635,39)| 10,120,N vehicles H,1068,-289,41,11,8,3,0,0,0,0,0,0 10,121,Demand H,957,-259,35,11,8,3,0,0,0,0,0,0 1,122,120,49,0,0,0,0,0,128,0,-1--1--1,,1|(1128,-270)| 1,123,121,49,0,0,0,0,0,128,0,-1--1--1,,1|(1073,-254)| 1,124,121,30,0,0,0,0,0,128,0,-1--1--1,,1|(930,-221)| 10,125,Electricity 2wE,685,-213,48,11,8,3,0,0,0,0,0,0 10,126,saving ratio 2wE,804,-290,66,10,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,127,126,30,0,0,0,0,0,128,0,-1--1--1,,1|(844,-237)| 1,128,125,30,0,0,0,0,0,128,0,-1--1--1,,1|(789,-193)| 10,129,Liq 4w,384,-203,24,11,8,3,0,0,0,0,0,0 10,130,percent 2w liq,450,-235,45,11,8,3,0,0,0,0,0,0 10,131,percent 4w liq,375,-164,45,11,8,3,0,0,0,0,0,0 1,132,130,29,0,0,0,0,0,128,0,-1--1--1,,1|(473,-203)| 1,133,131,29,0,0,0,0,0,128,0,-1--1--1,,1|(438,-163)| 1,134,129,29,0,0,0,0,0,128,0,-1--1--1,,1|(435,-185)| 10,135,A1 coef tH,1001,103,45,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,136,135,61,0,0,0,0,0,128,0,-1--1--1,,1|(937,87)| 1,137,135,62,0,0,0,0,0,128,0,-1--1--1,,1|(948,128)| 1,138,135,60,0,0,0,0,0,128,0,-1--1--1,,1|(992,49)| 1,139,121,29,1,0,0,0,0,128,0,-1--1--1,,1|(733,-168)| 1,140,30,29,1,0,0,0,0,128,0,-1--1--1,,1|(700,-143)| 10,141,Initial energy intensity of households transport 2009,541,11,85,19,8,3,0,0,0,0,0,0 1,142,141,77,0,0,0,0,0,64,1,-1--1--1,,1|(541,-8)| 10,143,Activate policy H transp,390,266,56,19,8,3,0,0,0,0,0,0 10,144,H elec initial growth,718,281,39,19,8,3,0,0,0,0,0,0 1,145,144,2,0,0,0,0,0,128,0,-1--1--1,,1|(854,273)| 1,146,56,144,0,0,0,0,0,64,0,-1--1--1,,1|(601,478)| 1,147,143,144,0,0,0,0,0,128,0,-1--1--1,,1|(555,273)| 10,148,H hyb initial growth,785,417,38,19,8,3,0,0,0,0,0,0 1,149,143,148,0,0,0,0,0,128,0,-1--1--1,,1|(586,341)| 1,150,148,3,0,0,0,0,0,128,0,-1--1--1,,1|(879,435)| 1,151,55,148,0,0,0,0,0,64,0,-1--1--1,,1|(627,455)| 1,152,56,148,0,0,0,0,0,64,0,-1--1--1,,1|(631,544)| 10,153,H gas initial growth,753,534,60,11,8,3,0,0,0,0,0,0 1,154,143,153,0,0,0,0,0,128,0,-1--1--1,,1|(570,399)| 1,155,153,1,0,0,0,0,0,128,0,-1--1--1,,1|(887,540)| 1,156,55,153,0,0,0,0,0,64,0,-1--1--1,,1|(600,508)| 1,157,56,153,0,0,0,0,0,64,0,-1--1--1,,1|(618,597)| 10,158,H 2w initial growth,697,708,59,11,8,3,0,0,0,0,0,0 1,159,55,158,0,0,0,0,0,64,0,-1--1--1,,1|(585,593)| 1,160,56,158,0,0,0,0,0,64,0,-1--1--1,,1|(590,679)| 10,161,Activate policy H transp,507,759,60,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,162,161,158,0,0,0,0,0,128,0,-1--1--1,,1|(604,732)| 1,163,158,20,0,0,0,0,0,128,0,-1--1--1,,1|(838,727)| 12,164,0,2180,171,328,291,3,188,0,0,1,0,0,0 H_alternative_vehicles__4w_ 10,165,percent H vehicles initial,1515,-149,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,166,165,90,0,0,0,0,0,128,0,-1--1--1,,1|(1585,-129)| 1,167,2,28,0,0,0,0,0,128,0,-1--1--1,,1|(1211,186)| 1,168,3,28,0,0,0,0,0,128,0,-1--1--1,,1|(1208,283)| 1,169,1,28,1,0,0,0,0,128,0,-1--1--1,,1|(1278,355)| 1,170,20,28,1,0,0,0,0,128,0,-1--1--1,,1|(1255,430)| 10,171,aux hist H,751,344,41,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,172,aux hist H,771,619,41,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,173,TIME STEP,718,311,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,174,TIME STEP,777,420,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,175,TIME STEP,753,564,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,176,TIME STEP,697,738,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,177,171,144,0,0,0,0,0,128,0,-1--1--1,,1|(739,322)| 1,178,171,148,0,0,0,0,0,128,0,-1--1--1,,1|(763,370)| 1,179,172,153,0,0,0,0,0,128,0,-1--1--1,,1|(763,583)| 1,180,172,158,0,0,0,0,0,128,0,-1--1--1,,1|(738,658)| 10,181,percent H vehicles initial,678,-288,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,182,181,30,0,0,0,0,0,128,0,-1--1--1,,1|(787,-229)| 10,183,Activate policy H transp,1367,428,60,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,184,183,13,0,0,0,0,0,128,0,-1--1--1,,1|(1458,404)| 10,185,Time,805,327,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,186,185,144,0,0,0,0,0,64,0,-1--1--1,,1|(775,311)| 10,187,Time,852,484,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,188,187,153,0,0,0,0,0,64,0,-1--1--1,,1|(808,505)| 10,189,Time,1432,369,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,190,189,13,0,0,0,0,0,64,0,-1--1--1,,1|(1472,372)| 10,191,T hist H transp,1654,-183,47,11,8,3,0,0,0,0,0,0 1,192,191,90,0,0,0,0,0,128,0,-1--1--1,,1|(1656,-152)| 1,193,106,23,1,0,0,0,0,128,1,-1--1--1,,1|(1517,205)| 10,194,Time,688,33,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,195,194,82,0,0,0,0,0,64,0,-1--1--1,,1|(709,14)| 1,196,187,148,0,0,0,0,0,128,0,-1--1--1,,1|(827,459)| 1,197,187,158,1,0,0,0,0,128,0,-1--1--1,,1|(840,657)| 10,198,increase Households energy final demand for Transp,322,-37,74,28,8,3,0,0,0,0,0,0 1,199,77,198,0,0,0,0,0,128,0,-1--1--1,,1|(436,-50)| 1,200,141,198,0,0,0,0,0,128,0,-1--1--1,,1|(432,-13)| 10,201,Household demand total,311,-110,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,202,201,198,0,0,0,0,0,64,0,-1--1--1,,1|(313,-85)| 10,203,T ini H veh,330,330,35,11,8,3,0,0,-1,0,0,0 10,204,T ini H veh,1212,92,44,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,205,204,28,0,0,0,0,0,128,0,-1--1--1,,1|(1317,95)| 10,206,T fin H veh,332,368,36,11,8,3,0,0,-1,0,0,0 10,207,T ini H veh,1465,487,44,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,208,T fin H veh,1576,527,45,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,209,207,13,0,0,0,0,0,128,0,-1--1--1,,1|(1501,439)| 1,210,208,13,0,0,0,0,0,128,0,-1--1--1,,1|(1563,461)| 1,211,206,144,0,0,0,0,0,64,0,-1--1--1,,1|(516,326)| 1,212,203,144,0,0,0,0,0,64,0,-1--1--1,,1|(515,306)| 1,213,55,144,0,0,0,0,0,64,0,-1--1--1,,1|(590,394)| 1,214,206,148,0,0,0,0,0,64,0,-1--1--1,,1|(550,390)| 1,215,203,148,0,0,0,0,0,64,0,-1--1--1,,1|(549,371)| 1,216,206,153,0,0,0,0,0,64,0,-1--1--1,,1|(535,448)| 1,217,203,153,0,0,0,0,0,64,0,-1--1--1,,1|(534,428)| 1,218,206,158,0,0,0,0,0,64,0,-1--1--1,,1|(508,533)| 1,219,203,158,0,0,0,0,0,64,0,-1--1--1,,1|(508,513)| 12,220,0,259,49,130,27,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 TYPES OF HOUSEHOLD VEHICLES 12,221,0,253,95,95,22,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 elec= electric + plug in hybrid hyb= hybrid no plug in 12,222,0,263,142,102,30,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 gas= natural gas + LPG vehicle liq= gasoline and gasoil vehicles 12,223,0,278,195,102,28,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 4w= four wheelers 2w= two and three wheelers 12,224,0,447,151,40,20,8,3,0,0,-1,0,0,0 \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TRANSP - Inland transport sector #T $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,inland transport variation intensity,821,90,55,19,8,3,0,0,0,0,0,0 10,2,liquids per X HV,943,296,54,11,8,3,0,0,0,0,0,0 10,3,liquids per X LV,941,342,53,11,8,3,0,0,0,0,0,0 10,4,liquids per X bus,936,386,53,11,8,3,0,0,0,0,0,0 10,5,saving ratios V,1083,462,47,11,8,3,0,0,0,0,0,0 10,6,energy per X t,1106,368,46,11,8,3,0,0,0,0,0,0 1,7,2,6,0,0,0,0,0,128,0,-1--1--1,,1|(1017,329)| 1,8,5,6,0,0,0,0,0,128,0,-1--1--1,,1|(1092,421)| 1,9,3,6,0,0,0,0,0,128,0,-1--1--1,,1|(1020,353)| 1,10,4,6,0,0,0,0,0,128,0,-1--1--1,,1|(1017,377)| 10,11,NX0 vehicles per Xinland T,1376,283,56,19,8,3,0,0,0,0,0,0 10,12,NX HV inland T,1254,431,53,11,8,3,0,0,0,0,0,0 10,13,NX LV inland T,1275,498,52,11,8,3,0,0,0,0,0,0 10,14,NX bus inlandT,1430,423,50,11,8,3,0,0,0,0,0,0 10,15,NX train inland T,1481,525,55,11,8,3,0,0,0,0,0,0 1,16,12,11,1,0,0,0,0,128,0,-1--1--1,,1|(1247,351)| 1,17,13,11,1,0,0,0,0,128,0,-1--1--1,,1|(1324,421)| 1,18,14,11,1,0,0,0,0,128,0,-1--1--1,,1|(1437,378)| 1,19,15,11,1,0,0,0,0,128,0,-1--1--1,,1|(1513,393)| 10,20,percent T vehicles,1504,105,40,20,3,3,0,0,0,0,0,0 12,21,48,1278,100,10,8,0,3,0,0,-1,0,0,0 1,22,24,20,4,0,0,22,0,0,0,-1--1--1,,1|(1423,100)| 1,23,24,21,100,0,0,22,0,0,0,-1--1--1,,1|(1329,100)| 11,24,48,1376,100,6,8,34,3,0,0,1,0,0,0 10,25,var percent T vehicles,1376,127,43,19,40,3,0,0,-1,0,0,0 10,26,T ini inlandT,1044,571,39,11,8,3,0,0,0,0,0,0 10,27,initial percent T vehicles,778,512,49,19,8,3,0,0,0,0,0,0 1,28,27,20,0,0,0,0,0,128,1,-1--1--1,,1|(1133,312)| 10,29,var I inlandT liq,1035,111,49,11,8,3,0,0,0,0,0,0 1,30,6,29,0,0,0,0,0,128,0,-1--1--1,,1|(1072,246)| 1,31,25,29,1,0,0,0,0,128,0,-1--1--1,,1|(1212,128)| 10,32,var I inland Elec,985,166,51,11,8,3,0,0,0,0,0,0 10,33,var I inlandT Gas,969,212,54,11,8,3,0,0,0,0,0,0 1,34,6,32,1,0,0,0,0,128,0,-1--1--1,,1|(1059,256)| 1,35,6,33,1,0,0,0,0,128,0,-1--1--1,,1|(1048,296)| 1,36,25,33,1,0,0,0,0,128,0,-1--1--1,,1|(1260,176)| 1,37,25,32,1,0,0,0,0,128,0,-1--1--1,,1|(1191,160)| 1,38,33,1,1,0,0,0,0,128,0,-1--1--1,,1|(875,174)| 1,39,32,1,1,0,0,0,0,128,0,-1--1--1,,1|(918,135)| 1,40,29,1,1,0,0,0,0,128,0,-1--1--1,,1|(950,73)| 10,41,Real total output by sector,1631,455,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,42,Real total output inland transport,1622,385,53,19,8,3,0,0,0,0,0,0 10,43,vehicles inlandT,1560,300,50,11,8,3,0,0,0,0,0,0 1,44,11,43,1,0,0,0,0,128,0,-1--1--1,,1|(1450,267)| 1,45,42,43,1,0,0,0,0,128,0,-1--1--1,,1|(1581,353)| 1,46,20,43,1,0,0,0,0,128,0,-1--1--1,,1|(1551,186)| 1,47,41,42,0,0,0,0,0,128,0,-1--1--1,,1|(1627,426)| 10,48,Energy initial inland transport,635,272,61,19,8,3,0,0,0,0,0,0 10,49,initial Xt inland,703,363,46,11,8,3,0,0,0,0,0,0 1,50,48,2,0,0,0,0,0,128,0,-1--1--1,,1|(785,282)| 1,51,49,2,0,0,0,0,0,128,0,-1--1--1,,1|(815,331)| 1,52,48,3,0,0,0,0,0,128,0,-1--1--1,,1|(787,306)| 1,53,49,3,0,0,0,0,0,128,0,-1--1--1,,1|(811,353)| 1,54,48,4,0,0,0,0,0,128,0,-1--1--1,,1|(788,330)| 1,55,49,4,0,0,0,0,0,128,0,-1--1--1,,1|(809,372)| 10,56,effects shortage elec on EV,1047,851,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,57,N vehicles inland t 0,1378,588,54,19,8,3,0,0,0,0,0,0 1,58,57,13,1,0,0,0,0,128,0,-1--1--1,,1|(1301,530)| 1,59,57,14,1,0,0,0,0,128,0,-1--1--1,,1|(1416,514)| 1,60,57,12,1,0,0,0,0,128,0,-1--1--1,,1|(1274,555)| 10,61,initial Xt inland,1362,468,55,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,61,15,0,0,0,0,0,128,0,-1--1--1,,1|(1414,493)| 1,63,61,14,0,0,0,0,0,128,0,-1--1--1,,1|(1389,449)| 1,64,61,13,0,0,0,0,0,128,0,-1--1--1,,1|(1325,480)| 1,65,61,12,0,0,0,0,0,128,0,-1--1--1,,1|(1314,451)| 10,66,energy per X train,920,448,57,11,8,3,0,0,0,0,0,0 1,67,49,66,0,0,0,0,0,128,0,-1--1--1,,1|(804,402)| 1,68,48,66,0,0,0,0,0,128,0,-1--1--1,,1|(777,360)| 1,69,66,6,0,0,0,0,0,128,0,-1--1--1,,1|(1006,410)| 10,70,percent T vehicles,1415,827,36,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,71,effects shortage gas,1222,873,50,19,8,3,0,0,-1,0,0,0 10,72,Activate policy inlandT,683,562,48,19,8,3,0,0,0,0,0,0 10,73,P inlandT,868,717,31,11,8,3,0,0,0,0,0,0 10,74,TIME STEP,1128,664,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,75,aux P inland transp,1034,723,59,11,8,3,0,0,0,0,0,0 10,76,hist var inlandT,928,538,48,11,8,3,0,0,0,0,0,0 10,77,adapt var inlandT,1210,718,55,11,8,3,0,0,0,0,0,0 10,78,"effects shortage elec on EV/hib",1123,725,69,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,79,shares available T,1374,743,56,11,8,3,0,0,0,0,0,0 10,80,P HV hyb,706,615,33,11,8,3,0,0,0,0,0,0 10,81,P HV gas,703,653,32,11,8,3,0,0,0,0,0,0 10,82,P LV elec,697,691,33,11,8,3,0,0,0,0,0,0 10,83,P LV gas,690,753,31,11,8,3,0,0,0,0,0,0 10,84,P LV hyb,694,723,32,11,8,3,0,0,0,0,0,0 10,85,P bus elec,691,790,33,11,8,3,0,0,0,0,0,0 10,86,P bus gas,703,852,31,11,8,3,0,0,0,0,0,0 10,87,P bus hyb,691,824,32,11,8,3,0,0,0,0,0,0 10,88,P train elec,722,893,36,11,8,3,0,0,0,0,0,0 1,89,80,73,0,0,0,0,0,128,0,-1--1--1,,1|(780,662)| 1,90,81,73,0,0,0,0,0,128,0,-1--1--1,,1|(778,682)| 1,91,82,73,0,0,0,0,0,128,0,-1--1--1,,1|(776,702)| 1,92,84,73,0,0,0,0,0,128,0,-1--1--1,,1|(774,720)| 1,93,83,73,0,0,0,0,0,128,0,-1--1--1,,1|(772,736)| 1,94,85,73,0,0,0,0,0,128,0,-1--1--1,,1|(772,756)| 1,95,87,73,0,0,0,0,0,128,0,-1--1--1,,1|(773,774)| 1,96,86,73,0,0,0,0,0,128,0,-1--1--1,,1|(779,788)| 1,97,88,73,0,0,0,0,0,128,0,-1--1--1,,1|(790,810)| 1,98,73,75,0,0,0,0,0,128,0,-1--1--1,,1|(930,718)| 1,99,76,75,0,0,0,0,0,128,0,-1--1--1,,1|(977,624)| 1,100,72,75,0,0,0,0,0,128,0,-1--1--1,,1|(860,643)| 1,101,70,79,0,0,0,0,0,128,0,-1--1--1,,1|(1395,787)| 1,102,75,77,0,0,0,0,0,128,0,-1--1--1,,1|(1117,720)| 10,103,Efects shortage inlandT,1196,787,49,19,8,3,0,0,0,0,0,0 1,104,103,77,0,0,0,0,0,128,0,-1--1--1,,1|(1201,755)| 1,105,71,103,0,0,0,0,0,128,0,-1--1--1,,1|(1211,836)| 1,106,56,103,0,0,0,0,0,128,0,-1--1--1,,1|(1114,821)| 10,107,adapt var inlandT,1353,44,35,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,108,107,25,0,0,0,0,0,128,0,-1--1--1,,1|(1362,79)| 1,109,26,75,0,0,0,0,0,128,0,-1--1--1,,1|(1039,640)| 1,110,27,75,0,0,0,0,0,128,0,-1--1--1,,1|(905,617)| 10,111,percents HV,1495,19,41,11,8,3,0,0,0,0,0,0 1,112,20,111,0,0,0,0,0,128,0,-1--1--1,,1|(1499,65)| 10,113,percents LV,1634,53,40,11,8,3,0,0,0,0,0,0 1,114,20,113,0,0,0,0,0,128,0,-1--1--1,,1|(1568,80)| 10,115,percents bus,1660,135,40,11,8,3,0,0,0,0,0,0 1,116,20,115,0,0,0,0,0,128,0,-1--1--1,,1|(1575,119)| 10,117,percents train,1667,175,46,11,8,3,0,0,0,0,0,0 1,118,20,117,0,0,0,0,0,128,0,-1--1--1,,1|(1586,140)| 10,119,Time,1034,753,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,120,119,75,0,0,0,0,0,64,0,-1--1--1,,1|(1034,745)| 10,121,adjust energy for transport to inland transport,821,220,58,28,8,3,0,0,0,0,0,0 1,122,121,2,1,0,0,0,0,128,0,-1--1--1,,1|(896,257)| 1,123,121,3,1,0,0,0,0,128,0,-1--1--1,,1|(841,285)| 1,124,121,4,1,0,0,0,0,128,0,-1--1--1,,1|(834,308)| 1,125,121,66,1,0,0,0,0,128,0,-1--1--1,,1|(826,344)| 1,126,121,3,0,0,0,0,0,128,0,-1--1--1,,1|(884,284)| 10,127,T fin inlandT,1151,606,40,11,8,3,0,0,0,0,0,0 1,128,127,75,0,0,0,0,0,128,0,-1--1--1,,1|(1097,659)| 12,129,0,544,37,167,17,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 TYPES OF INLAND TRANSPORT VEHICLES 12,130,0,513,74,95,22,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 elec= electric + plug in hybrid hyb= hybrid no plug in 12,131,0,523,121,102,30,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 gas= natural gas + LPG vehicle liq= gasoline and gasoil vehicles 12,132,0,544,189,153,31,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 HV= heavy vehicles; LV= light cargo vehicles; bus= urban and non urban buses; train: all types of railways 12,133,0,707,130,40,20,8,3,0,0,-1,0,0,0 12,134,0,1583,545,18,11,8,3,0,0,-1,0,0,0 10,135,abundance gases,1223,946,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,136,135,71,0,0,0,0,0,0,0,-1--1--1,,1|(1222,916)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TRANSP - Total number vehicles #T $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,75,0 10,1,total number elec light vehicles,555,183,55,19,8,131,0,0,-1,0,0,0 10,2,total number hybrid light vehicles,735,197,62,19,8,131,0,0,-1,0,0,0 10,3,total number gas light vehicles,1007,113,53,19,8,131,0,0,-1,0,0,0 10,4,Number vehicles H,788,275,73,22,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,2,0,0,0,0,0,0,0,-1--1--1,,1|(764,240)| 10,6,vehicles inlandT,703,93,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,2,1,0,0,0,0,0,0,-1--1--1,,1|(722,142)| 1,8,4,1,0,0,0,0,0,128,0,-1--1--1,,1|(674,230)| 1,9,6,1,0,0,0,0,0,128,0,-1--1--1,,1|(641,130)| 1,10,4,3,0,0,0,0,0,128,0,-1--1--1,,1|(893,196)| 1,11,6,3,0,0,0,0,0,128,0,-1--1--1,,1|(851,102)| 10,12,total number light vehicles,981,344,55,19,8,3,0,0,-1,0,0,0 10,13,"share elec+hyb light vehicles",615,366,63,19,8,3,0,0,-1,0,0,0 10,14,share of electric light vehicles,790,421,50,19,8,3,0,0,-1,0,0,0 1,15,12,14,0,0,0,0,0,0,0,-1--1--1,,1|(891,379)| 1,16,12,13,0,0,0,0,0,0,0,-1--1--1,,1|(808,354)| 1,17,6,12,0,0,0,0,0,128,0,-1--1--1,,1|(831,209)| 1,18,4,12,0,0,0,0,0,128,0,-1--1--1,,1|(881,308)| 12,19,1967704,1260,587,232,172,3,188,0,0,1,0,0,0 Share_of_electric_ligth_ 12,20,2229868,771,633,223,168,3,188,0,0,1,0,0,0 Number_of_electric_ligth 12,21,3081804,1324,235,208,160,3,188,0,0,1,0,0,0 Total_LD_vehicles 12,22,0,217,133,151,23,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 TOTAL NUMBER OF LIGHT VEHICLES: HOUSEHOLDS + CARGO 12,23,0,197,199,95,22,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 elec= electric + plug in hybrid hyb= hybrid no plug in 12,24,0,194,245,102,30,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 gas= natural gas + LPG vehicle liq= gasoline and gasoil vehicles 12,25,0,401,280,40,20,8,3,0,0,-1,0,0,0 1,26,1,13,0,0,0,0,0,128,0,-1--1--1,,1|(582,267)| 1,27,2,13,0,0,0,0,0,128,0,-1--1--1,,1|(679,275)| 1,28,1,14,0,0,0,0,0,128,0,-1--1--1,,1|(667,297)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TRANSP - Electric batteries #T $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,980,-4,40,20,8,3,0,0,-1,0,0,0 10,2,kW per battery EV,1164,282,38,19,8,3,0,0,0,0,0,0 10,3,EV batteries TW,1312,240,44,20,8,131,0,0,0,0,0,0 1,4,2,3,1,0,0,0,0,128,0,-1--1--1,,1|(1238,252)| 10,5,kWh per TWh,1176,173,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,5,3,0,0,0,0,0,128,0,-1--1--1,,1|(1228,198)| 10,7,bat number EV,793,136,48,11,8,3,0,0,0,0,0,0 10,8,bat number hib,664,297,47,11,8,3,0,0,0,0,0,0 10,9,bat number 2w,654,389,48,11,8,3,0,0,0,0,0,0 10,10,bateries ratio 2w E,619,467,59,11,8,3,0,0,0,0,0,0 10,11,"batteries EV+hib+2wE",1152,385,73,24,3,131,0,0,0,0,0,0 12,12,48,919,385,10,8,0,3,0,0,-1,0,0,0 1,13,15,11,4,0,0,22,0,0,0,-1--1--1,,1|(1040,381)| 1,14,15,12,100,0,0,22,0,0,0,-1--1--1,,1|(959,381)| 11,15,48,996,381,6,8,34,3,0,0,1,0,0,0 10,16,new batteries,996,400,40,11,40,3,0,0,-1,0,0,0 12,17,48,1455,382,10,8,0,3,0,0,-1,0,0,0 1,18,20,17,4,0,0,22,0,0,0,-1--1--1,,1|(1377,382)| 1,19,20,11,100,0,0,22,0,0,0,-1--1--1,,1|(1261,382)| 11,20,48,1304,382,6,8,34,3,0,0,1,0,0,0 10,21,discarded batteries,1304,401,57,11,40,3,0,0,-1,0,0,0 10,22,required number standard batteries,833,332,58,19,8,3,0,0,0,0,0,0 1,23,11,21,1,0,0,0,0,128,0,-1--1--1,,1|(1257,360)| 10,24,bateries ratio hib HV,646,191,53,19,8,3,0,0,0,0,0,0 1,25,24,8,0,0,0,0,0,128,0,-1--1--1,,1|(654,241)| 1,26,10,9,0,0,0,0,0,128,0,-1--1--1,,1|(633,434)| 1,27,8,22,1,0,0,0,0,128,0,-1--1--1,,1|(744,317)| 1,28,7,22,0,0,0,0,0,128,0,-1--1--1,,1|(810,223)| 1,29,9,22,0,0,0,0,0,128,0,-1--1--1,,1|(724,366)| 10,30,bateries ratio hib bus,494,332,53,19,8,3,0,0,0,0,0,0 1,31,30,8,0,0,0,0,0,128,0,-1--1--1,,1|(575,315)| 10,32,bateries ratio hib LV,469,269,53,19,8,3,0,0,0,0,0,0 1,33,32,8,0,0,0,0,0,128,0,-1--1--1,,1|(562,281)| 10,34,bateries ratio bus E,745,215,39,19,8,131,0,0,0,0,0,0 1,35,34,7,0,0,0,0,0,128,0,-1--1--1,,1|(767,177)| 1,36,22,16,1,0,0,0,0,64,0,-1--1--1,,1|(970,355)| 1,37,11,3,0,0,0,0,0,128,0,-1--1--1,,1|(1228,315)| 10,38,vehicles inlandT,895,48,78,25,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,39,38,8,1,0,0,0,0,128,0,-1--1--1,,1|(893,170)| 1,40,38,7,0,0,0,0,0,128,0,-1--1--1,,1|(841,94)| 10,41,Number vehicles H,522,110,38,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,8,1,0,0,0,0,128,0,-1--1--1,,1|(543,211)| 1,43,41,7,0,0,0,0,0,128,0,-1--1--1,,1|(645,121)| 10,44,Number vehicles H,462,416,38,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,45,44,9,0,0,0,0,0,64,0,-1--1--1,,1|(546,404)| 10,46,lifetime EV batteries,1398,308,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,47,46,21,0,0,0,0,0,128,0,-1--1--1,,1|(1351,353)| 12,48,48,1140,497,10,8,0,3,0,0,-1,0,0,0 1,49,51,11,4,0,0,22,0,0,0,-1--1--1,,1|(1140,426)| 1,50,51,48,100,0,0,22,0,0,0,-1--1--1,,1|(1140,472)| 11,51,48,1140,449,8,6,33,3,0,0,4,0,0,0 10,52,replacement batteries,1187,449,39,19,40,3,0,0,-1,0,0,0 1,53,21,52,1,0,0,0,0,128,0,-1--1--1,,1|(1248,457)| 1,54,11,16,0,0,0,0,0,64,0,-1--1--1,,1|(1064,393)| 10,55,"new+replaced batteries TW",1032,220,59,22,8,131,0,0,0,0,0,0 1,56,16,55,0,0,0,0,0,128,0,-1--1--1,,1|(1011,322)| 1,57,2,55,0,0,0,0,0,64,0,-1--1--1,,1|(1108,256)| 1,58,5,55,0,0,0,0,0,128,0,-1--1--1,,1|(1123,189)| 1,59,52,55,0,0,0,0,0,128,0,-1--1--1,,1|(1114,341)| 12,60,3212876,1207,712,276,197,3,188,0,0,1,0,0,0 Total_standard_electric_batteries \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CTL & GTL supply #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,CTL potential production,803,191,46,21,3,131,0,0,0,0,0,0 12,2,48,584,189,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(719,189)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(631,189)| 11,5,48,675,189,6,8,34,3,0,0,1,0,0,0 10,6,variation CTL,675,208,50,11,40,131,0,0,-1,0,0,0 10,7,Hist growth CTL,419,295,49,22,8,131,0,0,0,0,0,0 10,8,real growth CTL,681,289,53,11,8,3,0,0,0,0,0,0 10,9,P CTL,414,348,23,11,8,3,0,0,0,0,0,0 10,10,PED coal for CTL EJ,1071,352,41,19,8,3,0,0,0,0,0,0 1,11,8,6,1,0,0,0,0,64,0,-1--1--1,,1|(672,241)| 10,12,CTL efficiency,1114,298,52,10,8,131,0,0,0,0,0,0 1,13,12,10,1,0,0,0,0,64,0,-1--1--1,,1|(1101,327)| 10,14,GTL potential production,808,526,51,19,3,131,0,0,0,0,0,0 12,15,48,585,526,10,8,0,3,0,0,-1,0,0,0 1,16,18,14,4,0,0,22,0,0,0,-1--1--1,,1|(719,526)| 1,17,18,15,100,0,0,22,0,0,0,-1--1--1,,1|(632,526)| 11,18,48,676,526,6,8,34,3,0,0,1,0,0,0 10,19,variation GTL,676,545,57,11,40,131,0,0,-1,0,0,0 10,20,Hist growth GTL,442,734,40,18,8,131,0,0,0,0,0,0 10,21,real growth GTL,694,636,53,11,8,3,0,0,0,0,0,0 10,22,P GTL,552,746,23,11,8,3,0,0,0,0,0,0 10,23,"PED nat. gas for GTL EJ",1011,705,45,19,8,131,0,0,0,0,0,0 10,24,GTL efficiency,1108,749,57,11,8,131,0,0,0,0,0,0 1,25,24,23,1,0,0,0,0,64,0,-1--1--1,,1|(1051,739)| 1,26,1,6,1,0,0,0,0,64,0,-1--1--1,,1|(719,152)| 1,27,14,19,1,0,0,0,0,64,0,-1--1--1,,1|(757,563)| 1,28,21,19,1,0,0,0,0,64,0,-1--1--1,,1|(682,594)| 10,29,"FES CTL+GTL EJ",1213,115,66,18,8,131,0,0,0,0,0,0 10,30,"CTL+GTL Gb",1299,47,58,11,8,3,0,0,0,0,0,0 1,31,29,30,1,0,0,0,0,64,0,-1--1--1,,1|(1255,72)| 12,32,48,1479,96,10,8,0,3,3,2,-1,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,33,Time,586,253,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,6,0,0,0,0,0,64,0,-1--1--1,,1|(623,233)| 10,35,Time,643,587,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,19,0,0,0,0,0,64,0,-1--1--1,,1|(654,571)| 10,37,"Additional PE production of CTL+GTL for liquids",1216,413,80,20,8,131,0,0,0,0,0,0 1,38,23,37,1,0,0,0,0,64,0,-1--1--1,,1|(1115,579)| 10,39,abundance liquids,576,395,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,40,abundance coal,762,384,58,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,41,abundance gases,824,744,63,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,42,abundance liquids,664,732,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,43,41,21,0,0,0,0,0,64,0,-1--1--1,,1|(759,690)| 1,44,42,21,0,0,0,0,0,64,0,-1--1--1,,1|(677,686)| 1,45,40,8,0,0,0,0,0,64,0,-1--1--1,,1|(726,341)| 1,46,39,8,0,0,0,0,0,64,0,-1--1--1,,1|(627,342)| 10,47,Gboe per EJ,1148,19,41,19,8,3,0,0,0,0,0,0 1,48,47,30,0,0,0,0,0,128,0,-1--1--1,,1|(1208,29)| 12,49,0,1502,237,187,157,3,188,0,0,1,0,0,0 CTL_production 12,50,0,1504,560,185,158,3,188,0,0,1,0,0,0 GTL_production 1,51,29,37,1,0,0,0,0,128,0,-1--1--1,,1|(1225,236)| 1,52,10,37,1,0,0,0,0,128,0,-1--1--1,,1|(1080,374)| 10,53,Historic CTL production,538,154,82,12,8,131,0,0,0,0,0,0 1,54,53,6,0,0,0,0,0,128,0,-1--1--1,,1|(600,178)| 10,55,initial CTL production,813,139,40,16,8,131,0,0,0,0,0,0 10,56,initial GTL production,822,483,41,19,8,131,0,0,0,0,0,0 10,57,Historic GTL production,512,486,84,11,8,131,0,0,0,0,0,0 1,58,57,19,0,0,0,0,0,128,0,-1--1--1,,1|(586,513)| 10,59,check liquids,442,577,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,60,59,19,0,0,0,0,0,64,0,-1--1--1,,1|(548,562)| 10,61,"constrain liquids exogenous growth?",462,628,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,61,19,0,0,0,0,0,64,0,-1--1--1,,1|(571,585)| 10,63,check liquids,629,84,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,64,63,6,0,0,0,0,0,64,0,-1--1--1,,1|(649,139)| 10,65,"constrain liquids exogenous growth?",772,78,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,66,65,6,1,0,0,0,0,64,0,-1--1--1,,1|(701,117)| 10,67,Exogenous growth GTL,579,664,45,19,8,131,0,0,0,0,0,0 1,68,20,67,0,0,0,0,0,64,0,-1--1--1,,1|(502,702)| 1,69,22,67,0,0,0,0,0,64,0,-1--1--1,,1|(561,715)| 1,70,67,21,0,0,0,0,0,128,0,-1--1--1,,1|(629,652)| 10,71,Exogenous growth CTL,542,312,50,21,8,131,0,0,0,0,0,0 1,72,7,71,0,0,0,0,0,64,0,-1--1--1,,1|(473,301)| 1,73,9,71,0,0,0,0,0,64,0,-1--1--1,,1|(457,335)| 1,74,71,8,0,0,0,0,0,128,0,-1--1--1,,1|(603,301)| 10,75,abundance liquids GTL,1220,789,77,20,8,131,0,0,0,0,0,0 1,76,75,21,1,0,0,0,0,128,0,-1--1--1,,1|(931,742)| 10,77,PED liquids EJ,1222,628,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,78,77,75,0,0,0,0,0,64,0,-1--1--1,,1|(1221,701)| 10,79,effects shortage gas,694,666,55,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,80,scarcity conv gas,694,666,55,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,81,48,962,183,10,8,0,3,0,0,-1,0,0,0 1,82,84,81,4,0,0,22,0,0,0,-1--1--1,,1|(926,189)| 1,83,84,1,100,0,0,22,0,0,0,-1--1--1,,1|(868,189)| 11,84,48,894,189,6,8,34,3,0,0,1,0,0,0 10,85,wear CTL,894,208,45,11,40,131,0,0,-1,0,0,0 10,86,lifetime CTL,908,96,40,11,8,3,0,0,0,0,0,0 1,87,86,85,0,0,0,0,0,128,0,-1--1--1,,1|(901,145)| 12,88,48,946,527,10,8,0,3,0,0,-1,0,0,0 1,89,91,88,4,0,0,22,0,0,0,-1--1--1,,1|(914,527)| 1,90,91,14,100,0,0,22,0,0,0,-1--1--1,,1|(869,527)| 11,91,48,886,527,6,8,34,3,0,0,1,0,0,0 10,92,wear GTL,886,546,34,11,40,3,0,0,-1,0,0,0 10,93,lifetime GTL,932,451,46,11,8,3,0,0,0,0,0,0 1,94,93,92,0,0,0,0,0,128,0,-1--1--1,,1|(912,492)| 1,95,1,85,0,0,0,0,0,128,0,-1--1--1,,1|(849,199)| 1,96,14,92,0,0,0,0,0,128,0,-1--1--1,,1|(848,536)| 10,97,Time,994,211,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,98,97,85,0,0,0,0,0,64,0,-1--1--1,,1|(960,210)| 10,99,Time,969,581,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,100,99,92,0,0,0,0,0,64,0,-1--1--1,,1|(933,566)| 12,101,48,790,289,10,8,0,3,0,0,-1,0,0,0 1,102,104,1,4,0,0,22,0,0,0,-1--1--1,,1|(789,225)| 1,103,104,101,100,0,0,22,0,0,0,-1--1--1,,1|(789,265)| 11,104,48,789,244,8,6,33,3,0,0,4,0,0,0 10,105,replacement CTL,852,244,55,11,40,3,0,0,-1,0,0,0 1,106,85,105,0,0,0,0,0,64,0,-1--1--1,,1|(878,221)| 1,107,55,1,0,0,0,0,0,64,1,-1--1--1,,1|(809,155)| 12,108,48,795,650,10,8,0,3,0,0,-1,0,0,0 1,109,111,14,4,0,0,22,0,0,0,-1--1--1,,1|(792,566)| 1,110,111,108,100,0,0,22,0,0,0,-1--1--1,,1|(792,621)| 11,111,48,792,594,8,6,33,3,0,0,4,0,0,0 10,112,replacement GTL,855,594,55,11,40,3,0,0,-1,0,0,0 1,113,92,112,0,0,0,0,0,64,0,-1--1--1,,1|(874,564)| 1,114,56,14,0,0,0,0,0,64,1,-1--1--1,,1|(817,498)| 1,115,97,105,0,0,0,0,0,128,0,-1--1--1,,1|(940,223)| 1,116,99,112,0,0,0,0,0,128,0,-1--1--1,,1|(933,584)| 10,117,check liquids,852,274,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,118,117,105,0,0,0,0,0,64,0,-1--1--1,,1|(852,266)| 10,119,"constrain liquids exogenous growth?",905,319,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,120,119,105,0,0,0,0,0,64,0,-1--1--1,,1|(879,283)| 10,121,check liquids,855,624,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,122,121,112,0,0,0,0,0,64,0,-1--1--1,,1|(855,616)| 10,123,"constrain liquids exogenous growth?",889,672,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,124,123,112,0,0,0,0,0,64,0,-1--1--1,,1|(872,635)| 1,125,14,75,1,0,0,0,0,128,0,-1--1--1,,1|(1066,597)| 10,126,abundance liquids CTL,1236,560,57,19,8,131,0,0,0,0,0,0 1,127,77,126,0,0,0,0,0,128,0,-1--1--1,,1|(1226,600)| 1,128,1,126,0,0,0,0,0,64,0,-1--1--1,,1|(1014,371)| 1,129,126,8,0,0,0,0,0,128,0,-1--1--1,,1|(956,423)| 10,130,scarcity conv oil,671,412,60,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,131,130,8,0,0,0,0,0,64,0,-1--1--1,,1|(674,357)| 10,132,scarcity conv oil,748,780,60,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,133,132,21,0,0,0,0,0,64,0,-1--1--1,,1|(723,714)| 1,134,130,105,0,0,0,0,0,128,0,-1--1--1,,1|(755,332)| 1,135,132,112,0,0,0,0,0,128,0,-1--1--1,,1|(797,693)| 10,136,"Potential FES CTL+GTL EJ",1085,163,46,19,8,3,0,0,0,0,0,0 1,137,1,136,0,0,0,0,0,64,0,-1--1--1,,1|(937,177)| 1,138,14,136,0,0,0,0,0,64,0,-1--1--1,,1|(941,350)| 1,139,136,29,0,0,0,0,0,128,0,-1--1--1,,1|(1141,141)| 10,140,PED NRE Liquids,1054,67,39,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,141,140,29,0,0,0,0,0,128,0,-1--1--1,,1|(1116,85)| 10,142,"share CTL+GTL overcapacity",1145,231,51,17,8,131,0,0,0,0,0,0 1,143,136,142,0,0,0,0,0,128,0,-1--1--1,,1|(1110,192)| 1,144,29,142,1,0,0,0,0,128,0,-1--1--1,,1|(1174,213)| 10,145,CTL production,968,268,51,11,8,3,0,0,0,0,0,0 1,146,1,145,0,0,0,0,0,128,0,-1--1--1,,1|(889,231)| 1,147,142,145,0,0,0,0,0,128,0,-1--1--1,,1|(1063,247)| 1,148,145,10,0,0,0,0,0,128,0,-1--1--1,,1|(1008,301)| 10,149,GTL production,1006,631,57,11,8,3,0,0,0,0,0,0 1,150,14,149,0,0,0,0,0,128,0,-1--1--1,,1|(907,579)| 1,151,142,149,1,0,0,0,0,128,0,-1--1--1,,1|(1085,536)| 1,152,149,23,0,0,0,0,0,128,0,-1--1--1,,1|(1007,657)| 10,153,"Crash programme CTL?",405,230,58,19,8,131,0,0,-1,0,0,0 1,154,153,105,0,0,0,0,0,128,0,-1--1--1,,1|(622,236)| 1,155,153,71,1,0,0,0,0,128,0,-1--1--1,,1|(512,285)| 1,156,39,71,0,0,0,0,0,128,0,-1--1--1,,1|(562,360)| 1,157,33,71,0,0,0,0,0,128,0,-1--1--1,,1|(571,271)| 10,158,"Crash programme GTL?",319,685,58,19,8,131,0,0,-1,0,0,0 1,159,158,67,0,0,0,0,0,128,0,-1--1--1,,1|(448,674)| 1,160,158,112,0,0,0,0,0,128,0,-1--1--1,,1|(581,640)| 1,161,35,67,0,0,0,0,0,128,0,-1--1--1,,1|(618,616)| 1,162,42,67,0,0,0,0,0,128,0,-1--1--1,,1|(627,702)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *NRE AVAILABILITY - Oil extraction #EAN $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,RURR conv oil,-377,-539,61,25,3,131,0,0,0,0,0,0 10,2,cumulated conv oil extraction,-24,-534,69,28,3,131,0,0,0,0,0,0 1,3,5,2,4,0,0,22,0,0,0,-1--1--1,,1|(-142,-542)| 1,4,5,1,100,0,0,22,0,0,0,-1--1--1,,1|(-260,-542)| 11,5,37312,-197,-542,6,8,34,3,0,0,1,0,0,0 10,6,extraction conv oil EJ,-197,-515,49,19,40,3,0,0,-1,0,0,0 10,7,max extraction conv oil EJ,-528,-335,47,19,8,3,0,0,0,0,0,0 10,8,table max extraction Maggio12middle conv oil EJ,-761,-289,81,28,8,3,0,0,0,0,0,0 1,9,8,7,1,0,0,0,0,64,0,-1--1--1,,1|(-671,-311)| 1,10,7,6,1,0,0,0,0,64,0,-1--1--1,,1|(-256,-440)| 10,11,Oil refinery gains EJ,414,473,68,10,8,131,0,0,0,0,0,0 10,12,Demand conv oil EJ,-223,-664,44,19,8,3,0,0,0,0,0,0 1,13,12,6,1,0,0,0,0,64,0,-1--1--1,,1|(-226,-619)| 10,14,table max extraction ASPO oil EJ,-781,-63,64,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,15,RURR unconv oil EJ,517,-589,51,30,3,131,0,0,0,0,0,0 10,16,cumulated unconv oil extraction,825,-588,73,31,3,131,0,0,0,0,0,0 1,17,19,16,4,0,0,22,0,0,0,-1--1--1,,1|(703,-597)| 1,18,19,15,100,0,0,22,0,0,0,-1--1--1,,1|(605,-597)| 11,19,37328,649,-597,6,8,34,3,0,0,1,0,0,0 10,20,extraction unconv oil EJ,649,-570,56,19,40,3,0,0,-1,0,0,0 10,21,Historic unconv oil,779,-653,58,11,8,3,0,0,0,0,0,0 1,22,21,20,1,0,0,0,0,64,0,-1--1--1,,1|(695,-623)| 10,23,choose extraction curve conv oil,-868,-421,56,19,8,3,0,0,0,0,0,0 1,24,23,7,1,0,0,0,0,64,0,-1--1--1,,1|(-679,-392)| 10,25,table max extraction Maggio12 High conv oil EJ,-771,-348,77,28,8,3,0,0,0,0,0,0 1,26,25,7,1,0,0,0,0,64,0,-1--1--1,,1|(-709,-349)| 10,27,URR conv oil,-636,-621,43,11,8,3,0,0,0,0,0,0 10,28,URR oil ASPO,-930,-121,49,11,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,29,URR conv oil Maggio12 middle,-879,-683,56,19,8,3,0,0,0,0,0,0 10,30,URR conv oil Maggio12 High,-888,-636,50,19,8,3,0,0,0,0,0,0 1,31,29,27,1,0,0,0,0,64,0,-1--1--1,,1|(-757,-662)| 1,32,30,27,1,0,0,0,0,64,0,-1--1--1,,1|(-763,-623)| 1,33,23,27,1,0,0,0,0,64,0,-1--1--1,,1|(-682,-573)| 10,34,TIME STEP,-596,-705,50,11,8,2,3,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,35,URR unconv oil,322,-494,50,11,8,3,0,0,0,0,0,0 10,36,max unconv oil growth extraction,813,-412,60,19,8,3,0,0,0,0,0,0 10,37,max unconv oil growth extraction EJ,810,-521,71,17,8,131,0,0,0,0,0,0 10,38,extraction unconv oil delayed,713,-442,56,19,8,3,0,0,0,0,0,0 1,39,20,38,1,0,0,0,0,64,0,-1--1--1,,1|(693,-502)| 1,40,38,37,0,0,0,0,0,64,0,-1--1--1,,1|(757,-479)| 1,41,36,37,1,0,0,0,0,64,0,-1--1--1,,1|(829,-481)| 1,42,37,20,0,0,0,0,0,64,0,-1--1--1,,1|(736,-544)| 10,43,max extraction unconv oil,447,-427,47,19,8,131,0,0,0,0,0,0 1,44,43,20,1,0,0,0,0,64,0,-1--1--1,,1|(515,-511)| 10,45,table max extraction unconv oil BG Mohr15,254,-348,81,30,8,131,0,0,0,0,0,0 1,46,45,43,1,0,0,0,0,64,0,-1--1--1,,1|(321,-380)| 10,47,P constraint growth extraction unconv oil,744,-289,66,19,8,131,0,0,0,0,0,0 10,48,URR unconv oil BG Mohr15,177,-570,64,19,8,3,0,0,0,0,0,0 10,49,URR unconv oil Low Mohr15,169,-517,51,19,8,3,0,0,0,0,0,0 10,50,URR unconv oil High Mohr15,169,-472,51,19,8,3,0,0,0,0,0,0 10,51,choose extraction curve unconv oil,231,-400,56,19,8,3,0,0,0,0,0,0 1,52,48,35,0,0,0,0,0,64,0,-1--1--1,,1|(250,-532)| 1,53,49,35,0,0,0,0,0,64,0,-1--1--1,,1|(239,-508)| 1,54,50,35,0,0,0,0,0,64,0,-1--1--1,,1|(239,-482)| 1,55,51,35,0,0,0,0,0,64,0,-1--1--1,,1|(275,-446)| 10,56,table max extraction unconv oil Low Mohr15,286,-298,78,19,8,3,0,0,0,0,0,0 10,57,table max extraction unconv oil High Mohr15,377,-256,78,19,8,131,0,0,0,0,0,0 1,58,56,43,0,0,0,0,0,64,0,-1--1--1,,1|(360,-359)| 1,59,57,43,1,0,0,0,0,64,0,-1--1--1,,1|(376,-338)| 1,60,51,43,0,0,0,0,0,64,0,-1--1--1,,1|(336,-414)| 10,61,Time,690,-368,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,61,36,0,0,0,0,0,64,0,-1--1--1,,1|(730,-383)| 10,63,Selection constraint extraction unconv oil,932,-323,71,21,8,131,0,0,0,0,0,0 1,64,63,36,1,0,0,0,0,64,0,-1--1--1,,1|(859,-380)| 1,65,47,36,1,0,0,0,0,64,0,-1--1--1,,1|(771,-333)| 10,66,table max conv oil extraction User defined,-527,-229,74,19,8,3,0,0,0,0,0,0 1,67,66,7,1,0,0,0,0,64,0,-1--1--1,,1|(-526,-280)| 10,68,URR conv oil User defined,-883,-531,61,19,8,3,0,0,0,0,0,0 1,69,68,27,1,0,0,0,0,64,0,-1--1--1,,1|(-791,-555)| 10,70,URR unconv oil User defined,309,-583,51,19,8,3,0,0,0,0,0,0 10,71,table max extraction unconv oil User defined,492,-317,75,19,8,3,0,0,0,0,0,0 1,72,70,35,1,0,0,0,0,64,0,-1--1--1,,1|(320,-550)| 1,73,71,43,1,0,0,0,0,64,0,-1--1--1,,1|(463,-373)| 10,74,"User-defined extraction growth unconv oil",902,-271,76,18,8,131,0,0,0,0,0,0 1,75,74,36,1,0,0,0,0,64,0,-1--1--1,,1|(835,-320)| 10,76,Time,976,197,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,77,PES oil EJ,808,16,56,18,8,131,0,0,0,0,0,0 10,78,"separate conv and unconv oil?",575,-432,58,19,8,3,0,0,0,0,0,0 1,79,78,20,1,0,0,0,0,128,0,-1--1--1,,1|(627,-505)| 10,80,table max extraction tot agg oil Lahèrrere 2006,-667,415,74,19,8,131,0,0,0,0,0,0 10,81,table max extraction tot agg oil User defined,-481,423,76,23,8,131,0,0,0,0,0,0 10,82,choose extraction curve tot agg oil,-892,370,56,19,8,3,0,0,0,0,0,0 10,83,"separate conv and unconv oil?",-571,-508,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,84,83,7,1,0,0,0,0,128,0,-1--1--1,,1|(-552,-429)| 1,85,83,27,1,0,0,0,0,128,0,-1--1--1,,1|(-601,-563)| 10,86,URR conv oil Maggio12 Low,-885,-586,50,19,8,3,0,0,0,0,0,0 10,87,table max extraction Maggio12 Low con oil EJ,-704,-242,83,19,8,3,0,0,0,0,0,0 1,88,87,7,1,0,0,0,0,128,0,-1--1--1,,1|(-609,-281)| 1,89,86,27,1,0,0,0,0,128,0,-1--1--1,,1|(-761,-596)| 10,90,MToe per EJ,953,341,52,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,91,TIME STEP,862,291,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,92,PES oil EJ delayed,539,425,62,29,8,131,0,0,0,0,0,0 1,93,92,11,0,0,0,0,0,128,0,-1--1--1,,1|(464,452)| 10,94,PED total oil EJ,1038,-57,49,19,8,2,0,3,0,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,95,20,12,1,0,0,0,0,128,0,-1--1--1,,1|(213,-618)| 10,96,abundance total oil,984,9,58,11,8,3,0,0,0,0,0,0 1,97,94,96,1,0,0,0,0,64,0,-1--1--1,,1|(1037,-48)| 1,98,77,96,1,0,0,0,0,64,0,-1--1--1,,1|(872,39)| 10,99,Oil refinery gains share,608,512,45,19,8,3,0,0,0,0,0,0 1,100,99,11,0,0,0,0,0,128,0,-1--1--1,,1|(519,494)| 10,101,TIME STEP,-479,-759,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,102,TIME STEP,-72,-735,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,103,cumulated conv oil extraction to 1995,-410,-493,59,19,8,3,0,0,0,0,0,0 1,104,103,2,0,0,0,0,0,128,1,-1--1--1,,1|(-230,-513)| 10,105,cumulated unconv oil extraction to 1995,490,-537,75,19,8,131,0,0,0,0,0,0 1,106,105,16,0,0,0,0,0,128,1,-1--1--1,,1|(651,-562)| 10,107,Year scarcity oil,987,117,51,11,8,3,0,0,0,0,0,0 1,108,96,107,0,0,0,0,0,128,0,-1--1--1,,1|(984,56)| 1,109,76,107,0,0,0,0,0,128,0,-1--1--1,,1|(980,163)| 10,110,check liquids,1040,-602,50,11,8,2,0,1,0,0,0,0,128-128-128,0-0-0,|12||0-192-192 10,111,"constrain liquids exogenous growth?",992,-377,67,19,8,130,0,3,0,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,112,check liquids delayed 1yr,999,-532,44,19,8,3,0,0,0,0,0,0 1,113,110,112,0,0,0,0,0,128,0,-1--1--1,,1|(1025,-578)| 10,114,"constrain liquids exogenous growth? delayed 1yr",999,-455,90,19,8,131,0,0,0,0,0,0 1,115,111,114,0,0,0,0,0,128,0,-1--1--1,,1|(994,-410)| 1,116,112,37,0,0,0,0,0,64,0,-1--1--1,,1|(924,-529)| 1,117,114,37,0,0,0,0,0,64,0,-1--1--1,,1|(908,-487)| 12,118,10814334,1478,-148,332,255,3,188,0,0,1,0,0,0 Unconventional_oil_extraction 10,119,"Mb/d per EJ/year",720,169,56,11,8,3,0,0,-1,0,0,0 12,120,5637034,1471,-651,331,252,3,188,0,0,1,0,0,0 Conventional_oil_extraction 10,121,URR conv oil unlimited,-904,-486,79,16,8,131,0,0,0,0,0,0 1,122,30,121,1,0,0,0,0,128,0,-1--1--1,,1|(-970,-574)| 1,123,121,27,1,0,0,0,0,128,0,-1--1--1,,1|(-762,-533)| 10,124,"unlimited oil?",-622,-440,58,11,8,131,0,2,0,0,0,0,0-0-0,0-0-0,|12||0-128-0 1,125,124,27,1,0,0,0,0,128,0,-1--1--1,,1|(-638,-503)| 1,126,124,6,1,0,0,0,0,128,0,-1--1--1,,1|(-371,-432)| 10,127,FED Heat liquids plants EJ,-69,-837,64,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,128,"unlimited NRE?",-733,-465,67,18,8,131,0,2,0,0,0,0,0-0-0,0-0-0,|12||0-128-0 1,129,128,27,1,0,0,0,0,128,0,-1--1--1,,1|(-699,-528)| 1,130,128,6,1,0,0,0,0,128,0,-1--1--1,,1|(-392,-391)| 10,131,"PES oil Mb/d",810,121,57,19,8,3,0,0,0,0,0,0 1,132,119,131,0,0,0,0,0,128,0,-1--1--1,,1|(750,152)| 1,133,77,131,0,0,0,0,0,128,0,-1--1--1,,1|(808,61)| 12,134,5047970,1474,350,331,247,3,188,0,0,1,0,0,0 Total_extraction_oil 1,135,137,139,4,0,0,22,0,0,0,-1--1--1,,1|(-374,-652)| 1,136,137,1,100,0,0,22,0,0,0,-1--1--1,,1|(-374,-586)| 11,137,5047970,-374,-613,8,6,33,3,0,0,4,0,0,0 10,138,Flow conv oil left in ground,-311,-613,55,19,40,3,0,0,-1,0,0,0 10,139,Total conv oil left in ground,-379,-710,61,26,3,131,0,0,0,0,0,0 10,140,share RURR conv oil to leave underground,-386,-785,79,19,8,3,0,0,0,0,0,0 10,141,conv oil to leave underground,-512,-699,55,19,8,131,0,0,0,0,0,0 1,142,140,141,0,0,0,0,0,128,0,-1--1--1,,1|(-444,-746)| 10,143,Start policy leave in ground conv oil,-397,-865,62,19,8,131,0,0,0,0,0,0 10,144,Tot RURR conv oil,-507,-599,53,19,8,3,0,0,0,0,0,0 1,145,139,144,0,0,0,0,0,128,0,-1--1--1,,1|(-442,-656)| 1,146,1,144,0,0,0,0,0,128,0,-1--1--1,,1|(-443,-570)| 1,147,144,7,1,0,0,0,0,128,0,-1--1--1,,1|(-493,-470)| 1,148,141,138,1,0,0,0,0,128,0,-1--1--1,,1|(-426,-639)| 1,149,143,138,1,0,0,0,0,128,0,-1--1--1,,1|(-284,-758)| 1,150,103,1,0,0,0,0,0,64,1,-1--1--1,,1|(-401,-509)| 1,151,27,1,0,0,0,0,0,64,1,-1--1--1,,1|(-527,-587)| 10,152,Time,-281,-566,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,153,152,138,0,0,0,0,0,64,0,-1--1--1,,1|(-290,-580)| 1,154,1,6,0,0,0,0,0,128,0,-1--1--1,,1|(-288,-528)| 1,155,157,159,4,0,0,22,0,0,0,-1--1--1,,1|(518,-709)| 1,156,157,15,100,0,0,22,0,0,0,-1--1--1,,1|(518,-648)| 11,157,44,518,-682,8,6,33,3,0,0,4,0,0,0 10,158,Flow unconv oil left in ground,588,-682,62,19,40,3,0,0,-1,0,0,0 10,159,Total unconv oil left in ground,515,-753,58,23,3,131,0,0,0,0,0,0 10,160,TIME STEP,282,-629,50,11,8,2,3,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,161,TIME STEP,399,-738,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,162,share RURR unconv oil to leave underground,520,-805,76,19,8,3,0,0,0,0,0,0 10,163,unconv oil to leave underground,364,-733,75,18,8,131,0,0,0,0,0,0 1,164,162,163,0,0,0,0,0,128,0,-1--1--1,,1|(447,-772)| 10,165,Start policy leave in ground unconv oil,502,-877,62,19,8,131,0,0,0,0,0,0 10,166,Tot RURR unconv oil,362,-636,53,19,8,3,0,0,0,0,0,0 1,167,165,158,1,0,0,0,0,128,0,-1--1--1,,1|(596,-793)| 1,168,163,158,0,0,0,0,0,128,0,-1--1--1,,1|(475,-708)| 1,169,159,166,0,0,0,0,0,128,0,-1--1--1,,1|(441,-697)| 1,170,15,166,0,0,0,0,0,128,0,-1--1--1,,1|(447,-610)| 1,171,166,43,0,0,0,0,0,128,0,-1--1--1,,1|(401,-538)| 1,172,15,20,0,0,0,0,0,128,0,-1--1--1,,1|(573,-582)| 1,173,105,15,0,0,0,0,0,64,1,-1--1--1,,1|(496,-552)| 1,174,35,15,0,0,0,0,0,64,1,-1--1--1,,1|(398,-532)| 10,175,Time,591,-625,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,176,175,158,0,0,0,0,0,64,0,-1--1--1,,1|(590,-643)| 1,177,175,20,0,0,0,0,0,128,0,-1--1--1,,1|(609,-607)| 10,178,URR tot agg oil,-750,173,58,15,8,131,0,0,0,0,0,0 10,179,max extraction tot agg oil EJ,-584,352,47,19,8,3,0,0,0,0,0,0 1,180,82,179,0,0,0,0,0,64,0,-1--1--1,,1|(-741,360)| 1,181,80,179,0,0,0,0,0,64,0,-1--1--1,,1|(-632,387)| 1,182,81,179,0,0,0,0,0,64,0,-1--1--1,,1|(-530,389)| 10,183,URR tot agg oil User defined,-922,102,59,19,8,3,0,0,-1,0,0,0 10,184,URR tot agg oil Laherrère 2006,-922,164,50,19,8,3,0,0,-1,0,0,0 10,185,URR tot agg oil unlimited,-920,240,44,19,8,131,0,0,0,0,0,0 1,186,184,185,0,0,0,0,0,128,0,-1--1--1,,1|(-922,195)| 1,187,183,178,0,0,0,0,0,128,0,-1--1--1,,1|(-838,136)| 1,188,184,178,0,0,0,0,0,128,0,-1--1--1,,1|(-847,167)| 1,189,185,178,0,0,0,0,0,128,0,-1--1--1,,1|(-839,208)| 1,190,82,178,0,0,0,0,0,64,0,-1--1--1,,1|(-825,275)| 10,191,"separate conv and unconv oil?",-780,324,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,192,191,178,0,0,0,0,0,128,0,-1--1--1,,1|(-767,253)| 1,193,191,179,0,0,0,0,0,128,0,-1--1--1,,1|(-681,338)| 10,194,"unlimited NRE?",-667,252,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,195,194,178,0,0,0,0,0,128,0,-1--1--1,,1|(-702,219)| 10,196,RURR tot agg oil,-493,188,61,25,3,131,0,0,0,0,0,0 10,197,cumulated tot agg oil extraction,-140,193,69,28,3,131,0,0,0,0,0,0 1,198,200,197,4,0,0,22,0,0,0,-1--1--1,,1|(-258,185)| 1,199,200,196,100,0,0,22,0,0,0,-1--1--1,,1|(-376,185)| 11,200,32336,-313,185,6,8,34,3,0,0,1,0,0,0 10,201,extraction tot agg oil EJ,-313,212,49,19,40,3,0,0,-1,0,0,0 10,202,cumulated tot agg extraction to 1995,-118,248,65,19,8,3,0,0,0,0,0,0 1,203,202,197,0,0,0,0,0,128,1,-1--1--1,,1|(-124,231)| 1,204,206,208,4,0,0,22,0,0,0,-1--1--1,,1|(-490,75)| 1,205,206,196,100,0,0,22,0,0,0,-1--1--1,,1|(-490,141)| 11,206,32224,-490,114,8,6,33,3,0,0,4,0,0,0 10,207,Flow tot agg oil left in ground,-427,114,62,19,40,3,0,0,-1,0,0,0 10,208,Total agg oil left in ground,-495,17,61,26,3,131,0,0,0,0,0,0 10,209,share RURR tot agg oil to leave underground,-627,-40,76,19,8,3,0,0,0,0,0,0 10,210,tot agg oil to leave underground,-637,39,59,24,8,131,0,0,0,0,0,0 1,211,209,210,0,0,0,0,0,128,0,-1--1--1,,1|(-631,-10)| 10,212,Start policy leave in ground tot agg oil,-448,-76,62,19,8,131,0,0,0,0,0,0 10,213,Tot RURR tot agg oil,-619,120,53,19,8,3,0,0,0,0,0,0 1,214,208,213,0,0,0,0,0,128,0,-1--1--1,,1|(-557,67)| 1,215,196,213,0,0,0,0,0,128,0,-1--1--1,,1|(-556,154)| 1,216,210,207,1,0,0,0,0,128,0,-1--1--1,,1|(-552,90)| 1,217,212,207,1,0,0,0,0,128,0,-1--1--1,,1|(-409,10)| 1,218,202,196,0,0,0,0,0,64,1,-1--1--1,,1|(-301,218)| 1,219,196,201,0,0,0,0,0,128,0,-1--1--1,,1|(-404,199)| 1,220,213,179,1,0,0,0,0,128,0,-1--1--1,,1|(-578,238)| 10,221,Time,-343,34,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,222,221,207,0,0,0,0,0,64,0,-1--1--1,,1|(-376,65)| 10,223,cumulated conv oil extraction to 1995,-190,314,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,224,cumulated unconv oil extraction to 1995,-30,314,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,225,223,202,0,0,0,0,0,128,0,-1--1--1,,1|(-160,285)| 1,226,224,202,0,0,0,0,0,128,0,-1--1--1,,1|(-69,285)| 10,227,PED total oil EJ,-47,-751,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,228,PED total oil EJ,-305,104,43,23,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,229,228,201,0,0,0,0,0,128,0,-1--1--1,,1|(-309,153)| 1,230,179,201,0,0,0,0,0,128,0,-1--1--1,,1|(-456,285)| 1,231,194,201,1,0,0,0,0,128,0,-1--1--1,,1|(-490,259)| 10,232,"extraction conv oil - tot agg",-159,99,58,19,8,3,0,0,0,0,0,0 10,233,share conv oil vs tot agg,-74,31,58,23,8,131,0,0,0,0,0,0 1,234,201,232,0,0,0,0,0,128,0,-1--1--1,,1|(-243,159)| 1,235,233,232,0,0,0,0,0,128,0,-1--1--1,,1|(-114,62)| 10,236,real extraction conv oil EJ,624,96,45,19,8,3,0,0,0,0,0,0 1,237,232,236,1,0,0,0,0,128,0,-1--1--1,,1|(210,65)| 1,238,6,236,1,0,0,0,0,128,0,-1--1--1,,1|(168,-139)| 1,239,236,77,0,0,0,0,0,128,0,-1--1--1,,1|(710,58)| 10,240,"extraction unconv oil - tot agg",-176,-25,64,19,8,3,0,0,0,0,0,0 10,241,share unconv oil vs tot agg,141,131,53,19,8,3,0,0,0,0,0,0 1,242,241,240,1,0,0,0,0,128,0,-1--1--1,,1|(56,42)| 1,243,201,240,0,0,0,0,0,128,0,-1--1--1,,1|(-249,99)| 10,244,real extraction unconv oil EJ,626,-61,62,19,8,3,0,0,0,0,0,0 1,245,240,244,1,0,0,0,0,128,0,-1--1--1,,1|(233,-85)| 1,246,20,244,1,0,0,0,0,128,0,-1--1--1,,1|(637,-323)| 1,247,244,77,0,0,0,0,0,128,0,-1--1--1,,1|(711,-25)| 1,248,178,196,0,0,0,0,0,64,1,-1--1--1,,1|(-630,179)| 1,249,241,233,1,0,0,0,0,128,0,-1--1--1,,1|(72,72)| 10,250,Historic unconv oil,318,127,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,251,250,241,0,0,0,0,0,128,0,-1--1--1,,1|(235,128)| 10,252,Time,-6,164,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,253,252,241,0,0,0,0,0,64,0,-1--1--1,,1|(47,152)| 10,254,share unconv oil vs tot agg in 2050,152,307,60,19,8,3,0,0,0,0,0,0 1,255,82,254,1,0,0,0,0,128,0,-1--1--1,,1|(-396,490)| 10,256,share unconv oil vs tot agg in 2050 Lahèrrere2006,124,423,94,28,8,3,0,0,0,0,0,0 10,257,share unconv oil vs tot agg in 2050 User defined,323,413,84,19,8,3,0,0,0,0,0,0 1,258,256,254,0,0,0,0,0,128,0,-1--1--1,,1|(136,367)| 1,259,257,254,0,0,0,0,0,128,0,-1--1--1,,1|(243,363)| 10,260,evolution share unconv oil vs tot agg,79,244,65,19,8,3,0,0,0,0,0,0 1,261,254,260,0,0,0,0,0,128,0,-1--1--1,,1|(120,280)| 1,262,252,260,0,0,0,0,0,128,0,-1--1--1,,1|(26,195)| 1,263,260,241,0,0,0,0,0,128,0,-1--1--1,,1|(106,193)| 10,264,"unlimited oil?",-709,287,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,265,264,201,1,0,0,0,0,128,0,-1--1--1,,1|(-512,282)| 1,266,264,178,1,0,0,0,0,128,0,-1--1--1,,1|(-743,244)| 12,267,0,-453,-139,132,26,3,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 Total aggregated oil 12,268,0,-371,-947,132,26,3,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 Conventional oil 12,269,0,498,-946,132,26,3,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 Unconventional oil 10,270,PED total oil EJ,279,202,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,271,270,241,0,0,0,0,0,128,0,-1--1--1,,1|(223,173)| 10,272,"separate conv and unconv oil?",504,-5,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,273,272,244,0,0,0,0,0,128,0,-1--1--1,,1|(558,-31)| 1,274,272,236,0,0,0,0,0,128,0,-1--1--1,,1|(558,40)| 10,275,scarcity conv oil,-181,-347,59,21,8,131,0,0,0,0,0,0 1,276,7,275,1,0,0,0,0,128,0,-1--1--1,,1|(-368,-329)| 1,277,6,275,0,0,0,0,0,128,0,-1--1--1,,1|(-191,-439)| 10,278,"real extraction conv oil Mb/d",535,187,62,19,8,3,0,0,0,0,0,0 1,279,236,278,0,0,0,0,0,128,0,-1--1--1,,1|(584,136)| 1,280,119,278,0,0,0,0,0,128,0,-1--1--1,,1|(637,176)| 10,281,scarcity conv oil delayed 1yr,-18,-340,66,22,8,131,0,0,0,0,0,0 1,282,275,281,0,0,0,0,0,128,0,-1--1--1,,1|(-110,-345)| 10,283,exponent availability conv oil,-256,-278,69,23,8,131,0,0,0,0,0,0 1,284,283,275,0,0,0,0,0,128,0,-1--1--1,,1|(-223,-309)| 12,285,48,-110,-278,10,8,0,3,0,0,-1,0,0,0 1,286,288,292,4,0,0,22,0,0,0,-1--1--1,,1|(26,-277)| 1,287,288,285,100,0,0,22,0,0,0,-1--1--1,,1|(-62,-277)| 11,288,48,-18,-277,6,8,34,3,0,0,1,0,0,0 10,289,increase scarcity conv oil,-18,-250,53,19,40,3,0,0,-1,0,0,0 1,290,275,289,0,0,0,0,0,128,0,-1--1--1,,1|(-105,-302)| 1,291,281,289,0,0,0,0,0,128,0,-1--1--1,,1|(-18,-301)| 10,292,scarcity conv oil stock,123,-276,59,22,3,131,0,0,0,0,0,0 10,293,abundance unconv oil,756,-901,52,19,8,3,0,0,0,0,0,0 10,294,abundance unconv oil2,967,-665,52,19,8,3,0,0,0,0,0,0 1,295,227,293,1,0,0,0,0,128,0,-1--1--1,,1|(611,-916)| 10,296,real extraction unconv oil EJ,699,-976,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,297,296,293,0,0,0,0,0,128,0,-1--1--1,,1|(722,-945)| 12,298,48,828,-821,10,8,0,3,0,0,-1,0,0,0 1,299,301,303,4,0,0,22,0,0,0,-1--1--1,,1|(958,-820)| 1,300,301,298,100,0,0,22,0,0,0,-1--1--1,,1|(870,-820)| 11,301,48,909,-820,6,8,34,3,0,0,1,0,0,0 10,302,increase abundance unconv oil,909,-793,62,19,40,3,0,0,-1,0,0,0 10,303,abundance unconv oil stock,1058,-804,56,24,3,131,0,0,0,0,0,0 1,304,293,302,0,0,0,0,0,128,0,-1--1--1,,1|(826,-852)| 1,305,303,294,1,0,0,0,0,128,0,-1--1--1,,1|(1076,-700)| 10,306,abundance unconv oil delayed 1yr,967,-900,81,20,8,131,0,0,0,0,0,0 1,307,293,306,0,0,0,0,0,128,0,-1--1--1,,1|(840,-901)| 1,308,306,302,0,0,0,0,0,128,0,-1--1--1,,1|(941,-853)| 1,309,294,36,0,0,0,0,0,128,0,-1--1--1,,1|(893,-545)| 1,310,227,12,0,0,0,0,0,128,0,-1--1--1,,1|(-121,-715)| 10,311,TIME STEP,-51,-837,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,312,227,20,1,0,0,0,0,128,0,-1--1--1,,1|(272,-626)| 10,313,share conv vs total oil extraction,638,9,59,19,8,3,0,0,0,0,0,0 1,314,244,313,0,0,0,0,0,128,0,-1--1--1,,1|(630,-33)| 1,315,236,313,0,0,0,0,0,128,0,-1--1--1,,1|(629,59)| 10,316,real extraction conv oil emissions relevant EJ,854,259,75,19,8,131,0,0,0,0,0,0 10,317,real extraction unconv oil emissions relevant EJ,858,366,82,19,8,131,0,0,0,0,0,0 1,318,236,316,0,0,0,0,0,64,0,-1--1--1,,1|(732,173)| 1,319,313,316,0,0,0,0,0,64,0,-1--1--1,,1|(740,128)| 1,320,244,317,0,0,0,0,0,64,0,-1--1--1,,1|(738,146)| 1,321,313,317,0,0,0,0,0,64,0,-1--1--1,,1|(743,181)| 10,322,TIME STEP,810,-485,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,323,322,38,0,0,0,0,0,64,0,-1--1--1,,1|(776,-471)| 1,324,322,36,0,0,0,0,0,64,0,-1--1--1,,1|(810,-460)| 10,325,"Non-energy use demand by final fuel EJ",658,310,78,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,326,325,316,0,0,0,0,0,128,0,-1--1--1,,1|(748,286)| 1,327,325,317,0,0,0,0,0,128,0,-1--1--1,,1|(750,336)| 1,328,292,36,1,0,0,0,0,128,0,-1--1--1,,1|(448,-198)| 1,329,77,92,0,0,0,0,0,128,0,-1--1--1,,1|(681,209)| 1,330,83,1,0,0,0,0,0,128,1,-1--1--1,,1|(-480,-523)| 1,331,83,15,1,0,0,0,0,128,1,-1--1--1,,1|(78,-424)| 1,332,78,35,0,0,0,0,0,64,0,-1--1--1,,1|(448,-463)| 10,333,RURR conv oil until start year PLG,-738,-776,66,19,8,131,0,0,0,0,0,0 10,334,aux6,-878,-843,23,11,8,3,0,0,-1,0,0,0 1,335,333,334,1,0,0,0,0,128,0,-1--1--1,,1|(-807,-848)| 1,336,334,333,1,0,0,0,0,128,0,-1--1--1,,1|(-837,-828)| 10,337,TIME STEP,-955,-798,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,338,337,334,0,0,0,0,0,64,0,-1--1--1,,1|(-924,-818)| 1,339,1,333,0,0,0,0,0,128,0,-1--1--1,,1|(-557,-657)| 1,340,143,333,0,0,0,0,0,128,0,-1--1--1,,1|(-559,-824)| 1,341,333,141,0,0,0,0,0,128,0,-1--1--1,,1|(-632,-740)| 1,342,143,141,1,0,0,0,0,128,0,-1--1--1,,1|(-487,-792)| 10,343,Time,-596,-773,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,344,343,141,0,0,0,0,0,64,0,-1--1--1,,1|(-565,-745)| 1,345,343,333,0,0,0,0,0,128,0,-1--1--1,,1|(-641,-774)| 1,346,165,163,1,0,0,0,0,128,0,-1--1--1,,1|(396,-807)| 1,347,212,210,0,0,0,0,0,128,0,-1--1--1,,1|(-533,-25)| 10,348,RURR unconv oil until start year PLG,192,-702,64,19,8,131,0,0,0,0,0,0 10,349,aux7,97,-745,23,11,8,3,0,0,-1,0,0,0 1,350,348,349,1,0,0,0,0,128,0,-1--1--1,,1|(167,-737)| 1,351,349,348,1,0,0,0,0,128,0,-1--1--1,,1|(145,-730)| 10,352,TIME STEP,152,-799,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,353,352,349,0,0,0,0,0,64,0,-1--1--1,,1|(129,-777)| 1,354,15,348,1,0,0,0,0,128,0,-1--1--1,,1|(416,-664)| 1,355,165,348,1,0,0,0,0,64,0,-1--1--1,,1|(292,-812)| 10,356,Time,311,-779,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,357,356,348,0,0,0,0,0,64,0,-1--1--1,,1|(263,-749)| 1,358,348,163,1,0,0,0,0,128,0,-1--1--1,,1|(265,-716)| 1,359,356,163,0,0,0,0,0,128,0,-1--1--1,,1|(327,-765)| 10,360,RURR tot oil until start year PLG,-859,-3,71,19,8,131,0,0,0,0,0,0 10,361,aux8,-956,-57,23,11,8,3,0,0,-1,0,0,0 1,362,360,361,1,0,0,0,0,128,0,-1--1--1,,1|(-865,-66)| 1,363,361,360,1,0,0,0,0,128,0,-1--1--1,,1|(-892,-46)| 10,364,TIME STEP,-950,-114,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,365,364,361,0,0,0,0,0,64,0,-1--1--1,,1|(-953,-93)| 1,366,196,360,1,0,0,0,0,128,0,-1--1--1,,1|(-730,113)| 1,367,212,360,1,0,0,0,0,64,0,-1--1--1,,1|(-714,-73)| 10,368,Time,-731,-7,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,369,368,360,0,0,0,0,0,64,0,-1--1--1,,1|(-766,-7)| 1,370,368,210,0,0,0,0,0,128,0,-1--1--1,,1|(-705,6)| 1,371,360,210,1,0,0,0,0,128,0,-1--1--1,,1|(-752,32)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *NRE AVAILABILITY - Natural gas extraction #EAN $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"PED nat. gas for GTL EJ",305,271,60,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,RURR conv gas,-104,516,48,26,3,131,0,0,0,0,0,0 10,3,cumulated conv gas extraction,203,524,52,22,3,131,0,0,0,0,0,0 1,4,6,3,4,0,0,22,0,0,0,-1--1--1,,1|(111,514)| 1,5,6,2,100,0,0,22,0,0,0,-1--1--1,,1|(2,514)| 11,6,37264,66,514,6,8,34,3,0,0,1,0,0,0 10,7,extraction conv gas EJ,66,541,49,19,40,3,0,0,-1,0,0,0 10,8,max extraction conv gas EJ,-319,822,47,19,8,3,0,0,0,0,0,0 10,9,table max extraction gas Laherrere2010,-175,929,64,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,10,table max extraction gas Mohr BG2012,78,906,64,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,11,table max extraction gas Mohr High2012,226,906,65,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 1,12,8,7,1,0,0,0,0,64,0,-1--1--1,,1|(-29,670)| 10,13,choose extraction conv gas curve,-441,680,56,19,8,3,0,0,0,0,0,0 10,14,URR conv gas,-380,541,46,11,8,3,0,0,0,0,0,0 10,15,URR gas Mohr BG2012,-439,872,49,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,16,URR gas Mohr High2013,-320,872,49,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,17,RURR unconv gas,754,520,50,27,3,131,0,0,0,0,0,0 10,18,Cumulated unconv gas extraction,1125,512,60,23,3,131,0,0,0,0,0,0 1,19,21,18,4,0,0,22,0,0,0,-1--1--1,,1|(1012,511)| 1,20,21,17,100,0,0,22,0,0,0,-1--1--1,,1|(876,511)| 11,21,37280,954,511,6,8,34,3,0,0,1,0,0,0 10,22,extraction unconv gas EJ,954,538,56,19,40,3,0,0,-1,0,0,0 10,23,URR unconv gas,579,636,53,11,8,3,0,0,0,0,0,0 10,24,URR unconv gas BG Mohr15,435,604,54,19,8,3,0,0,0,0,0,0 10,25,URR unconv gas Low Mohr15,425,650,54,19,8,3,0,0,0,0,0,0 10,26,URR unconv gas High Mohr15,425,699,54,19,8,3,0,0,0,0,0,0 10,27,choose extraction curve unconv gas,589,704,56,19,8,3,0,0,0,0,0,0 1,28,24,23,1,0,0,0,0,64,0,-1--1--1,,1|(528,596)| 1,29,25,23,1,0,0,0,0,64,0,-1--1--1,,1|(497,622)| 1,30,26,23,1,0,0,0,0,64,0,-1--1--1,,1|(520,674)| 1,31,27,23,1,0,0,0,0,64,0,-1--1--1,,1|(587,683)| 10,32,max extraction unconv gas,733,724,47,19,8,3,0,0,0,0,0,0 10,33,table max extraction unconv gas BG Mohr15,580,774,77,19,8,3,0,0,0,0,0,0 10,34,table max extraction unconv gas Low Mohr15,620,829,81,19,8,3,0,0,0,0,0,0 10,35,table max extraction unconv gas High Mohr15,690,874,81,19,8,3,0,0,0,0,0,0 1,36,33,32,1,0,0,0,0,64,0,-1--1--1,,1|(652,739)| 1,37,34,32,1,0,0,0,0,64,0,-1--1--1,,1|(691,781)| 1,38,35,32,1,0,0,0,0,64,0,-1--1--1,,1|(724,812)| 10,39,Historic unconv gas,973,429,44,19,8,131,0,0,0,0,0,0 10,40,extraction unconv gas delayed,987,651,56,19,8,3,0,0,0,0,0,0 10,41,max unconv gas growth extraction EJ,1085,591,69,19,8,131,0,0,0,0,0,0 10,42,max unconv gas growth extraction,1112,685,60,19,8,3,0,0,0,0,0,0 10,43,P constraint growth extraction unconv gas,1045,768,68,17,8,131,0,0,0,0,0,0 1,44,39,22,1,0,0,0,0,64,0,-1--1--1,,1|(972,480)| 1,45,22,40,0,0,0,0,0,64,0,-1--1--1,,1|(968,587)| 1,46,32,22,1,0,0,0,0,64,0,-1--1--1,,1|(878,631)| 1,47,41,22,0,0,0,0,0,64,0,-1--1--1,,1|(1026,567)| 1,48,40,41,1,0,0,0,0,64,0,-1--1--1,,1|(1057,636)| 1,49,42,41,1,0,0,0,0,64,0,-1--1--1,,1|(1110,638)| 1,50,43,42,1,0,0,0,0,64,0,-1--1--1,,1|(1067,753)| 10,51,Demand conv gas,120,417,59,17,8,131,0,0,0,0,0,0 1,52,22,51,1,0,0,0,0,64,0,-1--1--1,,1|(501,525)| 1,53,51,7,1,0,0,0,0,64,0,-1--1--1,,1|(66,469)| 1,54,27,32,1,0,0,0,0,64,0,-1--1--1,,1|(670,698)| 10,55,URR conv gas BG Mohr15,-569,488,60,19,8,3,0,0,0,0,0,0 10,56,table max extraction conv gas BG Mohr15,-556,736,70,19,8,3,0,0,0,0,0,0 1,57,56,8,1,0,0,0,0,64,0,-1--1--1,,1|(-437,750)| 1,58,55,14,1,0,0,0,0,64,0,-1--1--1,,1|(-486,532)| 10,59,Selection constraint extraction unconv gas,1235,763,72,19,8,131,0,0,0,0,0,0 1,60,59,42,1,0,0,0,0,64,0,-1--1--1,,1|(1169,693)| 10,61,Time,1053,731,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,62,61,42,0,0,0,0,0,64,0,-1--1--1,,1|(1071,716)| 10,63,URR conv gas User defined,-566,529,47,19,8,3,0,0,0,0,0,0 10,64,table max extraction conv gas User defined,-568,874,71,19,8,3,0,0,0,0,0,0 1,65,63,14,1,0,0,0,0,64,0,-1--1--1,,1|(-485,551)| 1,66,64,8,1,0,0,0,0,64,0,-1--1--1,,1|(-441,860)| 1,67,13,8,0,0,0,0,0,64,0,-1--1--1,,1|(-386,745)| 1,68,13,14,0,0,0,0,0,64,0,-1--1--1,,1|(-412,612)| 10,69,URR unconv gas User defined,435,548,54,19,8,3,0,0,0,0,0,0 10,70,table max extraction unconv gas User defined,801,821,78,19,8,3,0,0,0,0,0,0 1,71,69,23,1,0,0,0,0,64,0,-1--1--1,,1|(540,562)| 1,72,70,32,1,0,0,0,0,64,0,-1--1--1,,1|(784,765)| 10,73,"User-defined extraction growth unconv gas",1165,825,74,19,8,131,0,0,0,0,0,0 1,74,73,42,1,0,0,0,0,64,0,-1--1--1,,1|(1138,747)| 10,75,"separate conv and unconv gas?",1090,357,58,19,8,3,0,0,0,0,0,0 1,76,75,22,1,0,0,0,0,128,0,-1--1--1,,1|(1076,409)| 10,77,URR conv gas Low Mohr15,-559,410,64,19,8,3,0,0,0,0,0,0 10,78,URR conv gas High Mohr15,-570,448,64,19,8,3,0,0,0,0,0,0 1,79,78,14,1,0,0,0,0,128,0,-1--1--1,,1|(-496,492)| 1,80,77,14,1,0,0,0,0,128,0,-1--1--1,,1|(-436,481)| 10,81,table max extraction conv gas Low Mohr15,-560,780,73,19,8,3,0,0,0,0,0,0 10,82,table max extraction conv gas High Mohr15,-568,825,73,19,8,3,0,0,0,0,0,0 1,83,82,8,1,0,0,0,0,128,0,-1--1--1,,1|(-382,818)| 1,84,81,8,1,0,0,0,0,128,0,-1--1--1,,1|(-385,802)| 10,85,"separate conv and unconv gas?",-320,738,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,86,85,14,1,0,0,0,0,128,0,-1--1--1,,1|(-363,652)| 1,87,85,8,1,0,0,0,0,128,0,-1--1--1,,1|(-322,791)| 10,88,Oil refinery gains EJ,377,88,41,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,89,demand gas for oil refinery gains,571,128,59,19,8,3,0,0,0,0,0,0 1,90,88,89,0,0,0,0,0,128,0,-1--1--1,,1|(458,105)| 10,91,Efficiency gas for oil refinery gains,341,173,64,19,8,3,0,0,0,0,0,0 1,92,91,89,0,0,0,0,0,128,0,-1--1--1,,1|(451,152)| 10,93,cumulated conv gas extraction to 1995,-89,567,64,19,8,3,0,0,0,0,0,0 1,94,93,3,0,0,0,0,0,128,1,-1--1--1,,1|(56,545)| 10,95,cumulated unconv gas extraction to 1995,808,569,74,20,8,131,0,0,0,0,0,0 1,96,95,18,0,0,0,0,0,128,1,-1--1--1,,1|(966,540)| 10,97,"PED nat. gas without GTL",55,269,57,19,8,3,0,0,0,0,0,0 10,98,check gases,1300,686,59,20,8,130,0,1,0,0,0,0,128-128-128,0-0-0,|12||0-192-192 10,99,check gas delayed 1yr,1261,617,44,19,8,3,0,0,0,0,0,0 1,100,98,99,0,0,0,0,0,128,0,-1--1--1,,1|(1283,657)| 10,101,"constrain gas exogenous growth?",1304,463,67,19,8,130,0,3,0,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,102,"constrain gas exogenous growth? delayed 1yr",1280,546,62,28,8,131,0,0,0,0,0,0 1,103,101,102,0,0,0,0,0,128,0,-1--1--1,,1|(1295,493)| 1,104,99,41,0,0,0,0,0,64,0,-1--1--1,,1|(1192,607)| 1,105,102,41,0,0,0,0,0,64,0,-1--1--1,,1|(1193,565)| 10,106,share gas for oil refinery gains,502,200,73,22,8,131,0,0,0,0,0,0 1,107,89,106,0,0,0,0,0,128,0,-1--1--1,,1|(542,158)| 1,108,97,106,0,0,0,0,0,128,0,-1--1--1,,1|(263,238)| 10,109,"PES nat. gas without GTL",1180,1160,60,19,8,3,0,0,0,0,0,0 1,110,1,97,1,0,0,0,0,128,0,-1--1--1,,1|(184,276)| 10,111,URR conv gas unlimited,-578,595,47,19,8,131,0,0,0,0,0,0 10,112,"unlimited gas?",-295,655,46,19,8,131,0,2,0,0,0,0,0-0-0,0-0-0,|12||0-128-0 1,113,111,14,1,0,0,0,0,128,0,-1--1--1,,1|(-456,591)| 1,114,112,14,0,0,0,0,0,128,0,-1--1--1,,1|(-337,599)| 1,115,112,7,1,0,0,0,0,128,0,-1--1--1,,1|(-39,606)| 1,116,78,111,1,0,0,0,0,128,0,-1--1--1,,1|(-659,511)| 10,117,FED Heat gas plants EJ,206,209,55,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,118,"unlimited NRE?",-306,692,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,119,118,14,1,0,0,0,0,128,0,-1--1--1,,1|(-357,629)| 1,120,118,7,1,0,0,0,0,128,0,-1--1--1,,1|(-39,623)| 10,121,"PED nat. gas EJ",166,337,56,19,8,130,0,3,0,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,122,121,51,1,0,0,0,0,128,0,-1--1--1,,1|(149,379)| 1,123,121,97,0,0,0,0,0,128,0,-1--1--1,,1|(116,307)| 10,124,share RURR conv gas to leave underground,-381,420,71,19,8,3,0,0,0,0,0,0 10,125,conv gas to leave underground,-221,379,59,22,8,131,0,0,0,0,0,0 1,126,124,125,0,0,0,0,0,128,0,-1--1--1,,1|(-302,399)| 1,127,129,131,4,0,0,22,0,0,0,-1--1--1,,1|(-97,417)| 1,128,129,2,100,0,0,22,0,0,0,-1--1--1,,1|(-97,472)| 11,129,18320,-97,449,8,6,33,3,0,0,4,0,0,0 10,130,Flow conv gas left in ground,-42,449,47,19,40,3,0,0,-1,0,0,0 10,131,Total conv gas left in ground,-98,368,55,23,3,131,0,0,0,0,0,0 1,132,125,130,0,0,0,0,0,128,0,-1--1--1,,1|(-134,413)| 10,133,Time,-6,487,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,134,133,130,0,0,0,0,0,64,0,-1--1--1,,1|(-16,476)| 1,135,93,2,0,0,0,0,0,64,1,-1--1--1,,1|(-93,551)| 1,136,14,2,0,0,0,0,0,64,1,-1--1--1,,1|(-250,529)| 10,137,Start policy leave in ground conv gas,-75,280,63,22,8,131,0,0,0,0,0,0 1,138,137,130,1,0,0,0,0,128,0,-1--1--1,,1|(-6,349)| 10,139,Tot RURR conv gas,-269,484,53,19,8,3,0,0,0,0,0,0 1,140,2,139,0,0,0,0,0,128,0,-1--1--1,,1|(-178,501)| 1,141,131,139,0,0,0,0,0,128,0,-1--1--1,,1|(-181,424)| 1,142,139,8,1,0,0,0,0,128,0,-1--1--1,,1|(-194,652)| 1,143,2,7,1,0,0,0,0,128,0,-1--1--1,,1|(-32,537)| 12,144,0,1698,1301,298,227,3,188,0,0,1,0,0,0 Total_natural_gas_extraction 1,145,147,149,4,0,0,22,0,0,0,-1--1--1,,1|(755,406)| 1,146,147,17,100,0,0,22,0,0,0,-1--1--1,,1|(755,471)| 11,147,0,755,443,8,6,33,3,0,0,4,0,0,0 10,148,Flow unconv gas left in ground,829,443,66,19,40,3,0,0,-1,0,0,0 10,149,Total unconv gas left in ground,748,347,59,28,3,131,0,0,0,0,0,0 10,150,Start policy leave in ground unconv gas,766,286,62,19,8,131,0,0,0,0,0,0 1,151,150,148,1,0,0,0,0,128,0,-1--1--1,,1|(845,345)| 1,152,95,17,0,0,0,0,0,64,1,-1--1--1,,1|(790,551)| 1,153,23,17,0,0,0,0,0,64,1,-1--1--1,,1|(648,589)| 10,154,share RURR unconv gas to leave underground,469,434,79,19,8,3,0,0,0,0,0,0 10,155,unconv gas to leave underground,633,394,61,19,8,131,0,0,0,0,0,0 1,156,154,155,0,0,0,0,0,128,0,-1--1--1,,1|(552,413)| 1,157,155,148,0,0,0,0,0,128,0,-1--1--1,,1|(721,415)| 10,158,Time,829,481,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,159,158,148,0,0,0,0,0,64,0,-1--1--1,,1|(829,473)| 10,160,Tot RURR unconv gas,608,487,53,19,8,3,0,0,0,0,0,0 1,161,17,160,0,0,0,0,0,128,0,-1--1--1,,1|(689,505)| 1,162,149,160,1,0,0,0,0,128,0,-1--1--1,,1|(720,413)| 1,163,160,32,1,0,0,0,0,128,0,-1--1--1,,1|(632,589)| 1,164,17,22,0,0,0,0,0,128,0,-1--1--1,,1|(844,527)| 1,165,158,22,0,0,0,0,0,128,0,-1--1--1,,1|(876,502)| 12,166,0,-56,953,132,26,3,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 Total aggregated gas 12,167,0,8,202,132,26,3,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 Conventional gas 12,168,0,921,215,132,26,3,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 Unconventional gas 10,169,RURR tot agg gas,-89,1217,48,26,3,131,0,0,0,0,0,0 10,170,cumulated tot agg gas extraction,239,1223,75,27,3,131,0,0,0,0,0,0 1,171,173,170,4,0,0,22,0,0,0,-1--1--1,,1|(125,1215)| 1,172,173,169,100,0,0,22,0,0,0,-1--1--1,,1|(17,1215)| 11,173,31936,81,1215,6,8,34,3,0,0,1,0,0,0 10,174,extraction tot agg gas EJ,81,1242,49,19,40,3,0,0,-1,0,0,0 10,175,cumulated tot agg gas extraction to 1995,238,1277,76,20,8,131,0,0,0,0,0,0 1,176,175,170,0,0,0,0,0,128,1,-1--1--1,,1|(238,1260)| 10,177,share RURR tot agg gas to leave underground,-395,1121,79,19,8,3,0,0,0,0,0,0 10,178,tot agg gas to leave underground,-212,1080,59,22,8,131,0,0,0,0,0,0 1,179,177,178,0,0,0,0,0,128,0,-1--1--1,,1|(-301,1100)| 1,180,182,184,4,0,0,22,0,0,0,-1--1--1,,1|(-82,1118)| 1,181,182,169,100,0,0,22,0,0,0,-1--1--1,,1|(-82,1173)| 11,182,18576,-82,1150,8,6,33,3,0,0,4,0,0,0 10,183,Flow tot agg gas left in ground,-27,1150,58,19,40,3,0,0,-1,0,0,0 10,184,Total agg gas left in ground,-83,1069,55,23,3,131,0,0,0,0,0,0 1,185,178,183,0,0,0,0,0,128,0,-1--1--1,,1|(-123,1114)| 1,186,175,169,0,0,0,0,0,64,1,-1--1--1,,1|(67,1245)| 10,187,Start policy leave in ground tot agg gas,-51,1009,62,19,8,131,0,0,0,0,0,0 1,188,187,183,1,0,0,0,0,128,0,-1--1--1,,1|(-4,1063)| 10,189,Tot RURR tot agg gas,-254,1185,53,19,8,3,0,0,0,0,0,0 1,190,169,189,0,0,0,0,0,128,0,-1--1--1,,1|(-163,1202)| 1,191,184,189,0,0,0,0,0,128,0,-1--1--1,,1|(-166,1125)| 1,192,169,174,1,0,0,0,0,128,0,-1--1--1,,1|(-17,1238)| 10,193,Time,1,1195,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,194,193,183,0,0,0,0,0,64,0,-1--1--1,,1|(-7,1182)| 10,195,cumulated conv gas extraction to 1995,137,1337,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,196,cumulated unconv gas extraction to 1995,308,1344,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,197,195,175,0,0,0,0,0,128,0,-1--1--1,,1|(179,1311)| 1,198,196,175,0,0,0,0,0,128,0,-1--1--1,,1|(278,1315)| 10,199,"PED nat. gas EJ",113,1107,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,200,199,174,0,0,0,0,0,128,0,-1--1--1,,1|(98,1167)| 10,201,max extraction tot agg gas EJ,-202,1510,64,19,8,3,0,0,0,0,0,0 10,202,URR tot agg gas,-318,1283,52,11,8,3,0,0,0,0,0,0 10,203,"separate conv and unconv gas?",-385,1461,74,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,204,203,202,1,0,0,0,0,128,0,-1--1--1,,1|(-373,1373)| 1,205,203,201,1,0,0,0,0,128,0,-1--1--1,,1|(-318,1492)| 10,206,"unlimited NRE?",-307,1419,71,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,207,206,202,1,0,0,0,0,128,0,-1--1--1,,1|(-329,1350)| 10,208,choose extraction tot agg gas curve,-571,1548,56,19,8,3,0,0,-1,0,0,0 1,209,208,202,1,0,0,0,0,128,0,-1--1--1,,1|(-465,1400)| 1,210,208,201,1,0,0,0,0,128,0,-1--1--1,,1|(-398,1530)| 10,211,"unlimited gas?",-260,1378,53,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,212,211,202,0,0,0,0,0,128,0,-1--1--1,,1|(-286,1336)| 10,213,URR total gas Laherrère10,-514,1227,45,19,8,3,0,0,-1,0,0,0 10,214,URR total gas Mohr12 BG,-510,1282,45,19,8,131,0,0,-1,0,0,0 10,215,URR total gas User defined,-507,1334,62,19,8,3,0,0,-1,0,0,0 1,216,213,202,0,0,0,0,0,128,0,-1--1--1,,1|(-420,1253)| 1,217,214,202,0,0,0,0,0,128,0,-1--1--1,,1|(-425,1282)| 1,218,215,202,0,0,0,0,0,128,0,-1--1--1,,1|(-409,1307)| 10,219,URR total agg gas unlimited,-510,1389,62,19,8,3,0,0,-1,0,0,0 1,220,214,219,1,0,0,0,0,128,0,-1--1--1,,1|(-611,1344)| 1,221,219,202,0,0,0,0,0,128,0,-1--1--1,,1|(-414,1335)| 1,222,189,201,1,0,0,0,0,128,0,-1--1--1,,1|(-185,1346)| 10,223,table max extraction total gas BG Mohr12,-228,1582,68,19,8,3,0,0,-1,0,0,0 10,224,table max extraction total gas Laherrère10,-395,1572,68,19,8,3,0,0,-1,0,0,0 10,225,table max extraction total gas User defined,-49,1574,69,19,8,3,0,0,-1,0,0,0 1,226,224,201,0,0,0,0,0,128,0,-1--1--1,,1|(-306,1543)| 1,227,223,201,0,0,0,0,0,128,0,-1--1--1,,1|(-218,1552)| 1,228,225,201,0,0,0,0,0,128,0,-1--1--1,,1|(-120,1544)| 1,229,211,174,0,0,0,0,0,128,0,-1--1--1,,1|(-107,1316)| 1,230,206,174,1,0,0,0,0,128,0,-1--1--1,,1|(-114,1361)| 1,231,201,174,1,0,0,0,0,128,0,-1--1--1,,1|(-51,1393)| 10,232,"extraction conv gas - tot agg",315,1087,64,19,8,3,0,0,0,0,0,0 10,233,share conv gas vs tot agg,389,1028,53,19,8,131,0,0,0,0,0,0 1,234,233,232,0,0,0,0,0,128,0,-1--1--1,,1|(357,1053)| 10,235,"extraction unconv gas - tot agg",305,959,66,19,8,3,0,0,0,0,0,0 10,236,share unconv gas vs tot agg,560,1159,60,19,8,3,0,0,0,0,0,0 1,237,236,235,1,0,0,0,0,128,0,-1--1--1,,1|(526,1066)| 1,238,236,233,1,0,0,0,0,128,0,-1--1--1,,1|(530,1093)| 10,239,Time,398,1165,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,240,239,236,0,0,0,0,0,64,0,-1--1--1,,1|(455,1163)| 10,241,share unconv gas vs tot agg in 2050,566,1317,71,19,8,3,0,0,0,0,0,0 10,242,share unconv gas vs tot agg in 2050 Lahèrrere2010,641,1426,99,19,8,131,0,0,0,0,0,0 10,243,share unconv gas vs tot agg in 2050 Mohr12 BG,713,1368,103,22,8,131,0,0,0,0,0,0 1,244,242,241,0,0,0,0,0,128,0,-1--1--1,,1|(607,1377)| 1,245,243,241,0,0,0,0,0,128,0,-1--1--1,,1|(641,1343)| 10,246,evolution share unconv gas vs tot agg,492,1246,72,19,8,3,0,0,0,0,0,0 1,247,241,246,0,0,0,0,0,128,0,-1--1--1,,1|(534,1286)| 1,248,239,246,0,0,0,0,0,128,0,-1--1--1,,1|(434,1196)| 1,249,246,236,0,0,0,0,0,128,0,-1--1--1,,1|(521,1207)| 10,250,Historic unconv gas,712,1167,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,251,250,236,0,0,0,0,0,128,0,-1--1--1,,1|(645,1164)| 10,252,"PED nat. gas EJ",694,1233,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,253,252,236,0,0,0,0,0,128,0,-1--1--1,,1|(633,1199)| 1,254,208,241,1,0,0,0,0,128,0,-1--1--1,,1|(103,1633)| 10,255,share unconv gas vs tot agg in 2050 User defined,516,1473,87,19,8,3,0,0,0,0,0,0 1,256,255,241,0,0,0,0,0,128,0,-1--1--1,,1|(538,1401)| 1,257,174,232,0,0,0,0,0,128,0,-1--1--1,,1|(191,1168)| 1,258,174,235,0,0,0,0,0,128,0,-1--1--1,,1|(188,1105)| 1,259,202,169,0,0,0,0,0,64,1,-1--1--1,,1|(-216,1252)| 10,260,Time,1302,1262,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,261,"abundance total nat. gas",1310,1074,50,19,8,3,0,0,0,0,0,0 10,262,"Year scarcity total nat. gas",1313,1191,57,20,8,131,0,0,0,0,0,0 1,263,261,262,0,0,0,0,0,128,0,-1--1--1,,1|(1310,1125)| 1,264,260,262,0,0,0,0,0,128,0,-1--1--1,,1|(1304,1237)| 10,265,real extraction conv gas EJ,985,1161,62,19,8,3,0,0,0,0,0,0 10,266,real extraction unconv gas EJ,987,1004,49,19,8,3,0,0,0,0,0,0 1,267,22,266,1,0,0,0,0,128,0,-1--1--1,,1|(908,760)| 1,268,235,266,1,0,0,0,0,128,0,-1--1--1,,1|(664,951)| 1,269,232,265,0,0,0,0,0,128,0,-1--1--1,,1|(644,1123)| 1,270,7,265,1,0,0,0,0,128,0,-1--1--1,,1|(454,892)| 10,271,"separate conv and unconv gas?",807,1052,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,272,271,265,0,0,0,0,0,128,0,-1--1--1,,1|(889,1102)| 1,273,271,266,0,0,0,0,0,128,0,-1--1--1,,1|(896,1028)| 10,274,"PED nat. gas EJ",1286,980,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,275,274,261,0,0,0,0,0,128,0,-1--1--1,,1|(1295,1020)| 12,276,0,1695,388,296,231,3,188,0,0,1,0,0,0 Conventional_gas_extraction 12,277,0,1699,846,301,222,3,188,0,0,1,0,0,0 Unconventional_gas_extraction 10,278,"PES nat. gas",1166,1073,41,11,8,3,0,0,-1,0,0,0 1,279,266,278,0,0,0,0,0,128,0,-1--1--1,,1|(1079,1039)| 1,280,265,278,0,0,0,0,0,128,0,-1--1--1,,1|(1077,1116)| 1,281,278,261,0,0,0,0,0,128,0,-1--1--1,,1|(1226,1073)| 10,282,"PED nat. gas for GTL EJ",936,1379,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,283,scarcity conv gas,110,680,50,19,8,131,0,0,0,0,0,0 10,284,scarcity conv gas delayed 1yr,245,691,60,19,8,131,0,0,0,0,0,0 1,285,283,284,0,0,0,0,0,128,0,-1--1--1,,1|(165,684)| 1,286,7,283,0,0,0,0,0,128,0,-1--1--1,,1|(85,603)| 1,287,8,283,1,0,0,0,0,128,0,-1--1--1,,1|(-99,763)| 10,288,exponent availability conv gas,34,769,64,23,8,131,0,0,0,0,0,0 1,289,288,283,0,0,0,0,0,128,0,-1--1--1,,1|(68,727)| 12,290,48,132,767,10,8,0,3,0,0,-1,0,0,0 1,291,293,295,4,0,0,22,0,0,0,-1--1--1,,1|(268,768)| 1,292,293,290,100,0,0,22,0,0,0,-1--1--1,,1|(180,768)| 11,293,48,224,768,6,8,34,3,0,0,1,0,0,0 10,294,increase scarcity conv gas,224,795,53,19,40,3,0,0,-1,0,0,0 10,295,scarcity conv gas stock,365,769,59,22,3,131,0,0,0,0,0,0 1,296,284,294,0,0,0,0,0,128,0,-1--1--1,,1|(236,736)| 1,297,283,294,0,0,0,0,0,128,0,-1--1--1,,1|(161,732)| 1,298,295,294,0,0,0,0,0,128,0,-1--1--1,,1|(298,780)| 10,299,real extraction conv gas emissions relevant EJ,1197,1363,75,19,8,131,0,0,0,0,0,0 10,300,share conv vs total gas extraction,979,1074,59,19,8,3,0,0,0,0,0,0 1,301,266,300,0,0,0,0,0,128,0,-1--1--1,,1|(983,1032)| 1,302,265,300,0,0,0,0,0,128,0,-1--1--1,,1|(982,1124)| 1,303,300,299,0,0,0,0,0,128,0,-1--1--1,,1|(1083,1212)| 1,304,282,299,0,0,0,0,0,128,0,-1--1--1,,1|(1051,1371)| 1,305,265,299,1,0,0,0,0,128,0,-1--1--1,,1|(1008,1248)| 10,306,real extraction unconv gas emissions relevant EJ,1173,1465,86,23,8,131,0,0,0,0,0,0 1,307,266,306,0,0,0,0,0,64,0,-1--1--1,,1|(1075,1226)| 1,308,300,306,0,0,0,0,0,64,0,-1--1--1,,1|(1071,1261)| 1,309,282,306,1,0,0,0,0,128,0,-1--1--1,,1|(1013,1454)| 1,310,278,109,0,0,0,0,0,128,0,-1--1--1,,1|(1170,1105)| 1,311,282,109,1,0,0,0,0,128,0,-1--1--1,,1|(1023,1234)| 10,312,TIME STEP,972,716,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,313,312,40,0,0,0,0,0,64,0,-1--1--1,,1|(976,694)| 1,314,312,42,0,0,0,0,0,64,0,-1--1--1,,1|(1029,703)| 10,315,"Non-energy use demand by final fuel EJ",1303,1425,78,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,316,315,299,0,0,0,0,0,128,0,-1--1--1,,1|(1256,1397)| 1,317,315,306,0,0,0,0,0,128,0,-1--1--1,,1|(1251,1440)| 1,318,295,42,1,0,0,0,0,128,0,-1--1--1,,1|(838,906)| 1,319,85,2,0,0,0,0,0,128,1,-1--1--1,,1|(-221,635)| 1,320,85,17,0,0,0,0,0,128,1,-1--1--1,,1|(216,629)| 1,321,75,23,0,0,0,0,0,64,0,-1--1--1,,1|(833,497)| 1,322,137,125,1,0,0,0,0,128,0,-1--1--1,,1|(-200,350)| 1,323,150,155,1,0,0,0,0,128,0,-1--1--1,,1|(662,323)| 1,324,187,178,1,0,0,0,0,128,0,-1--1--1,,1|(-136,1026)| 10,325,table max extraction ASPO oil EJ 0,-322,246,64,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,326,RURR conv gas until start year PLG,-386,305,71,18,8,131,0,0,0,0,0,0 10,327,aux9,-497,252,23,11,8,3,0,0,-1,0,0,0 1,328,326,327,1,0,0,0,0,128,0,-1--1--1,,1|(-406,243)| 1,329,327,326,1,0,0,0,0,128,0,-1--1--1,,1|(-433,263)| 10,330,TIME STEP,-498,195,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,331,330,327,0,0,0,0,0,64,0,-1--1--1,,1|(-498,217)| 1,332,326,125,0,0,0,0,0,128,0,-1--1--1,,1|(-315,338)| 1,333,137,326,1,0,0,0,0,128,0,-1--1--1,,1|(-254,281)| 10,334,Time,-244,312,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,335,334,326,0,0,0,0,0,64,0,-1--1--1,,1|(-286,311)| 1,336,334,125,0,0,0,0,0,128,0,-1--1--1,,1|(-238,334)| 10,337,table max extraction ASPO oil EJ 0 0,617,247,64,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,338,RURR unconv gas until start year PLG,461,313,67,19,8,131,0,0,0,0,0,0 10,339,aux10,454,385,23,11,8,3,0,0,-1,0,0,0 1,340,338,339,1,0,0,0,0,128,0,-1--1--1,,1|(442,323)| 10,341,TIME STEP,319,370,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,342,341,339,0,0,0,0,0,64,0,-1--1--1,,1|(393,379)| 1,343,338,155,0,0,0,0,0,128,0,-1--1--1,,1|(540,351)| 1,344,17,338,0,0,0,0,0,128,0,-1--1--1,,1|(607,416)| 1,345,150,338,1,0,0,0,0,128,0,-1--1--1,,1|(572,265)| 1,346,2,326,0,0,0,0,0,64,0,-1--1--1,,1|(-245,410)| 10,347,Time,578,333,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,348,347,338,0,0,0,0,0,64,0,-1--1--1,,1|(546,329)| 1,349,339,338,0,0,0,0,0,64,0,-1--1--1,,1|(456,360)| 1,350,347,155,0,0,0,0,0,128,0,-1--1--1,,1|(596,355)| 10,351,table max extraction ASPO oil EJ 0 1,-476,956,64,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,352,RURR tot gas until start year PLG,-469,1015,67,19,8,131,0,0,0,0,0,0 10,353,aux11,-580,962,23,11,8,3,0,0,-1,0,0,0 1,354,352,353,1,0,0,0,0,128,0,-1--1--1,,1|(-489,953)| 1,355,353,352,1,0,0,0,0,128,0,-1--1--1,,1|(-516,973)| 10,356,TIME STEP,-627,1001,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,357,356,353,0,0,0,0,0,64,0,-1--1--1,,1|(-610,986)| 1,358,169,352,1,0,0,0,0,128,0,-1--1--1,,1|(-280,1116)| 1,359,352,178,0,0,0,0,0,128,0,-1--1--1,,1|(-344,1046)| 1,360,187,352,1,0,0,0,0,64,0,-1--1--1,,1|(-280,998)| 10,361,Time,-299,1022,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,362,361,352,0,0,0,0,0,64,0,-1--1--1,,1|(-357,1019)| 1,363,361,178,1,0,0,0,0,128,0,-1--1--1,,1|(-225,1052)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *NRE AVAILABILITY - Coal extraction #EAN $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,PED coal for CTL EJ,945,286,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,RURR coal,767,363,49,23,3,131,0,0,0,0,0,0 10,3,Cumulated coal extraction,1153,367,60,27,3,131,0,0,0,0,0,0 1,4,6,3,4,0,0,22,0,0,0,-1--1--1,,1|(1034,356)| 1,5,6,2,100,0,0,22,0,0,0,-1--1--1,,1|(890,356)| 11,6,37344,970,356,6,8,34,3,0,0,1,0,0,0 10,7,extraction coal EJ,970,375,56,11,40,3,0,0,-1,0,0,0 10,8,max extraction coal EJ,666,575,47,19,8,3,0,0,0,0,0,0 1,9,8,7,1,0,0,0,0,64,0,-1--1--1,,1|(817,474)| 10,10,max extraction coal Mtoe,727,698,47,19,8,3,0,0,0,0,0,0 1,11,8,10,1,0,0,0,0,64,0,-1--1--1,,1|(710,659)| 10,12,extraction coal Mtoe,1162,453,47,19,8,3,0,0,0,0,0,0 1,13,7,12,1,0,0,0,0,64,0,-1--1--1,,1|(1072,427)| 10,14,table max extraction coal Mohr2012 EJ,434,669,64,19,8,3,0,0,0,0,0,0 1,15,14,8,1,0,0,0,0,64,0,-1--1--1,,1|(550,659)| 10,16,MToe per EJ,949,632,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,10,1,0,0,0,0,64,0,-1--1--1,,1|(871,682)| 1,18,16,12,1,0,0,0,0,64,0,-1--1--1,,1|(1053,501)| 10,19,URR coal,541,448,32,11,8,3,0,0,0,0,0,0 10,20,TIME STEP,533,388,50,11,8,2,3,3,-1,0,0,0,128-128-128,0-0-0,|12||255-0-0 10,21,table max extraction coal User defined,691,781,64,19,8,3,0,0,0,0,0,0 10,22,URR coal Mohr2012 EJ,358,295,45,19,8,3,0,0,0,0,0,0 10,23,URR coal User defined EJ,338,494,49,19,8,3,0,0,0,0,0,0 10,24,choose extraction coal curve,480,572,56,19,8,3,0,0,0,0,0,0 1,25,22,19,1,0,0,0,0,64,0,-1--1--1,,1|(448,371)| 1,26,23,19,1,0,0,0,0,64,0,-1--1--1,,1|(442,500)| 1,27,24,19,1,0,0,0,0,64,0,-1--1--1,,1|(528,504)| 1,28,21,8,1,0,0,0,0,64,0,-1--1--1,,1|(667,713)| 1,29,24,8,1,0,0,0,0,64,0,-1--1--1,,1|(617,569)| 10,30,abundance coal,1232,250,49,11,8,3,0,0,0,0,0,0 10,31,Year scarcity coal,1394,242,58,11,8,3,0,0,0,0,0,0 1,32,30,31,1,0,0,0,0,64,0,-1--1--1,,1|(1269,270)| 10,33,Time,1361,302,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,31,0,0,0,0,0,64,0,-1--1--1,,1|(1373,278)| 10,35,URR coal Low Mohr15,326,353,49,19,8,3,0,0,0,0,0,0 10,36,URR coal BG Mohr15,322,401,45,19,8,3,0,0,0,0,0,0 10,37,URR coal High15,327,443,56,11,8,3,0,0,0,0,0,0 1,38,35,19,1,0,0,0,0,128,0,-1--1--1,,1|(403,395)| 1,39,36,19,1,0,0,0,0,128,0,-1--1--1,,1|(402,435)| 1,40,37,19,1,0,0,0,0,128,0,-1--1--1,,1|(438,460)| 10,41,table max extraction coal Low Mohr15,439,714,64,19,8,3,0,0,0,0,0,0 10,42,table max extraction coal BG Mohr15,455,761,64,19,8,3,0,0,0,0,0,0 10,43,table max extraction coal High Mohr15,564,803,64,19,8,3,0,0,0,0,0,0 1,44,41,8,1,0,0,0,0,128,0,-1--1--1,,1|(537,695)| 1,45,42,8,1,0,0,0,0,128,0,-1--1--1,,1|(555,721)| 1,46,43,8,1,0,0,0,0,128,0,-1--1--1,,1|(599,750)| 10,47,extraction coal without CTL EJ,1006,464,52,20,8,131,0,0,0,0,0,0 1,48,7,47,1,0,0,0,0,128,0,-1--1--1,,1|(992,418)| 10,49,extraction coal for CTL EJ,891,499,50,18,8,131,0,0,0,0,0,0 1,50,1,49,1,0,0,0,0,128,0,-1--1--1,,1|(937,394)| 1,51,49,47,1,0,0,0,0,128,0,-1--1--1,,1|(949,479)| 10,52,TIME STEP,966,413,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,53,TIME STEP,741,349,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,54,cumulated coal extraction to 1995,699,411,67,19,8,3,0,0,0,0,0,0 1,55,54,3,0,0,0,0,0,128,1,-1--1--1,,1|(922,389)| 10,56,PED coal without CTL,1034,215,60,20,8,131,0,0,0,0,0,0 1,57,7,30,1,0,0,0,0,128,0,-1--1--1,,1|(1118,319)| 12,58,0,1435,520,213,196,3,188,0,0,1,0,0,0 Coal_extraction 10,59,PED coal EJ,1081,118,50,11,8,2,0,3,0,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,60,59,30,1,0,0,0,0,128,0,-1--1--1,,1|(1133,159)| 1,61,59,7,1,0,0,0,0,128,0,-1--1--1,,1|(1093,265)| 1,62,59,56,0,0,0,0,0,128,0,-1--1--1,,1|(1062,155)| 1,63,1,56,1,0,0,0,0,128,0,-1--1--1,,1|(1003,246)| 10,64,URR coal unlimited,337,544,71,17,8,131,0,0,0,0,0,0 10,65,"unlimited coal?",620,488,47,11,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,66,65,19,0,0,0,0,0,128,0,-1--1--1,,1|(586,471)| 1,67,64,19,1,0,0,0,0,128,0,-1--1--1,,1|(468,504)| 1,68,65,7,0,0,0,0,0,128,0,-1--1--1,,1|(787,433)| 1,69,37,64,1,0,0,0,0,128,0,-1--1--1,,1|(271,484)| 10,70,FED Heat coal plants EJ,1117,66,62,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,71,"unlimited NRE?",606,535,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,72,71,19,1,0,0,0,0,128,0,-1--1--1,,1|(558,504)| 1,73,71,7,1,0,0,0,0,128,0,-1--1--1,,1|(781,457)| 1,74,76,78,4,0,0,22,0,0,0,-1--1--1,,1|(753,262)| 1,75,76,2,100,0,0,22,0,0,0,-1--1--1,,1|(753,319)| 11,76,31872,753,292,8,6,33,3,0,0,4,0,0,0 10,77,Flow coal left in ground,812,292,51,19,40,3,0,0,-1,0,0,0 10,78,Total coal left in ground,766,218,53,21,3,131,0,0,0,0,0,0 10,79,share RURR coal to leave underground,486,254,79,19,8,3,0,0,0,0,0,0 10,80,coal to leave underground,636,191,55,19,8,131,0,0,0,0,0,0 1,81,79,80,0,0,0,0,0,128,0,-1--1--1,,1|(554,225)| 10,82,Start policy leave in ground coal,801,127,62,19,8,131,0,0,0,0,0,0 10,83,Tot RURR coal,598,318,53,19,8,3,0,0,0,0,0,0 1,84,78,83,0,0,0,0,0,128,0,-1--1--1,,1|(686,265)| 1,85,2,83,0,0,0,0,0,128,0,-1--1--1,,1|(691,342)| 1,86,54,2,0,0,0,0,0,64,1,-1--1--1,,1|(723,392)| 1,87,19,2,0,0,0,0,0,64,1,-1--1--1,,1|(637,411)| 1,88,82,77,1,0,0,0,0,128,0,-1--1--1,,1|(852,199)| 1,89,80,77,0,0,0,0,0,128,0,-1--1--1,,1|(717,237)| 10,90,Time,812,330,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,91,90,77,0,0,0,0,0,64,0,-1--1--1,,1|(812,322)| 1,92,83,8,1,0,0,0,0,128,0,-1--1--1,,1|(654,436)| 1,93,2,7,0,0,0,0,0,128,0,-1--1--1,,1|(858,367)| 10,94,extraction coal emissions relevant EJ,1128,579,75,19,8,131,0,0,0,0,0,0 1,95,47,94,0,0,0,0,0,128,0,-1--1--1,,1|(1061,517)| 10,96,"Non-energy use demand by final fuel EJ",1119,663,78,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,97,96,94,0,0,0,0,0,128,0,-1--1--1,,1|(1122,627)| 1,98,82,80,1,0,0,0,0,128,0,-1--1--1,,1|(656,168)| 10,99,table max extraction ASPO oil EJ 0 1 0,507,57,64,19,8,3,3,2,0,0,0,0,0-0-0,0-0-0,|12||255-0-0 10,100,RURR coal start year PLG,447,132,60,19,8,131,0,0,0,0,0,0 10,101,aux12,356,84,27,11,8,3,0,0,-1,0,0,0 1,102,100,101,1,0,0,0,0,128,0,-1--1--1,,1|(409,82)| 1,103,101,100,1,0,0,0,0,128,0,-1--1--1,,1|(375,107)| 10,104,TIME STEP,357,31,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,105,104,101,0,0,0,0,0,64,0,-1--1--1,,1|(356,50)| 1,106,2,100,0,0,0,0,0,128,0,-1--1--1,,1|(610,249)| 1,107,82,100,1,0,0,0,0,64,0,-1--1--1,,1|(595,108)| 10,108,Time,579,143,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,109,108,100,0,0,0,0,0,64,0,-1--1--1,,1|(536,139)| 1,110,108,80,0,0,0,0,0,128,0,-1--1--1,,1|(597,158)| 1,111,100,80,0,0,0,0,0,128,0,-1--1--1,,1|(537,159)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *NRE AVAILABILITY - Uranium extraction #EAN $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,RURR uranium,612,166,44,21,3,131,0,0,0,0,0,0 10,2,Cumulated uranium extraction,918,166,62,22,3,131,0,0,0,0,0,0 1,3,5,2,4,0,0,22,0,0,0,-1--1--1,,1|(809,166)| 1,4,5,1,100,0,0,22,0,0,0,-1--1--1,,1|(703,166)| 11,5,37360,756,166,6,8,34,3,0,0,1,0,0,0 10,6,extraction uranium EJ,756,193,35,19,40,3,0,0,-1,0,0,0 10,7,max extraction uranium EJ,634,311,47,19,8,3,0,0,0,0,0,0 10,8,extraction uranium kt,926,269,36,19,8,3,0,0,0,0,0,0 10,9,Cumulated uranium extraction kt,1086,161,63,23,8,131,0,0,0,0,0,0 1,10,1,7,1,0,0,0,0,64,0,-1--1--1,,1|(606,233)| 1,11,7,6,1,0,0,0,0,64,0,-1--1--1,,1|(692,243)| 1,12,2,9,1,0,0,0,0,64,0,-1--1--1,,1|(1023,127)| 10,13,kt uranium per EJ,1076,266,55,11,8,131,0,0,0,0,0,0 1,14,13,9,1,0,0,0,0,64,0,-1--1--1,,1|(1091,239)| 10,15,table max extraction uranium EWG13 EJ,361,451,64,19,8,3,0,0,0,0,0,0 1,16,6,8,1,0,0,0,0,64,0,-1--1--1,,1|(830,249)| 1,17,15,7,1,0,0,0,0,64,0,-1--1--1,,1|(506,395)| 10,18,Time,1096,109,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,19,URR uranium,449,169,43,11,8,3,0,0,0,0,0,0 1,20,19,1,0,0,0,0,0,64,1,-1--1--1,,1|(522,167)| 10,21,abundance uranium,927,51,35,19,8,3,0,0,0,0,0,0 10,22,Year scarcity uranium,1080,51,44,19,8,3,0,0,0,0,0,0 1,23,21,22,1,0,0,0,0,64,0,-1--1--1,,1|(992,29)| 1,24,18,22,1,0,0,0,0,64,0,-1--1--1,,1|(1092,92)| 10,25,URR uranium EWG13,312,112,44,19,8,3,0,0,0,0,0,0 10,26,URR uranium User defined,304,207,61,19,8,3,0,0,0,0,0,0 10,27,Choose extraction uranium curve,408,339,58,19,8,3,0,0,0,0,0,0 1,28,25,19,1,0,0,0,0,64,0,-1--1--1,,1|(405,124)| 1,29,26,19,1,0,0,0,0,64,0,-1--1--1,,1|(363,205)| 1,30,27,19,1,0,0,0,0,64,0,-1--1--1,,1|(413,236)| 10,31,table max extraction uranium user defined,444,496,66,19,8,3,0,0,0,0,0,0 1,32,31,7,1,0,0,0,0,64,0,-1--1--1,,1|(537,396)| 1,33,27,7,1,0,0,0,0,64,0,-1--1--1,,1|(521,343)| 10,34,URR uranium Zittel12,308,165,44,19,8,3,0,0,0,0,0,0 10,35,table max extraction uranium Zittel12,355,403,64,19,8,3,0,0,0,0,0,0 1,36,35,7,1,0,0,0,0,128,0,-1--1--1,,1|(495,374)| 1,37,34,19,1,0,0,0,0,128,0,-1--1--1,,1|(368,165)| 10,38,cumulated uranium extraction to 1995,591,125,59,19,8,3,0,0,0,0,0,0 1,39,38,1,0,0,0,0,0,128,1,-1--1--1,,1|(595,139)| 1,40,38,2,0,0,0,0,0,128,1,-1--1--1,,1|(746,144)| 1,41,6,21,1,0,0,0,0,128,0,-1--1--1,,1|(828,155)| 12,42,0,911,468,217,162,3,188,0,0,1,0,0,0 Uranium_extraction 10,43,URR uranium unlimited,310,257,44,19,8,3,0,0,0,0,0,0 1,44,25,43,1,0,0,0,0,128,0,-1--1--1,,1|(222,172)| 1,45,43,19,1,0,0,0,0,128,0,-1--1--1,,1|(397,217)| 10,46,"unlimited uranium?",529,243,58,11,8,3,0,2,0,0,0,0,0-0-0,0-0-0,|12||0-128-0 1,47,46,19,0,0,0,0,0,128,0,-1--1--1,,1|(494,210)| 1,48,46,6,0,0,0,0,0,128,0,-1--1--1,,1|(642,217)| 10,49,PE demand uranium EJ,746,51,42,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,6,0,0,0,0,0,128,0,-1--1--1,,1|(750,115)| 1,51,49,21,0,0,0,0,0,128,0,-1--1--1,,1|(833,51)| 10,52,"unlimited NRE?",498,281,59,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||0-128-0 1,53,52,6,1,0,0,0,0,128,0,-1--1--1,,1|(628,249)| 1,54,52,19,1,0,0,0,0,128,0,-1--1--1,,1|(456,243)| 1,55,13,8,0,0,0,0,0,128,0,-1--1--1,,1|(998,267)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *NRE AVAILABILITY - Abundances #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,75,0 10,1,Abundance final fuels,408,286,52,19,8,3,0,0,0,0,0,0 10,2,Abundance electricity,523,139,42,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,3,2,1,0,0,0,0,0,64,0,-1--1--1,,1|(469,207)| 10,4,abundance gases,303,141,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,1,0,0,0,0,0,64,0,-1--1--1,,1|(350,207)| 10,6,Abundance heat,642,140,42,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,1,0,0,0,0,0,64,0,-1--1--1,,1|(530,209)| 10,8,abundance liquids,180,144,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,1,0,0,0,0,0,64,0,-1--1--1,,1|(287,211)| 10,10,abundance solids,413,142,40,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,10,1,0,0,0,0,0,64,0,-1--1--1,,1|(410,207)| 10,12,scarcity final fuels,297,405,55,11,8,3,0,0,0,0,0,0 1,13,1,12,0,0,0,0,0,64,0,-1--1--1,,1|(353,344)| 10,14,scarcity final fuels counter,490,414,56,19,8,3,0,0,0,0,0,0 1,15,12,14,0,0,0,0,0,64,0,-1--1--1,,1|(386,408)| 10,16,Year init scarcity final fuels,226,558,54,19,8,3,0,0,0,0,0,0 1,17,12,16,0,0,0,0,0,64,0,-1--1--1,,1|(265,471)| 1,18,14,16,0,0,0,0,0,64,0,-1--1--1,,1|(364,482)| 10,19,Time,160,618,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,16,0,0,0,0,0,64,0,-1--1--1,,1|(183,596)| 10,21,TIME STEP,137,483,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,22,21,16,0,0,0,0,0,64,0,-1--1--1,,1|(171,511)| 10,23,Year final scarcity final fuels,503,558,57,19,8,3,0,0,0,0,0,0 1,24,14,23,0,0,0,0,0,64,0,-1--1--1,,1|(495,479)| 1,25,16,23,0,0,0,0,0,64,0,-1--1--1,,1|(356,558)| 10,26,"materials availability (resources)",814,138,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,27,"materials availability (reserves)",1216,145,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,28,scarcity resources counter,891,357,57,19,8,3,0,0,0,0,0,0 1,29,26,28,0,0,0,0,0,128,0,-1--1--1,,1|(849,240)| 10,30,Year init scarcity resources,749,485,54,19,8,3,0,0,0,0,0,0 1,31,28,30,0,0,0,0,0,128,0,-1--1--1,,1|(825,416)| 1,32,26,30,1,0,0,0,0,128,0,-1--1--1,,1|(743,308)| 10,33,Time,680,565,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,30,0,0,0,0,0,64,0,-1--1--1,,1|(705,534)| 10,35,TIME STEP,831,570,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,30,0,0,0,0,0,64,0,-1--1--1,,1|(798,536)| 10,37,Year final scarcity resources,996,488,57,19,8,3,0,0,0,0,0,0 1,38,28,37,0,0,0,0,0,128,0,-1--1--1,,1|(938,417)| 1,39,30,37,0,0,0,0,0,128,0,-1--1--1,,1|(864,485)| 10,40,scarcity reserves counter,1283,334,53,19,8,3,0,0,0,0,0,0 1,41,27,40,0,0,0,0,0,128,0,-1--1--1,,1|(1246,232)| 10,42,Year init scarcity reserves,1186,488,54,19,8,3,0,0,0,0,0,0 1,43,40,42,0,0,0,0,0,128,0,-1--1--1,,1|(1238,405)| 1,44,27,42,1,0,0,0,0,128,0,-1--1--1,,1|(1156,297)| 10,45,Time,1113,569,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,46,45,42,0,0,0,0,0,64,0,-1--1--1,,1|(1140,537)| 10,47,TIME STEP,1260,570,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,48,47,42,0,0,0,0,0,64,0,-1--1--1,,1|(1231,538)| 10,49,Year final scarcity reserves,1378,497,57,19,8,3,0,0,0,0,0,0 1,50,40,49,0,0,0,0,0,128,0,-1--1--1,,1|(1326,409)| 1,51,42,49,0,0,0,0,0,128,0,-1--1--1,,1|(1273,491)| 10,52,Scarcity fuels flag,584,339,61,12,8,131,0,0,0,0,0,0 1,53,14,52,0,0,0,0,0,64,0,-1--1--1,,1|(535,377)| 10,54,Scarcity resources flag,1014,277,44,19,8,3,0,0,0,0,0,0 10,55,Scarcity reserves flag,1437,262,55,19,8,3,0,0,0,0,0,0 1,56,28,54,1,0,0,0,0,128,0,-1--1--1,,1|(942,315)| 1,57,40,55,1,0,0,0,0,128,0,-1--1--1,,1|(1351,287)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *MATERIALS - Recycling&material extraction dem #M $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,703,66,109,32,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|18||0-0-0 Materials recycling 10,2,current recycling rates minerals,1338,618,60,23,8,131,0,0,0,0,0,0 10,3,Historic improvement recycling rates minerals,909,223,84,19,8,131,0,0,0,0,0,0 12,4,48,961,275,10,8,0,3,0,0,-1,0,0,0 1,5,7,9,4,0,0,22,0,0,0,-1--1--1,,1|(1166,277)| 1,6,7,4,100,0,0,22,0,0,0,-1--1--1,,1|(1031,277)| 11,7,48,1098,277,6,8,34,3,0,0,1,0,0,0 10,8,improvement recycling rates minerals alt techn,1098,304,94,19,40,131,0,0,-1,0,0,0 10,9,recycling rates minerals alt techn,1290,277,62,24,3,131,0,0,0,0,0,0 10,10,constrain rr improv for alt techn per mineral,1186,202,71,32,8,131,0,0,0,0,0,0 1,11,9,10,1,0,0,0,0,128,0,-1--1--1,,1|(1269,248)| 10,12,P common rr minerals variation alt techn,1064,469,74,23,8,131,0,0,0,0,0,0 1,13,3,8,1,0,0,0,0,128,0,-1--1--1,,1|(989,243)| 12,14,48,956,670,10,8,0,3,0,0,-1,0,0,0 1,15,17,19,4,0,0,22,0,0,0,-1--1--1,,1|(1161,672)| 1,16,17,14,100,0,0,22,0,0,0,-1--1--1,,1|(1026,672)| 11,17,48,1093,672,6,8,34,3,0,0,1,0,0,0 10,18,improvement recycling rates minerals Rest,1093,699,81,19,40,131,0,0,-1,0,0,0 10,19,recycling rates minerals Rest,1285,672,62,24,3,131,0,0,0,0,0,0 1,20,19,18,0,0,0,0,0,128,0,-1--1--1,,1|(1205,682)| 10,21,constrain rr improv for Rest per mineral,1209,596,78,28,8,131,0,0,0,0,0,0 1,22,19,21,1,0,0,0,0,128,0,-1--1--1,,1|(1269,668)| 1,23,21,18,0,0,0,0,0,128,0,-1--1--1,,1|(1151,647)| 10,24,P common rr minerals variation Rest,1016,843,71,21,8,131,0,0,0,0,0,0 1,25,3,18,1,0,0,0,0,128,0,-1--1--1,,1|(942,430)| 1,26,2,19,1,0,0,0,0,128,1,-1--1--1,,1|(1307,658)| 10,27,"All minerals virgin?",1336,523,66,19,8,3,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,28,27,9,1,0,0,0,0,128,1,-1--1--1,,1|(1295,406)| 1,29,27,19,0,0,0,0,0,128,1,-1--1--1,,1|(1313,588)| 12,30,0,1729,649,237,189,3,188,0,0,1,0,0,0 Recycling_rates_minerals_Rest 12,31,0,1729,271,237,187,3,188,0,0,1,0,0,0 Recycling_rates_minerals_alternative_techn 10,32,"EOL-RR minerals alt techn RES vs. total economy",1375,216,87,22,8,131,0,0,0,0,0,0 10,33,start year P common rr minerals Rest,1217,842,70,21,8,131,0,0,0,0,0,0 10,34,start year P common rr minerals alt techn,1227,463,67,19,8,131,0,0,0,0,0,0 10,35,choose targets mineral recycling rates,1018,168,73,22,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 10,36,common rr minerals variation alt techn,1138,384,64,19,8,3,0,0,0,0,0,0 1,37,3,36,1,0,0,0,0,64,0,-1--1--1,,1|(995,348)| 1,38,12,36,0,0,0,0,0,64,0,-1--1--1,,1|(1097,429)| 1,39,34,36,0,0,0,0,0,64,0,-1--1--1,,1|(1187,428)| 10,40,Time,1217,330,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,41,40,36,0,0,0,0,0,64,0,-1--1--1,,1|(1188,349)| 1,42,36,8,0,0,0,0,0,128,0,-1--1--1,,1|(1121,350)| 1,43,35,8,0,0,0,0,0,128,0,-1--1--1,,1|(1054,231)| 1,44,40,8,0,0,0,0,0,128,0,-1--1--1,,1|(1194,325)| 10,45,by mineral rr alt techn,659,335,64,19,8,3,0,0,0,0,0,0 10,46,start year P rr minerals alt techn,659,192,73,19,8,131,0,0,0,0,0,0 10,47,target year P rr minerals alt techn,382,279,61,19,8,131,0,0,0,0,0,0 10,48,P rr Al alt techn,73,52,50,11,8,3,0,0,0,0,0,0 10,49,P rr minerals alt techn,316,127,50,19,8,131,0,0,0,0,0,0 1,50,48,49,0,0,0,0,0,128,0,-1--1--1,,1|(180,84)| 10,51,P rr Zn alt techn,244,449,51,11,8,3,0,0,0,0,0,0 10,52,P rr Pb alt techn,73,416,51,11,8,3,0,0,0,0,0,0 10,53,P rr Fe alt techn,73,224,51,11,8,3,0,0,0,0,0,0 10,54,P rr V alt techn,244,417,48,11,8,3,0,0,0,0,0,0 10,55,P rr Ti alt techn,244,383,49,11,8,3,0,0,0,0,0,0 10,56,P rr Te alt techn,244,358,51,11,8,3,0,0,0,0,0,0 10,57,P rr Sn alt techn,244,328,51,11,8,3,0,0,0,0,0,0 10,58,P rr Ag alt techn,244,295,52,11,8,3,0,0,0,0,0,0 10,59,P rr Ni alt techn,73,380,50,11,8,3,0,0,0,0,0,0 10,60,P rr Mo alt techn,73,354,54,11,8,3,0,0,0,0,0,0 10,61,P rr Mn alt techn,73,328,53,11,8,3,0,0,0,0,0,0 10,62,P rr Mg alt techn,73,298,53,11,8,3,0,0,0,0,0,0 10,63,P rr Li alt techn,73,266,49,11,8,3,0,0,0,0,0,0 10,64,P rr In alt techn,73,199,49,11,8,3,0,0,0,0,0,0 10,65,P rr Ga alt techn,73,172,52,11,8,3,0,0,0,0,0,0 10,66,P rr Cu alt techn,73,129,52,11,8,3,0,0,0,0,0,0 10,67,P rr Cr alt techn,73,106,57,11,8,3,0,0,0,0,0,0 10,68,P rr Cd alt techn,73,77,57,11,8,3,0,0,0,0,0,0 1,69,68,49,0,0,0,0,0,128,0,-1--1--1,,1|(189,100)| 1,70,67,49,0,0,0,0,0,128,0,-1--1--1,,1|(191,115)| 1,71,66,49,0,0,0,0,0,128,0,-1--1--1,,1|(188,128)| 1,72,65,49,0,0,0,0,0,128,0,-1--1--1,,1|(188,150)| 1,73,64,49,0,0,0,0,0,128,0,-1--1--1,,1|(181,166)| 1,74,53,49,0,0,0,0,0,128,0,-1--1--1,,1|(177,182)| 1,75,63,49,0,0,0,0,0,128,0,-1--1--1,,1|(180,203)| 1,76,62,49,0,0,0,0,0,128,0,-1--1--1,,1|(182,220)| 1,77,61,49,0,0,0,0,0,128,0,-1--1--1,,1|(184,235)| 1,78,60,49,0,0,0,0,0,128,0,-1--1--1,,1|(184,249)| 1,79,59,49,0,0,0,0,0,128,0,-1--1--1,,1|(185,262)| 1,80,52,49,0,0,0,0,0,128,0,-1--1--1,,1|(186,280)| 1,81,58,49,0,0,0,0,0,128,0,-1--1--1,,1|(274,221)| 1,82,57,49,0,0,0,0,0,128,0,-1--1--1,,1|(275,238)| 1,83,56,49,0,0,0,0,0,128,0,-1--1--1,,1|(276,253)| 1,84,55,49,0,0,0,0,0,128,0,-1--1--1,,1|(276,265)| 1,85,54,49,0,0,0,0,0,128,0,-1--1--1,,1|(276,282)| 1,86,51,49,0,0,0,0,0,128,0,-1--1--1,,1|(276,298)| 1,87,9,8,0,0,0,0,0,128,0,-1--1--1,,1|(1216,286)| 10,88,current recycling rates minerals alt techn,1363,331,70,19,8,3,0,0,0,0,0,0 1,89,2,88,1,0,0,0,0,128,0,-1--1--1,,1|(1433,472)| 1,90,32,88,1,0,0,0,0,128,0,-1--1--1,,1|(1395,280)| 1,91,88,9,0,0,0,0,0,128,1,-1--1--1,,1|(1335,310)| 1,92,10,8,1,0,0,0,0,128,0,-1--1--1,,1|(1110,223)| 10,93,a lineal regr rr alt techn,515,323,45,18,8,131,0,0,-1,0,0,0 10,94,b lineal regr rr alt techn,514,226,44,20,8,131,0,0,-1,0,0,0 1,95,93,94,0,0,0,0,0,0,0,-1--1--1,,1|(514,282)| 1,96,46,93,0,0,0,0,0,128,0,-1--1--1,,1|(591,253)| 1,97,47,93,0,0,0,0,0,128,0,-1--1--1,,1|(447,300)| 1,98,49,93,0,0,0,0,0,128,0,-1--1--1,,1|(410,220)| 1,99,49,94,0,0,0,0,0,64,0,-1--1--1,,1|(407,172)| 1,100,47,94,0,0,0,0,0,64,0,-1--1--1,,1|(443,254)| 1,101,93,45,0,0,0,0,0,64,0,-1--1--1,,1|(570,326)| 1,102,94,45,0,0,0,0,0,64,0,-1--1--1,,1|(580,276)| 10,103,by mineral rr alt techn 1yr,802,378,55,20,8,131,0,0,-1,0,0,0 1,104,45,103,0,0,0,0,0,128,0,-1--1--1,,1|(727,355)| 1,105,88,103,0,0,0,0,0,128,1,-1--1--1,,1|(1081,353)| 10,106,by mineral rr variation alt techn,813,309,56,19,8,3,0,0,0,0,0,0 1,107,45,106,0,0,0,0,0,128,0,-1--1--1,,1|(733,322)| 1,108,103,106,0,0,0,0,0,128,0,-1--1--1,,1|(806,349)| 1,109,106,8,0,0,0,0,0,128,0,-1--1--1,,1|(929,307)| 1,110,3,106,0,0,0,0,0,64,0,-1--1--1,,1|(866,261)| 1,111,46,106,0,0,0,0,0,64,0,-1--1--1,,1|(729,246)| 10,112,Time,687,264,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,113,112,106,0,0,0,0,0,64,0,-1--1--1,,1|(729,279)| 10,114,Max recycling rates minerals,1190,111,54,21,8,131,0,0,-1,0,0,0 1,115,114,10,0,0,0,0,0,128,0,-1--1--1,,1|(1189,144)| 10,116,current recycling rates minerals alt techn,444,395,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,117,116,93,0,0,0,0,0,128,0,-1--1--1,,1|(474,363)| 1,118,112,45,0,0,0,0,0,128,0,-1--1--1,,1|(677,289)| 1,119,114,21,1,0,0,0,0,128,0,-1--1--1,,1|(1253,358)| 10,120,common rr minerals variation Rest,1067,780,63,19,8,3,0,0,0,0,0,0 1,121,24,120,0,0,0,0,0,128,0,-1--1--1,,1|(1037,816)| 1,122,33,120,0,0,0,0,0,128,0,-1--1--1,,1|(1145,812)| 1,123,3,120,1,0,0,0,0,128,0,-1--1--1,,1|(1024,714)| 10,124,Time,1254,733,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,125,124,120,0,0,0,0,0,64,0,-1--1--1,,1|(1185,749)| 1,126,124,18,0,0,0,0,0,128,0,-1--1--1,,1|(1207,723)| 1,127,35,18,0,0,0,0,0,128,0,-1--1--1,,1|(1054,428)| 10,128,by mineral rr Rest,659,754,50,19,8,3,0,0,0,0,0,0 10,129,start year P rr minerals Rest,659,611,61,19,8,131,0,0,0,0,0,0 10,130,target year P rr minerals Rest,382,698,61,19,8,131,0,0,0,0,0,0 10,131,P rr Al Rest,73,471,38,11,8,3,0,0,0,0,0,0 10,132,P rr minerals Rest,316,546,56,11,8,131,0,0,0,0,0,0 1,133,131,132,0,0,0,0,0,128,0,-1--1--1,,1|(187,506)| 10,134,P rr Zn Rest,244,868,39,11,8,3,0,0,0,0,0,0 10,135,P rr Pb Rest,73,835,40,11,8,3,0,0,0,0,0,0 10,136,P rr Fe Rest,73,643,39,11,8,3,0,0,0,0,0,0 10,137,P rr V Rest,244,836,37,11,8,3,0,0,0,0,0,0 10,138,P rr Ti Rest,244,802,37,11,8,3,0,0,0,0,0,0 10,139,P rr Te Rest,244,777,39,11,8,3,0,0,0,0,0,0 10,140,P rr Sn Rest,244,747,39,11,8,3,0,0,0,0,0,0 10,141,P rr Ag Rest,244,714,40,11,8,3,0,0,0,0,0,0 10,142,P rr Ni Rest,73,799,39,11,8,3,0,0,0,0,0,0 10,143,P rr Mo Rest,73,773,42,11,8,3,0,0,0,0,0,0 10,144,P rr Mn Rest,73,747,42,11,8,3,0,0,0,0,0,0 10,145,P rr Mg Rest,73,717,42,11,8,3,0,0,0,0,0,0 10,146,P rr Li Rest,73,685,37,11,8,3,0,0,0,0,0,0 10,147,P rr In Rest,73,618,37,11,8,3,0,0,0,0,0,0 10,148,P rr Ga Rest,73,591,40,11,8,3,0,0,0,0,0,0 10,149,P rr Cu Rest,73,548,40,11,8,3,0,0,0,0,0,0 10,150,P rr Cr Rest,73,525,39,11,8,3,0,0,0,0,0,0 10,151,P rr Cd Rest,73,496,41,11,8,3,0,0,0,0,0,0 1,152,151,132,0,0,0,0,0,128,0,-1--1--1,,1|(181,518)| 1,153,150,132,0,0,0,0,0,128,0,-1--1--1,,1|(179,533)| 1,154,149,132,0,0,0,0,0,128,0,-1--1--1,,1|(179,547)| 1,155,148,132,0,0,0,0,0,128,0,-1--1--1,,1|(179,571)| 1,156,147,132,0,0,0,0,0,128,0,-1--1--1,,1|(187,584)| 1,157,136,132,0,0,0,0,0,128,0,-1--1--1,,1|(187,597)| 1,158,146,132,0,0,0,0,0,128,0,-1--1--1,,1|(187,618)| 1,159,145,132,0,0,0,0,0,128,0,-1--1--1,,1|(188,635)| 1,160,144,132,0,0,0,0,0,128,0,-1--1--1,,1|(188,650)| 1,161,143,132,0,0,0,0,0,128,0,-1--1--1,,1|(188,664)| 1,162,142,132,0,0,0,0,0,128,0,-1--1--1,,1|(189,677)| 1,163,135,132,0,0,0,0,0,128,0,-1--1--1,,1|(189,695)| 1,164,141,132,0,0,0,0,0,128,0,-1--1--1,,1|(276,636)| 1,165,140,132,0,0,0,0,0,128,0,-1--1--1,,1|(277,653)| 1,166,139,132,0,0,0,0,0,128,0,-1--1--1,,1|(277,668)| 1,167,138,132,0,0,0,0,0,128,0,-1--1--1,,1|(277,680)| 1,168,137,132,0,0,0,0,0,128,0,-1--1--1,,1|(277,697)| 1,169,134,132,0,0,0,0,0,128,0,-1--1--1,,1|(277,713)| 10,170,a lineal regr rr Rest,515,742,54,19,8,131,0,0,-1,0,0,0 10,171,b lineal regr rr Rest,514,645,54,19,8,131,0,0,-1,0,0,0 1,172,170,171,0,0,0,0,0,0,0,-1--1--1,,1|(514,700)| 1,173,129,170,0,0,0,0,0,128,0,-1--1--1,,1|(592,671)| 1,174,130,170,0,0,0,0,0,128,0,-1--1--1,,1|(443,718)| 1,175,132,170,0,0,0,0,0,128,0,-1--1--1,,1|(406,635)| 1,176,132,171,0,0,0,0,0,64,0,-1--1--1,,1|(400,588)| 1,177,130,171,0,0,0,0,0,64,0,-1--1--1,,1|(441,674)| 1,178,170,128,0,0,0,0,0,64,0,-1--1--1,,1|(582,746)| 1,179,171,128,0,0,0,0,0,64,0,-1--1--1,,1|(580,695)| 10,180,by mineral rr Rest 1yr,814,793,50,19,8,131,0,0,-1,0,0,0 1,181,128,180,0,0,0,0,0,128,0,-1--1--1,,1|(729,771)| 10,182,by mineral rr variation Rest,813,728,62,19,8,3,0,0,0,0,0,0 1,183,128,182,0,0,0,0,0,128,0,-1--1--1,,1|(723,743)| 1,184,180,182,0,0,0,0,0,128,0,-1--1--1,,1|(813,767)| 1,185,129,182,0,0,0,0,0,64,0,-1--1--1,,1|(729,665)| 10,186,Time,687,683,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,187,186,182,0,0,0,0,0,64,0,-1--1--1,,1|(729,698)| 1,188,186,128,0,0,0,0,0,128,0,-1--1--1,,1|(677,708)| 1,189,88,180,0,0,0,0,0,64,1,-1--1--1,,1|(1093,557)| 1,190,3,182,1,0,0,0,0,64,0,-1--1--1,,1|(862,468)| 1,191,182,18,0,0,0,0,0,128,0,-1--1--1,,1|(936,715)| 1,192,120,18,0,0,0,0,0,64,0,-1--1--1,,1|(1077,746)| 10,193,current recycling rates minerals,484,828,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,194,193,170,0,0,0,0,0,128,0,-1--1--1,,1|(496,791)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *MATERIALS - Demand for RES ELEC #M $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"materials per new capacity installed - PV",1432,181,72,24,8,131,0,0,0,0,0,0 10,2,M per T,936,559,28,11,8,3,0,0,0,0,0,0 10,3,materials required for new PV Mt,791,321,57,19,8,3,0,0,0,0,0,0 10,4,kg per Mt,1011,556,34,11,8,3,0,0,0,0,0,0 12,5,48,1070,495,10,8,0,3,0,0,-1,0,0,0 1,6,8,10,4,0,0,22,0,0,0,-1--1--1,,1|(1300,494)| 1,7,8,5,100,0,0,22,0,0,0,-1--1--1,,1|(1140,494)| 11,8,48,1207,494,6,8,34,3,0,0,1,0,0,0 10,9,Total materials required for RES elec Mt,1207,522,89,20,40,131,0,0,-1,0,0,0 10,10,cum materials requirements for RES elec,1479,501,91,26,3,131,0,0,0,0,0,0 10,11,initial cumulated material requirements for RES elec 1995,1589,448,104,20,8,131,0,0,0,0,0,0 1,12,11,10,0,0,0,0,0,128,1,-1--1--1,,1|(1546,468)| 10,13,"materials per new capacity installed - CSP",1423,250,80,23,8,131,0,0,0,0,0,0 10,14,materials required for new CSP Mt,816,370,57,19,8,3,0,0,0,0,0,0 10,15,materials required for new wind onshore Mt,838,411,75,18,8,131,0,0,0,0,0,0 10,16,"materials per new capacity installed - wind onshore",1430,323,82,16,8,131,0,0,0,0,0,0 10,17,"materials per new capacity installed - wind offshore",1426,393,89,19,8,131,0,0,0,0,0,0 10,18,materials required for new wind offshore Mt,868,463,74,21,8,131,0,0,0,0,0,0 10,19,installed capacity RES elec TW,756,869,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,20,0,825,757,111,35,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 Operation&maintenance 12,21,0,825,146,86,23,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 New capacity under construction 10,22,"materials for O&M per capacity installed - PV",1348,788,83,20,8,131,0,0,0,0,0,0 10,23,"materials for O&M per capacity installed - CSP",1347,861,78,19,8,131,0,0,0,0,0,0 10,24,"materials for O&M per capacity installed - wind onshore",1365,940,105,20,8,131,0,0,0,0,0,0 10,25,"materials for O&M per capacity installed - wind offshore",1367,1024,103,28,8,131,0,0,0,0,0,0 10,26,"materials required for O&M PV Mt",794,956,68,19,8,3,0,0,0,0,0,0 10,27,"materials required for O&M CSP Mt",842,1003,68,19,8,3,0,0,0,0,0,0 10,28,"materials required for O&M wind onshore Mt",894,1048,82,20,8,131,0,0,0,0,0,0 10,29,"materials required for O&M wind offshore Mt",1000,1096,79,22,8,131,0,0,0,0,0,0 10,30,"Total materials required for O&M RES elec Mt",1163,742,94,20,8,131,0,0,0,0,0,0 1,31,30,9,1,0,0,0,0,128,0,-1--1--1,,1|(1163,633)| 10,32,Total materials required for new RES elec Mt,1131,437,78,19,8,3,0,0,0,0,0,0 1,33,32,9,1,0,0,0,0,128,0,-1--1--1,,1|(1167,470)| 10,34,materials required for new RES elec Mt,1042,222,68,19,8,3,0,0,0,0,0,0 1,35,2,34,0,0,0,0,0,128,0,-1--1--1,,1|(985,401)| 1,36,4,34,0,0,0,0,0,128,0,-1--1--1,,1|(1025,399)| 1,37,34,32,1,0,0,0,0,128,0,-1--1--1,,1|(1095,327)| 1,38,34,18,0,0,0,0,0,128,0,-1--1--1,,1|(960,335)| 1,39,34,15,0,0,0,0,0,128,0,-1--1--1,,1|(944,312)| 1,40,34,14,0,0,0,0,0,128,0,-1--1--1,,1|(934,292)| 1,41,34,3,0,0,0,0,0,128,0,-1--1--1,,1|(923,268)| 10,42,"materials required for O&M RES elec Mt",988,868,68,19,8,3,0,0,0,0,0,0 1,43,19,42,0,0,0,0,0,128,0,-1--1--1,,1|(860,868)| 1,44,42,30,0,0,0,0,0,128,0,-1--1--1,,1|(1068,809)| 1,45,42,26,0,0,0,0,0,128,0,-1--1--1,,1|(897,909)| 1,46,42,27,0,0,0,0,0,128,0,-1--1--1,,1|(920,930)| 1,47,42,28,0,0,0,0,0,128,0,-1--1--1,,1|(944,951)| 1,48,42,29,0,0,0,0,0,128,0,-1--1--1,,1|(993,973)| 1,49,2,42,0,0,0,0,0,128,0,-1--1--1,,1|(959,702)| 1,50,4,42,0,0,0,0,0,128,0,-1--1--1,,1|(1000,701)| 10,51,"materials for O&M per capacity installed RES elec",1163,873,65,32,8,131,0,0,0,0,0,0 1,52,25,51,0,0,0,0,0,128,0,-1--1--1,,1|(1273,954)| 1,53,24,51,0,0,0,0,0,128,0,-1--1--1,,1|(1273,909)| 1,54,23,51,0,0,0,0,0,128,0,-1--1--1,,1|(1255,866)| 1,55,22,51,0,0,0,0,0,128,0,-1--1--1,,1|(1272,822)| 1,56,51,42,0,0,0,0,0,128,0,-1--1--1,,1|(1083,870)| 10,57,"materials per new RES elec capacity installed - material overgrid high power",1374,56,87,28,8,131,0,0,0,0,0,0 10,58,"materials per new RES elec capacity installed - HVDCs",1427,124,87,19,8,131,0,0,0,0,0,0 10,59,RES elec capacity under construction TW,793,231,83,27,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,60,59,34,0,0,0,0,0,128,0,-1--1--1,,1|(918,226)| 12,61,48,1233,638,10,8,0,3,0,0,-1,0,0,0 1,62,64,66,4,0,0,22,0,0,0,-1--1--1,,1|(1463,644)| 1,63,64,61,100,0,0,22,0,0,0,-1--1--1,,1|(1303,644)| 11,64,48,1370,644,6,8,34,3,0,0,1,0,0,0 10,65,Total materials to extract for RES elec Mt,1370,672,75,19,40,131,0,0,-1,0,0,0 10,66,cum materials to extract for RES elec,1630,646,79,27,3,131,0,0,0,0,0,0 10,67,recycling rates minerals alt techn,1503,594,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,68,67,65,0,0,0,0,0,128,0,-1--1--1,,1|(1442,629)| 1,69,9,65,1,0,0,0,0,128,0,-1--1--1,,1|(1263,608)| 1,70,11,66,0,0,0,0,0,128,1,-1--1--1,,1|(1607,536)| 12,71,48,1465,739,10,8,0,3,0,0,-1,0,0,0 1,72,74,76,4,0,0,22,0,0,0,-1--1--1,,1|(1695,738)| 1,73,74,71,100,0,0,22,0,0,0,-1--1--1,,1|(1535,738)| 11,74,48,1602,738,6,8,34,3,0,0,1,0,0,0 10,75,Total materials to extract for RES elec from 2015 Mt,1602,768,103,22,40,131,0,0,-1,0,0,0 10,76,cum materials to extract for RES elec from 2015,1862,740,79,27,3,131,0,0,0,0,0,0 1,77,65,75,0,0,0,0,0,128,0,-1--1--1,,1|(1475,715)| 1,78,11,76,0,0,0,0,0,128,1,-1--1--1,,1|(1716,585)| 10,79,Time,1608,690,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,80,79,75,0,0,0,0,0,64,0,-1--1--1,,1|(1606,716)| 10,81,Total recycled materials for RES elec Mt,1347,581,66,27,8,131,0,0,0,0,0,0 1,82,9,81,0,0,0,0,0,128,0,-1--1--1,,1|(1261,545)| 1,83,65,81,0,0,0,0,0,128,0,-1--1--1,,1|(1361,637)| 10,84,materials for new RES elec per capacity installed,1213,214,68,40,8,131,0,0,0,0,0,0 1,85,1,84,0,0,0,0,0,128,0,-1--1--1,,1|(1327,195)| 1,86,13,84,0,0,0,0,0,128,0,-1--1--1,,1|(1318,232)| 1,87,16,84,0,0,0,0,0,128,0,-1--1--1,,1|(1346,280)| 1,88,17,84,0,0,0,0,0,128,0,-1--1--1,,1|(1337,318)| 1,89,57,84,0,0,0,0,0,128,0,-1--1--1,,1|(1304,124)| 1,90,58,84,0,0,0,0,0,128,0,-1--1--1,,1|(1337,161)| 1,91,84,34,0,0,0,0,0,128,0,-1--1--1,,1|(1134,217)| 10,92,"include materials for overgrids?",1161,105,64,19,8,3,0,0,0,0,0,0 1,93,92,84,0,0,0,0,0,128,0,-1--1--1,,1|(1178,142)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *MATERIALS - Demand for EV batteries #M $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"materials per new capacity installed - EV batteries",715,160,90,24,8,131,0,0,0,0,0,0 10,2,materials required for EV batteries Mt,489,162,68,19,8,3,0,0,0,0,0,0 1,3,1,2,0,0,0,0,0,128,0,-1--1--1,,1|(597,160)| 10,4,kg per Mt,544,71,42,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,2,0,0,0,0,0,64,0,-1--1--1,,1|(522,106)| 10,6,M per T,416,70,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,2,0,0,0,0,0,64,0,-1--1--1,,1|(444,106)| 12,8,48,385,304,10,8,0,3,0,0,-1,0,0,0 1,9,11,13,4,0,0,22,0,0,0,-1--1--1,,1|(615,303)| 1,10,11,8,100,0,0,22,0,0,0,-1--1--1,,1|(455,303)| 11,11,48,522,303,6,8,34,3,0,0,1,0,0,0 10,12,Total materials required for EV batteries,522,331,75,19,40,131,0,0,-1,0,0,0 10,13,cum materials requirements for EV batteries,794,310,91,26,3,131,0,0,0,0,0,0 10,14,initial cumulated material requirements for EV batteries 1995,935,256,114,27,8,131,0,0,0,0,0,0 1,15,14,13,0,0,0,0,0,128,1,-1--1--1,,1|(869,281)| 12,16,48,548,447,10,8,0,3,0,0,-1,0,0,0 1,17,19,21,4,0,0,22,0,0,0,-1--1--1,,1|(778,453)| 1,18,19,16,100,0,0,22,0,0,0,-1--1--1,,1|(618,453)| 11,19,48,685,453,6,8,34,3,0,0,1,0,0,0 10,20,Total materials to extract for EV batteries Mt,685,481,82,19,40,131,0,0,-1,0,0,0 10,21,cum materials to extract for EV batteries,945,455,79,27,3,131,0,0,0,0,0,0 10,22,recycling rates minerals alt techn,818,403,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,23,22,20,0,0,0,0,0,128,0,-1--1--1,,1|(757,438)| 1,24,12,20,1,0,0,0,0,128,0,-1--1--1,,1|(578,417)| 1,25,14,21,0,0,0,0,0,128,1,-1--1--1,,1|(939,348)| 12,26,48,780,548,10,8,0,3,0,0,-1,0,0,0 1,27,29,31,4,0,0,22,0,0,0,-1--1--1,,1|(1010,547)| 1,28,29,26,100,0,0,22,0,0,0,-1--1--1,,1|(850,547)| 11,29,48,917,547,6,8,34,3,0,0,1,0,0,0 10,30,Total materials to extract for EV batteries from 2015 Mt,917,577,79,28,40,131,0,0,-1,0,0,0 10,31,cum materials to extract for EV batteries from 2015,1177,549,79,27,3,131,0,0,0,0,0,0 1,32,20,30,0,0,0,0,0,128,0,-1--1--1,,1|(783,521)| 1,33,14,31,0,0,0,0,0,128,1,-1--1--1,,1|(1051,397)| 10,34,Time,923,499,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,35,34,30,0,0,0,0,0,64,0,-1--1--1,,1|(921,522)| 10,36,Total recycled materials for EV batteries Mt,662,390,75,19,8,131,0,0,0,0,0,0 1,37,12,36,0,0,0,0,0,128,0,-1--1--1,,1|(585,357)| 1,38,20,36,0,0,0,0,0,128,0,-1--1--1,,1|(675,442)| 1,39,2,12,0,0,0,0,0,128,0,-1--1--1,,1|(503,239)| 10,40,"new+replaced batteries TW",264,165,57,23,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,41,40,2,0,0,0,0,0,128,0,-1--1--1,,1|(364,163)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *MATERIALS - Rest demand #M $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,802,56,237,41,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|18||0-0-0 Materials demand of the rest of the economy (all excepting RES elec & EV bateries) 10,2,Total materials required for RES elec Mt,1335,56,85,23,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,3,share minerals consumption alt techn vs total economy,1262,145,86,32,8,131,0,0,0,0,0,0 10,4,initial cumulated material requirements for Rest 1995,1394,488,95,29,8,131,0,0,0,0,0,0 10,5,Mt per tonne,819,135,40,11,8,3,0,0,0,0,0,0 12,6,48,988,541,10,8,0,3,0,0,-1,0,0,0 1,7,9,11,4,0,0,22,0,0,0,-1--1--1,,1|(1196,541)| 1,8,9,6,100,0,0,22,0,0,0,-1--1--1,,1|(1057,541)| 11,9,48,1123,541,6,8,34,3,0,0,1,0,0,0 10,10,Materials to extract Rest Mt,1123,568,82,19,40,131,0,0,-1,0,0,0 10,11,cum materials to extract Rest,1343,542,79,27,3,131,0,0,0,0,0,0 12,12,48,1060,645,10,8,0,3,0,0,-1,0,0,0 1,13,15,17,4,0,0,22,0,0,0,-1--1--1,,1|(1269,639)| 1,14,15,12,100,0,0,22,0,0,0,-1--1--1,,1|(1130,639)| 11,15,48,1197,639,6,8,34,3,0,0,1,0,0,0 10,16,Materials to extract Rest from 2015 Mt,1197,675,79,28,40,131,0,0,-1,0,0,0 10,17,cum materials to extract Rest from 2015,1414,648,79,27,3,131,0,0,0,0,0,0 1,18,10,16,0,0,0,0,0,128,0,-1--1--1,,1|(1152,611)| 10,19,Time,1232,598,26,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,16,0,0,0,0,0,64,0,-1--1--1,,1|(1220,621)| 10,21,Total recycled materials for other Mt,1434,328,75,19,8,131,0,0,0,0,0,0 1,22,4,11,0,0,0,0,0,64,1,-1--1--1,,1|(1372,510)| 1,23,4,17,0,0,0,0,0,64,1,-1--1--1,,1|(1402,562)| 10,24,Total materials required for EV batteries,1530,51,87,29,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,25,"'a' extraction projection minerals",929,373,60,19,8,3,0,0,-1,0,0,0 10,26,"'b' extraction projection minerals",1073,382,60,19,8,3,0,0,-1,0,0,0 10,27,recycling rates minerals Rest,1475,402,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,28,Minerals consumption estimation Rest cte rr,1307,248,70,19,8,3,0,0,0,0,0,0 10,29,current recycling rates minerals,1491,246,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,28,0,0,0,0,0,128,0,-1--1--1,,1|(1412,246)| 10,31,Minerals extraction projection Rest with rr,1279,398,82,20,8,131,0,0,0,0,0,0 1,32,28,31,0,0,0,0,0,128,0,-1--1--1,,1|(1294,315)| 1,33,27,31,0,0,0,0,0,128,0,-1--1--1,,1|(1399,400)| 10,34,Historical extraction minerals Rest,641,381,64,19,8,3,0,0,-1,0,0,0 12,35,48,759,237,10,8,0,3,0,0,-1,0,0,0 1,36,38,40,4,0,0,22,0,0,0,-1--1--1,,1|(970,237)| 1,37,38,35,100,0,0,22,0,0,0,-1--1--1,,1|(825,237)| 11,38,48,887,237,6,8,34,3,0,0,1,0,0,0 10,39,variation minerals extraction Rest,887,267,77,22,40,131,0,0,-1,0,0,0 10,40,Minerals extraction projection Rest cte rr,1121,237,73,27,3,131,0,0,0,0,0,0 10,41,Historical variation minerals extraction Rest,701,320,78,22,8,131,0,0,0,0,0,0 1,42,34,41,0,0,0,0,0,128,0,-1--1--1,,1|(664,356)| 1,43,41,39,0,0,0,0,0,128,0,-1--1--1,,1|(787,295)| 1,44,25,39,0,0,0,0,0,64,0,-1--1--1,,1|(911,327)| 10,45,GDP,1023,156,27,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,46,45,39,0,0,0,0,0,64,0,-1--1--1,,1|(966,201)| 1,47,5,39,0,0,0,0,0,64,0,-1--1--1,,1|(846,189)| 10,48,Time,769,383,44,16,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,49,48,39,0,0,0,0,0,64,0,-1--1--1,,1|(819,332)| 10,50,initial minerals extraction Rest,1151,284,67,19,8,3,0,0,-1,0,0,0 1,51,50,40,0,0,0,0,0,64,1,-1--1--1,,1|(1143,269)| 10,52,GDP delayed 1yr,960,120,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,53,52,39,0,0,0,0,0,64,0,-1--1--1,,1|(927,185)| 1,54,5,40,0,0,0,0,0,128,1,-1--1--1,,1|(942,176)| 1,55,40,39,1,0,0,0,0,128,0,-1--1--1,,1|(994,294)| 1,56,40,28,0,0,0,0,0,128,0,-1--1--1,,1|(1208,241)| 1,57,48,41,0,0,0,0,0,128,0,-1--1--1,,1|(743,359)| 1,58,28,3,0,0,0,0,0,128,0,-1--1--1,,1|(1289,209)| 10,59,"Total materials required for RES elec + EV batteries Mt",1466,147,72,27,8,131,0,0,0,0,0,0 1,60,2,59,0,0,0,0,0,128,0,-1--1--1,,1|(1391,95)| 1,61,24,59,0,0,0,0,0,128,0,-1--1--1,,1|(1501,94)| 1,62,59,3,0,0,0,0,0,128,0,-1--1--1,,1|(1377,146)| 12,63,12321662,744,653,219,233,3,188,0,0,1,0,0,0 Share_minerals_consumption_alt_techn_vs_total 1,64,31,10,0,0,0,0,0,128,0,-1--1--1,,1|(1205,478)| 1,65,31,21,0,0,0,0,0,128,0,-1--1--1,,1|(1350,365)| 1,66,28,21,0,0,0,0,0,128,0,-1--1--1,,1|(1364,284)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *MATERIALS - Total extraction demand vs stocks #M $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,15664586,1995,322,304,287,3,188,0,0,1,0,0,0 Share_tot_cum_dem_materials_vs_reserves 12,2,9896984,1997,916,304,300,3,188,0,0,1,0,0,0 Share_tot_cum_dem_materials_vs_resources 10,3,share cum dem materials to extract alt techn vs total,1174,512,84,19,8,3,0,0,-1,0,0,0 10,4,total cumulative demand materials to extract from 2015,1212,345,98,20,8,131,0,0,-1,0,0,0 1,5,4,3,0,0,0,0,0,0,0,-1--1--1,,1|(1194,422)| 10,6,share tot cum dem vs reserves materials,1418,407,63,28,8,3,0,0,-1,0,0,0 10,7,share tot cum dem vs resources materials,1431,292,67,28,8,3,0,0,-1,0,0,0 10,8,"materials availability (resources)",1621,289,63,19,8,3,0,0,-1,0,0,0 10,9,"materials availability (reserves)",1600,412,63,19,8,3,0,0,-1,0,0,0 10,10,current mineral reserves Mt,603,379,47,19,8,3,0,0,-1,0,0,0 1,11,4,6,0,0,0,0,0,0,0,-1--1--1,,1|(1309,374)| 10,12,current mineral resources Mt,879,377,47,19,8,3,0,0,-1,0,0,0 1,13,4,7,0,0,0,0,0,0,0,-1--1--1,,1|(1322,318)| 1,14,6,9,0,0,0,0,0,0,0,-1--1--1,,1|(1502,408)| 1,15,7,8,0,0,0,0,0,128,0,-1--1--1,,1|(1521,290)| 10,16,share materials cum demand to extract vs reserves for RES elec,606,477,104,25,8,131,0,0,-1,0,0,0 10,17,share materials cum demand to extract vs resources for RES elec,867,473,107,19,8,131,0,0,-1,0,0,0 1,18,10,16,0,0,0,0,0,0,0,-1--1--1,,1|(603,418)| 1,19,12,17,0,0,0,0,0,0,0,-1--1--1,,1|(873,418)| 12,20,0,749,111,272,33,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|18||0-0-0 Materials to be extracted demand vs reserves/resources 10,21,cum materials to extract for RES elec from 2015,852,657,81,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,22,share other cumulative demand to extract vs reserves materials,607,274,71,28,8,3,0,0,-1,0,0,0 10,23,share other cumulative demand to extract vs resources materials,878,276,71,28,8,3,0,0,-1,0,0,0 1,24,10,22,0,0,0,0,0,0,0,-1--1--1,,1|(603,337)| 1,25,12,23,0,0,0,0,0,0,0,-1--1--1,,1|(878,337)| 10,26,cum materials to extract Rest from 2015,779,185,80,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,22,0,0,0,0,0,128,0,-1--1--1,,1|(708,221)| 1,28,26,23,0,0,0,0,0,128,0,-1--1--1,,1|(817,221)| 1,29,26,4,1,0,0,0,0,128,0,-1--1--1,,1|(1023,237)| 10,30,current mineral reserves Mt,1418,502,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,31,current mineral resources Mt,1416,213,52,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,32,31,7,0,0,0,0,0,128,0,-1--1--1,,1|(1420,241)| 1,33,30,6,0,0,0,0,0,128,0,-1--1--1,,1|(1418,466)| 10,34,"materials availability (annual extraction)",1554,976,63,19,8,3,0,0,-1,0,0,0 10,35,maximum annual extraction materials,1332,1039,61,19,8,3,0,0,-1,0,0,0 1,36,35,34,0,0,0,0,0,0,0,-1--1--1,,1|(1435,1009)| 10,37,Total materials to extract Mt,1325,945,55,19,8,3,0,0,-1,0,0,0 1,38,37,34,0,0,0,0,0,0,0,-1--1--1,,1|(1428,958)| 10,39,Materials to extract Rest Mt,1267,845,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,39,37,0,0,0,0,0,0,0,-1--1--1,,1|(1292,888)| 10,41,Total materials to extract for RES elec Mt,1448,835,81,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,37,0,0,0,0,0,0,0,-1--1--1,,1|(1391,885)| 12,43,0,1435,763,253,31,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|18||0-0-0 Annual material extraction flows vs maximum annual extraction 10,44,Total materials to extract for EV batteries Mt,1552,888,102,29,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,45,44,37,0,0,0,0,0,128,0,-1--1--1,,1|(1421,920)| 10,46,cum materials to extract for EV batteries from 2015,615,657,91,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,47,cum materials to extract for alt techn from 2015,745,576,86,28,8,3,0,0,0,0,0,0 1,48,46,47,0,0,0,0,0,128,0,-1--1--1,,1|(666,624)| 1,49,21,47,0,0,0,0,0,128,0,-1--1--1,,1|(809,625)| 1,50,47,16,0,0,0,0,0,128,0,-1--1--1,,1|(679,529)| 1,51,47,17,0,0,0,0,0,128,0,-1--1--1,,1|(805,524)| 1,52,47,4,1,0,0,0,0,128,0,-1--1--1,,1|(1029,493)| 1,53,47,3,1,0,0,0,0,128,0,-1--1--1,,1|(1013,558)| 12,54,1049874,820,960,382,271,3,188,0,0,1,0,0,0 share_cum_dem_materials_to_extract_alt_techn_vs_total 12,55,0,1498,584,173,47,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-0 WARNING: Does cumulated extraction surpasses current reserves/resources? =1 while the cumulative demand is lower than the estimated reserves/resources, and =0 when the cumulative demand surpasses the estimated reserves/resources. \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *MATERIALS - Energy consumption #M,S $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Energy required for material consumption per RES elec,1067,361,92,25,8,131,0,0,0,0,0,0 10,2,"Initial energy cons per unit of material cons (virgin)",521,129,83,19,8,131,0,0,0,0,0,0 10,3,kg per Mt,976,258,42,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,MJ per EJ,981,300,34,11,8,3,0,0,0,0,0,0 10,5,TFE required for total material consumption for alt techn,1527,438,110,24,8,131,0,0,0,0,0,0 10,6,share energy for material consumption for alt techn vs TFEC,1529,286,118,26,8,131,0,0,0,0,0,0 1,7,5,6,0,0,0,0,0,128,0,-1--1--1,,1|(1527,369)| 10,8,Real TFEC,1574,192,51,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,6,0,0,0,0,0,128,0,-1--1--1,,1|(1555,230)| 10,10,Energy required for material consumption for new RES elec,771,315,92,29,8,131,0,0,0,0,0,0 1,11,4,10,1,0,0,0,0,64,0,-1--1--1,,1|(911,304)| 1,12,3,10,0,0,0,0,0,128,0,-1--1--1,,1|(906,277)| 10,13,"Energy required for material consumption for O&M RES elec",776,404,89,28,8,3,0,0,0,0,0,0 1,14,4,13,1,0,0,0,0,64,0,-1--1--1,,1|(903,367)| 1,15,3,13,1,0,0,0,0,128,0,-1--1--1,,1|(911,352)| 1,16,13,1,0,0,0,0,0,128,0,-1--1--1,,1|(913,383)| 1,17,10,1,0,0,0,0,0,128,0,-1--1--1,,1|(912,336)| 10,18,"Total materials required for O&M RES elec Mt",776,451,80,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,19,"Initial energy cons per unit of material cons (recycled) - data",771,42,103,28,8,131,0,0,-1,0,0,0 10,20,"Initial energy cons per unit of material cons (recycled)",772,129,84,19,8,3,0,0,-1,0,0,0 1,21,2,20,0,0,0,0,0,0,0,-1--1--1,,1|(639,129)| 1,22,19,20,0,0,0,0,0,128,0,-1--1--1,,1|(771,83)| 10,23,recycling rates minerals alt techn,462,229,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,24,Energy cons per unit of material cons for RES elec,672,234,85,19,8,131,0,0,0,0,0,0 1,25,20,24,0,0,0,0,0,128,0,-1--1--1,,1|(726,176)| 1,26,2,24,0,0,0,0,0,128,0,-1--1--1,,1|(590,177)| 1,27,23,24,0,0,0,0,0,128,0,-1--1--1,,1|(548,230)| 10,28,"materials required for O&M RES elec Mt",455,413,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,29,28,13,0,0,0,0,0,128,0,-1--1--1,,1|(600,408)| 10,30,materials required for new RES elec Mt,451,322,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,31,30,10,0,0,0,0,0,128,0,-1--1--1,,1|(594,319)| 1,32,24,10,0,0,0,0,0,128,0,-1--1--1,,1|(709,265)| 1,33,24,13,1,0,0,0,0,128,0,-1--1--1,,1|(649,333)| 10,34,Total energy required per material for alt techn,1067,442,95,28,8,131,0,0,0,0,0,0 1,35,1,34,0,0,0,0,0,128,0,-1--1--1,,1|(1067,393)| 10,36,materials required for EV batteries Mt,458,479,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,37,Energy required for material consumption for EV batteries,762,473,89,28,8,131,0,0,0,0,0,0 1,38,36,37,0,0,0,0,0,128,0,-1--1--1,,1|(594,476)| 1,39,24,37,1,0,0,0,0,128,0,-1--1--1,,1|(623,352)| 1,40,4,37,1,0,0,0,0,64,0,-1--1--1,,1|(932,383)| 1,41,3,37,1,0,0,0,0,128,0,-1--1--1,,1|(922,378)| 12,42,13764306,729,744,288,174,3,188,0,0,1,0,0,0 Total_energy_for_total_material_consumption_for_alt_techn 12,43,7538172,1312,742,293,174,3,188,0,0,1,0,0,0 Share_energy_for_material_consumption_for_alt_techn_vs_TFEC 1,44,37,34,1,0,0,0,0,128,0,-1--1--1,,1|(976,473)| 10,45,Total energy required for total material consumption for EV batteries,1068,526,95,28,8,3,0,0,0,0,0,0 1,46,37,45,0,0,0,0,0,128,0,-1--1--1,,1|(905,497)| 10,47,Total energy required for material consumption for RES elec,1314,368,79,28,8,3,0,0,0,0,0,0 1,48,1,47,0,0,0,0,0,128,0,-1--1--1,,1|(1190,363)| 10,49,Total energy required for material consumption per RES elec,1131,268,80,28,8,3,0,0,0,0,0,0 1,50,1,49,0,0,0,0,0,128,0,-1--1--1,,1|(1093,321)| 1,51,47,5,0,0,0,0,0,128,0,-1--1--1,,1|(1416,401)| 1,52,45,5,1,0,0,0,0,128,0,-1--1--1,,1|(1383,495)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *LOSSES - Transformation & distribution #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Energy distr losses FF EJ,660,268,47,27,8,131,0,0,-1,0,0,0 10,2,Historic share of losses vs extraction,685,142,61,19,8,3,0,0,0,0,0,0 10,3,extraction coal EJ,1009,327,48,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,"PES nat. gas",1032,384,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,5,PES oil EJ,956,448,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,2,1,1,0,0,0,0,128,0,-1--1--1,,1|(665,191)| 10,7,PES fossil fuel extraction,854,347,46,19,8,3,0,0,0,0,0,0 1,8,3,7,0,0,0,0,0,128,0,-1--1--1,,1|(937,336)| 1,9,4,7,0,0,0,0,0,128,0,-1--1--1,,1|(947,366)| 1,10,5,7,1,0,0,0,0,128,0,-1--1--1,,1|(946,394)| 10,11,PES fossil fuel extraction delayed,663,386,58,19,8,3,0,0,0,0,0,0 1,12,7,11,1,0,0,0,0,128,0,-1--1--1,,1|(762,415)| 10,13,TIME STEP,670,458,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,14,13,11,0,0,0,0,0,64,0,-1--1--1,,1|(667,432)| 1,15,11,1,1,0,0,0,0,128,0,-1--1--1,,1|(666,316)| 10,16,Transformation FF losses EJ,364,322,48,19,8,3,0,0,-1,0,0,0 10,17,Historic share of transformation losses vs extraction,274,492,75,28,8,3,0,0,0,0,0,0 10,18,Ratio gain gas vs lose solids in tranf processes,373,174,75,19,8,3,0,0,0,0,0,0 1,19,18,16,1,0,0,0,0,128,0,-1--1--1,,1|(361,236)| 1,20,17,16,1,0,0,0,0,128,0,-1--1--1,,1|(317,416)| 1,21,11,16,1,0,0,0,0,128,0,-1--1--1,,1|(507,382)| 10,22,Total distribution losses,999,167,54,19,8,3,0,0,-1,0,0,0 10,23,Electrical distribution losses EJ,1178,101,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,24,23,22,0,0,0,0,0,0,0,-1--1--1,,1|(1095,131)| 10,25,"Heat-com distribution losses",1195,225,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,26,25,22,0,0,0,0,0,0,0,-1--1--1,,1|(1100,196)| 10,27,"Heat-nc distribution losses",1185,163,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,22,0,0,0,0,0,0,0,-1--1--1,,1|(1095,164)| 1,29,1,22,1,0,0,0,0,128,0,-1--1--1,,1|(819,220)| 10,30,"pipeline transport constant 2.6 EJ in 2014",1195,282,82,19,8,3,0,0,-1,0,0,0 1,31,30,22,0,0,0,0,0,128,0,-1--1--1,,1|(1103,228)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TFES by fuel #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,FES total biofuels production EJ,410,310,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,FE tot generation all RES elec TWh,251,495,69,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,3,FES RES for heat EJ,404,587,47,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,Real TFEC,648,127,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,5,share RES vs TFEC,745,306,43,19,8,3,0,0,0,0,0,0 1,6,4,5,0,0,0,0,0,128,0,-1--1--1,,1|(690,206)| 10,7,EJ per TWh,251,446,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,8,FE tot generation all RES elec EJ,425,477,64,19,8,3,0,0,0,0,0,0 1,9,2,8,0,0,0,0,0,128,0,-1--1--1,,1|(333,486)| 1,10,7,8,0,0,0,0,0,128,0,-1--1--1,,1|(323,458)| 12,11,0,1110,360,244,205,3,188,0,0,1,0,0,0 Share_RES_vs_TFEC 10,12,TFEC RES EJ,608,294,36,18,8,131,0,0,0,0,0,0 1,13,1,12,0,0,0,0,0,128,0,-1--1--1,,1|(519,301)| 1,14,8,12,0,0,0,0,0,128,0,-1--1--1,,1|(512,389)| 1,15,3,12,0,0,0,0,0,128,0,-1--1--1,,1|(502,446)| 1,16,12,5,0,0,0,0,0,128,0,-1--1--1,,1|(666,298)| 10,17,PES biogas for TFC,413,225,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,18,17,12,0,0,0,0,0,128,0,-1--1--1,,1|(511,259)| 10,19,PE traditional biomass consum EJ,618,457,59,28,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,12,0,0,0,0,0,128,0,-1--1--1,,1|(613,377)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TPED by fuel #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,TPED by fuel,650,341,43,11,8,3,0,0,0,0,0,0 10,2,PE Elec generation from RES EJ,393,477,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,3,2,1,0,0,0,0,0,128,0,-1--1--1,,1|(522,408)| 10,4,"PE supply RES non-Elec EJ",386,416,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,1,0,0,0,0,0,128,0,-1--1--1,,1|(521,377)| 10,6,PED total oil EJ,426,141,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,1,0,0,0,0,0,128,0,-1--1--1,,1|(536,240)| 12,8,4588170,1080,319,232,177,3,188,0,0,1,0,0,0 Total_primary_energy_demand 10,9,extraction uranium EJ,406,361,81,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,10,9,1,0,0,0,0,0,128,0,-1--1--1,,1|(540,350)| 10,11,PED coal EJ,388,297,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,12,11,1,0,0,0,0,0,64,0,-1--1--1,,1|(515,317)| 10,13,"PED nat. gas EJ",388,215,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,14,13,1,0,0,0,0,0,128,0,-1--1--1,,1|(520,278)| 10,15,PES waste EJ,398,534,54,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,16,15,1,0,0,0,0,0,128,0,-1--1--1,,1|(517,441)| 10,17,TPES EJ,640,475,39,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,18,check TPE,721,413,47,11,8,131,0,0,0,0,0,0 1,19,17,18,0,0,0,0,0,128,0,-1--1--1,,1|(674,448)| 1,20,1,18,0,0,0,0,0,128,0,-1--1--1,,1|(680,372)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *TPES #E $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,TPES EJ,853,305,40,11,8,131,0,0,0,0,0,0 10,2,TPES Mtoe,913,372,47,19,8,3,0,0,0,0,0,0 10,3,MToe per EJ,927,439,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,share RES vs TPES,676,414,43,19,8,3,0,0,0,0,0,0 10,5,abundance TPE,929,212,50,11,8,3,0,0,0,0,0,0 10,6,Year scarcity TPE,856,144,59,11,8,3,0,0,0,0,0,0 1,7,5,6,1,0,0,0,0,64,0,-1--1--1,,1|(882,205)| 10,8,Time,928,94,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,6,0,0,0,0,0,64,0,-1--1--1,,1|(897,115)| 10,10,TIME STEP,777,280,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,11,0,1300,622,186,156,3,188,0,0,1,0,0,0 Share_of_RES_vs_TPES 1,12,1,5,0,0,0,0,0,64,0,-1--1--1,,1|(886,263)| 12,13,0,577,622,201,158,3,188,0,0,1,0,0,0 Total_Primary_Energy_supply 10,14,extraction coal EJ,420,274,64,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,15,extraction uranium EJ,424,314,79,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,16,Total extraction NRE EJ,704,211,59,20,8,131,0,0,0,0,0,0 1,17,14,16,1,0,0,0,0,128,0,-1--1--1,,1|(498,262)| 1,18,15,16,1,0,0,0,0,128,0,-1--1--1,,1|(537,284)| 10,19,TPE from RES EJ,403,393,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,1,1,0,0,0,0,128,0,-1--1--1,,1|(623,374)| 1,21,16,1,0,0,0,0,0,128,0,-1--1--1,,1|(779,258)| 1,22,1,2,1,0,0,0,0,128,0,-1--1--1,,1|(909,329)| 1,23,3,2,0,0,0,0,0,128,0,-1--1--1,,1|(922,416)| 1,24,19,4,1,0,0,0,0,128,0,-1--1--1,,1|(540,413)| 1,25,1,4,1,0,0,0,0,128,0,-1--1--1,,1|(803,372)| 10,26,quality of electricity,1217,320,31,19,8,3,0,0,-1,0,0,0 10,27,"static/dynamic quality of electricity?",1367,280,76,22,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,28,27,26,0,0,0,0,0,128,0,-1--1--1,,1|(1276,303)| 10,29,"Total real non-energy use consumption EJ",1215,218,73,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,30,real extraction conv oil EJ,404,77,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,31,30,16,0,0,0,0,0,128,0,-1--1--1,,1|(546,140)| 10,32,real extraction unconv oil EJ,404,118,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,33,32,16,0,0,0,0,0,128,0,-1--1--1,,1|(542,160)| 10,34,real extraction unconv gas EJ,408,227,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,35,34,16,0,0,0,0,0,128,0,-1--1--1,,1|(544,219)| 10,36,PES waste EJ,405,351,54,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,1,0,0,0,0,0,128,0,-1--1--1,,1|(629,328)| 10,38,real extraction conv gas EJ,406,177,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,39,38,16,0,0,0,0,0,128,0,-1--1--1,,1|(543,192)| 10,40,TPED by fuel,1043,145,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,41,40,5,1,0,0,0,0,128,0,-1--1--1,,1|(1011,189)| 10,42,quality of electricity 2015,1360,386,65,19,8,3,0,0,0,0,0,0 10,43,aux3,1284,448,23,11,8,3,0,0,-1,0,0,0 1,44,42,43,1,0,0,0,0,128,0,-1--1--1,,1|(1313,413)| 1,45,43,42,1,0,0,0,0,128,0,-1--1--1,,1|(1344,442)| 10,46,Time,1408,447,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,47,46,42,0,0,0,0,0,64,0,-1--1--1,,1|(1391,425)| 1,48,42,26,1,0,0,0,0,128,0,-1--1--1,,1|(1301,343)| 10,49,Dynamic quality of electricity,1083,322,54,21,8,131,0,0,-1,0,0,0 10,50,Real TFEC,1074,410,45,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,51,50,49,0,0,0,0,0,64,0,-1--1--1,,1|(1076,377)| 1,52,1,49,0,0,0,0,0,64,0,-1--1--1,,1|(954,311)| 1,53,29,49,0,0,0,0,0,128,0,-1--1--1,,1|(1155,264)| 1,54,49,26,0,0,0,0,0,128,0,-1--1--1,,1|(1154,321)| 1,55,49,42,1,0,0,0,0,128,0,-1--1--1,,1|(1131,358)| 10,56,PES oil EJ,532,84,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,57,"PES nat. gas",648,85,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,58,0,945,621,163,157,3,188,0,0,1,0,0,0 TPES_intensity 10,59,Percent RES vs TPES,816,424,50,19,8,3,0,0,0,0,0,0 1,60,4,59,1,0,0,0,0,128,0,-1--1--1,,1|(738,434)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ESOI - PHS #E,N $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,ESOI PHS full potential,440,163,47,26,8,131,0,0,-1,0,0,0 10,2,Cp hydro 2015,284,160,49,11,8,3,0,0,-1,0,0,0 1,3,2,1,0,0,0,0,0,0,0,-1--1--1,,1|(356,160)| 10,4,Cp PHS,468,81,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,5,4,1,0,0,0,0,0,0,0,-1--1--1,,1|(458,107)| 10,6,"EROI-ini RES elec dispatch",307,224,66,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,1,0,0,0,0,0,0,0,-1--1--1,,1|(364,197)| 10,8,ESOI PHS depleted potential,636,155,56,20,8,131,0,0,-1,0,0,0 10,9,CEDtot over lifetime PHS,865,476,42,19,8,3,0,0,-1,0,0,0 10,10,CED per TW over lifetime PHS,867,315,60,19,8,3,0,0,-1,0,0,0 1,11,10,9,0,0,0,0,0,0,0,-1--1--1,,1|(866,388)| 10,12,PHS capacity under construction,678,554,69,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,9,0,0,0,0,0,0,0,-1--1--1,,1|(766,516)| 10,14,lifetime RES elec,1056,304,44,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,15,14,10,0,0,0,0,0,0,0,-1--1--1,,1|(976,308)| 10,16,quality of electricity 2015,1018,252,54,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,10,0,0,0,0,0,0,0,-1--1--1,,1|(948,280)| 10,18,TWe per TWh,915,216,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,19,18,10,0,0,0,0,0,0,0,-1--1--1,,1|(896,255)| 10,20,ESOI PHS,897,561,36,11,8,3,0,0,-1,0,0,0 1,21,9,20,0,0,0,0,0,0,0,-1--1--1,,1|(879,515)| 10,22,output PHS over lifetime,836,635,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,23,22,20,0,0,0,0,0,0,0,-1--1--1,,1|(864,599)| 10,24,quality of electricity,1015,463,35,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,20,0,0,0,0,0,0,0,-1--1--1,,1|(956,511)| 10,26,ESOI static PHS,615,316,53,11,8,3,0,0,-1,0,0,0 10,27,a lineal regr,563,239,37,11,8,3,0,0,-1,0,0,0 1,28,27,26,0,0,0,0,0,0,0,-1--1--1,,1|(584,271)| 10,29,b lineal regr,700,238,37,11,8,3,0,0,-1,0,0,0 1,30,29,26,0,0,0,0,0,0,0,-1--1--1,,1|(662,272)| 10,31,installed capacity PHS TW,540,406,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,32,31,26,0,0,0,0,0,0,0,-1--1--1,,1|(575,362)| 1,33,8,27,0,0,0,0,0,0,0,-1--1--1,,1|(600,196)| 1,34,1,27,0,0,0,0,0,0,0,-1--1--1,,1|(507,204)| 10,35,max capacity potential PHS,448,301,49,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,27,0,0,0,0,0,0,0,-1--1--1,,1|(506,269)| 1,37,27,29,0,0,0,0,0,0,0,-1--1--1,,1|(624,238)| 1,38,8,29,0,0,0,0,0,0,0,-1--1--1,,1|(666,195)| 1,39,35,29,0,0,0,0,0,128,0,-1--1--1,,1|(573,269)| 10,40,Final energy invested PHS,1065,588,44,19,8,3,0,0,-1,0,0,0 10,41,EJ per TWh,1203,545,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,40,0,0,0,0,0,0,0,-1--1--1,,1|(1145,562)| 1,43,20,40,0,0,0,0,0,0,0,-1--1--1,,1|(970,571)| 10,44,real FE elec stored PHS TWh,1236,636,66,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,45,44,40,0,0,0,0,0,0,0,-1--1--1,,1|(1146,610)| 1,46,26,10,0,0,0,0,0,128,0,-1--1--1,,1|(730,315)| 1,47,41,10,1,0,0,0,0,128,0,-1--1--1,,1|(1059,386)| 1,48,4,10,1,0,0,0,0,128,0,-1--1--1,,1|(766,141)| 12,49,0,844,35,121,21,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|14||0-0-0 ESOI - Pumped hydro storage \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *ESOI - EV batteries #E,N $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,ESOI EV batteries,884,385,60,19,8,3,0,0,0,0,0,0 10,2,Total energy required for total material consumption for EV batteries,687,602,94,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,3,"Energy intensity construction EV batteries MJ/MW",902,550,90,22,8,131,0,0,0,0,0,0 1,4,2,3,0,0,0,0,0,128,0,-1--1--1,,1|(789,577)| 10,5,M per T,880,622,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,5,3,0,0,0,0,0,64,0,-1--1--1,,1|(886,598)| 10,7,MJ per EJ,1015,609,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,8,7,3,0,0,0,0,0,64,0,-1--1--1,,1|(975,588)| 10,9,MW in 1 year to MJ,966,234,41,24,8,131,0,0,0,0,0,0 1,10,9,1,0,0,0,0,0,128,0,-1--1--1,,1|(926,305)| 12,11,0,1103,428,80,19,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||255-0-0 10,12,Grid correction factor EV batteries,1201,429,68,22,8,131,0,0,0,0,0,0 10,13,Share energy requirements for decom EV batteries,1172,505,84,21,8,131,0,0,0,0,0,0 10,14,Net stored energy EV battery over lifetime,947,156,77,24,8,131,0,0,0,0,0,0 10,15,lifetime EV batteries,800,212,35,19,8,3,0,0,0,0,0,0 1,16,14,15,0,0,0,0,0,128,0,-1--1--1,,1|(866,186)| 1,17,9,15,0,0,0,0,0,128,0,-1--1--1,,1|(886,223)| 10,18,kW per MW,905,88,54,19,8,131,0,0,0,0,0,0 1,19,15,1,0,0,0,0,0,128,0,-1--1--1,,1|(838,292)| 10,20,kW per battery EV,874,33,54,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,21,20,15,0,0,0,0,0,128,0,-1--1--1,,1|(839,116)| 1,22,18,15,0,0,0,0,0,128,0,-1--1--1,,1|(857,144)| 10,23,"new+replaced batteries TW",682,538,57,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,24,23,3,0,0,0,0,0,128,0,-1--1--1,,1|(768,542)| 10,25,min lifetime EV batteries,1157,57,44,25,8,131,0,0,0,0,0,0 10,26,FEI EV batteries,759,442,53,11,8,3,0,0,0,0,0,0 1,27,3,1,0,0,0,0,0,64,0,-1--1--1,,1|(893,472)| 1,28,12,1,0,0,0,0,0,64,0,-1--1--1,,1|(1045,407)| 10,29,quality of electricity,1041,364,35,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,1,0,0,0,0,0,64,0,-1--1--1,,1|(981,371)| 1,31,13,1,0,0,0,0,0,64,0,-1--1--1,,1|(1031,446)| 10,32,output EV bateries for storage over lifetime,440,563,72,27,8,131,0,0,0,0,0,0 1,33,23,32,0,0,0,0,0,128,0,-1--1--1,,1|(575,548)| 1,34,15,32,1,0,0,0,0,128,0,-1--1--1,,1|(554,488)| 10,35,EJ per TWh,487,653,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,32,0,0,0,0,0,64,0,-1--1--1,,1|(471,622)| 10,37,TWe per TWh,292,635,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,38,37,32,0,0,0,0,0,64,0,-1--1--1,,1|(342,610)| 1,39,1,26,0,0,0,0,0,128,0,-1--1--1,,1|(819,414)| 1,40,32,26,0,0,0,0,0,128,0,-1--1--1,,1|(613,496)| 10,41,max Cp EV batteries,1166,156,39,19,8,3,0,0,0,0,0,0 1,42,25,41,0,0,0,0,0,128,0,-1--1--1,,1|(1160,102)| 1,43,18,41,0,0,0,0,0,64,0,-1--1--1,,1|(1036,121)| 1,44,9,41,0,0,0,0,0,64,0,-1--1--1,,1|(1060,197)| 1,45,14,41,0,0,0,0,0,64,0,-1--1--1,,1|(1068,156)| 1,46,20,41,0,0,0,0,0,128,0,-1--1--1,,1|(1016,92)| 10,47,Cp EV batteries for elec storage,588,246,82,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,48,47,15,0,0,0,0,0,128,0,-1--1--1,,1|(710,226)| 1,49,47,32,0,0,0,0,0,128,0,-1--1--1,,1|(518,394)| 1,50,47,1,0,0,0,0,0,128,0,-1--1--1,,1|(729,312)| 10,51,Cp EV batteries for Transp,599,145,52,19,8,3,0,0,0,0,0,0 1,52,51,15,0,0,0,0,0,128,0,-1--1--1,,1|(701,178)| 10,53,max Cp EV batteries for elec storage,402,150,67,19,8,3,0,0,0,0,0,0 1,54,51,53,1,0,0,0,0,128,0,-1--1--1,,1|(500,159)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *EROI - RES elec #N $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,75,0 10,1,kg per Mt,819,681,42,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||128-128-0 10,2,"'dynamic' EROI RES elec var",1320,307,62,19,8,131,0,0,0,0,0,0 10,3,EJ per TWh,1384,179,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,FEI RES elec var,1094,297,44,18,8,131,0,0,0,0,0,0 1,5,4,2,0,0,0,0,0,128,0,-1--1--1,,1|(1191,300)| 10,6,real generation RES elec EJ,1287,215,60,19,8,3,0,0,0,0,0,0 1,7,6,2,1,0,0,0,0,128,0,-1--1--1,,1|(1317,246)| 1,8,3,6,1,0,0,0,0,128,0,-1--1--1,,1|(1366,181)| 10,9,quality of electricity,1425,471,35,19,8,2,0,1,0,0,0,0,128-128-128,0-0-0,|12||255-0-0 10,10,"'static' EROI RES elec",1382,791,46,26,8,131,0,0,0,0,0,0 10,11,CED new cap per material RES elec var,662,366,70,23,8,131,0,0,0,0,0,0 10,12,"CED O&M over lifetime per material RES elec var",844,789,82,25,8,131,0,0,0,0,0,0 1,13,1,12,1,0,0,0,0,128,0,-1--1--1,,1|(830,724)| 10,14,"CED O&M over lifetime RES elec var",1028,794,68,25,8,131,0,0,0,0,0,0 1,15,12,14,0,0,0,0,0,128,0,-1--1--1,,1|(936,791)| 10,16,"EROI=1",1526,932,29,11,8,3,0,0,0,0,0,0 10,17,FEI over lifetime RES elec var,1206,781,65,21,8,131,0,0,0,0,0,0 10,18,output elec over lifetime RES elec,1188,963,69,19,8,3,0,0,0,0,0,0 10,19,EJ per TWh,1161,1036,48,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,18,0,0,0,0,0,64,0,-1--1--1,,1|(1170,1010)| 10,21,real Cp RES elec,1124,910,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,22,21,18,0,0,0,0,0,64,0,-1--1--1,,1|(1150,932)| 10,23,TWe per TWh,1053,1013,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,24,23,18,0,0,0,0,0,64,0,-1--1--1,,1|(1102,994)| 1,25,18,10,1,0,0,0,0,128,0,-1--1--1,,1|(1280,907)| 10,26,lifetime RES elec,978,991,44,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,27,lifetime RES elec,869,904,44,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,28,27,12,0,0,0,0,0,64,0,-1--1--1,,1|(858,856)| 10,29,M per T,775,870,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,12,0,0,0,0,0,64,0,-1--1--1,,1|(798,841)| 10,31,MJ per EJ,725,839,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,32,31,12,0,0,0,0,0,64,0,-1--1--1,,1|(761,823)| 10,33,materials required for new RES elec Mt,439,377,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,34,"materials required for O&M RES elec Mt",444,219,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,35,real generation RES elec TWh,1297,122,68,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,6,1,0,0,0,0,128,0,-1--1--1,,1|(1280,164)| 10,37,CEDtot solar PV,2036,156,35,18,8,131,0,0,0,0,0,0 10,38,real generation solar PV EJ,2182,158,55,20,8,131,0,0,0,0,0,0 12,39,6948040,2179,405,239,147,3,188,0,0,1,0,0,0 dynamic_CED_vs_elec_output_PV_solar 1,40,33,11,1,0,0,0,0,128,0,-1--1--1,,1|(546,378)| 10,41,RES elec capacity under construction TW,563,876,83,23,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,12,1,0,0,0,0,128,0,-1--1--1,,1|(681,802)| 1,43,41,18,1,0,0,0,0,128,0,-1--1--1,,1|(872,950)| 1,44,27,18,0,0,0,0,0,128,0,-1--1--1,,1|(1009,929)| 12,45,7996378,1707,731,227,177,3,188,0,0,1,0,0,0 EROI_RES_elec 10,46,CEDtot per TW over lifetime RES elec dispatch,914,1083,87,21,8,131,0,0,0,0,0,0 10,47,"EROI-ini RES elec dispatch",708,1042,61,19,8,131,0,0,0,0,0,0 1,48,47,46,0,0,0,0,0,128,0,-1--1--1,,1|(790,1058)| 10,49,"Cp-ini RES elec",701,1115,60,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,50,49,46,0,0,0,0,0,128,0,-1--1--1,,1|(787,1102)| 1,51,23,46,0,0,0,0,0,128,0,-1--1--1,,1|(999,1039)| 1,52,19,46,1,0,0,0,0,128,0,-1--1--1,,1|(1065,1058)| 1,53,17,10,0,0,0,0,0,64,0,-1--1--1,,1|(1296,785)| 10,54,"'static' EROItot RES elec",1405,980,51,19,8,3,0,0,0,0,0,0 1,55,18,54,1,0,0,0,0,128,0,-1--1--1,,1|(1298,957)| 12,56,5505674,2182,733,241,176,3,188,0,0,1,0,0,0 Total_EROI_of_RES_for_electricity 12,57,9504488,1706,370,227,179,3,188,0,0,1,0,0,0 Dynamic_EROI_RES_elec_variables 12,58,0,729,1172,40,20,8,3,0,0,-1,0,0,0 10,59,FEI over lifetime RES elec dispatch,1135,1129,72,21,8,131,0,0,0,0,0,0 1,60,46,59,1,0,0,0,0,128,0,-1--1--1,,1|(1001,1118)| 1,61,41,59,1,0,0,0,0,128,0,-1--1--1,,1|(893,995)| 1,62,59,10,1,0,0,0,0,128,0,-1--1--1,,1|(1280,988)| 1,63,27,46,0,0,0,0,0,128,0,-1--1--1,,1|(888,985)| 10,64,"Total energy requirements O&M for water consumption RES elec",859,157,126,28,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,65,"materials for O&M per capacity installed RES elec",572,734,90,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,66,65,12,0,0,0,0,0,128,0,-1--1--1,,1|(705,760)| 10,67,"CED O&M over lifetime per water RES elec var",1018,858,84,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,68,67,14,0,0,0,0,0,64,0,-1--1--1,,1|(1020,835)| 10,69,"self-electricity consumption RES elec",1304,485,53,34,8,131,0,0,0,0,0,0 1,70,69,4,0,0,0,0,0,128,0,-1--1--1,,1|(1195,387)| 10,71,Grid correction factor RES elec,1182,469,67,21,8,131,0,0,0,0,0,0 1,72,71,4,0,0,0,0,0,128,0,-1--1--1,,1|(1140,387)| 10,73,wear RES elec,1118,522,50,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,74,share energy requirements for decom RES elec,1066,611,82,26,8,131,0,0,0,0,0,0 10,75,CED decom RES elec capacity,980,468,65,27,8,131,0,0,0,0,0,0 1,76,73,75,1,0,0,0,0,128,0,-1--1--1,,1|(1090,481)| 1,77,74,75,1,0,0,0,0,128,0,-1--1--1,,1|(1075,530)| 1,78,75,4,0,0,0,0,0,128,0,-1--1--1,,1|(1036,383)| 10,79,RES elec capacity under construction TW,984,539,81,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,80,79,75,1,0,0,0,0,128,0,-1--1--1,,1|(979,470)| 10,81,FEI RES elec var,2037,228,55,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,82,81,37,0,0,0,0,0,128,0,-1--1--1,,1|(2036,199)| 10,83,real generation RES elec EJ,2179,234,69,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,84,83,38,0,0,0,0,0,128,0,-1--1--1,,1|(2179,204)| 10,85,FEI over lifetime RES elec,1333,1068,66,19,8,3,0,0,0,0,0,0 1,86,59,85,0,0,0,0,0,128,0,-1--1--1,,1|(1230,1099)| 1,87,17,85,0,0,0,0,0,128,0,-1--1--1,,1|(1266,919)| 1,88,85,54,0,0,0,0,0,128,0,-1--1--1,,1|(1364,1029)| 10,89,"static/dynamic quality of electricity?",1403,390,59,30,8,130,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-0 10,90,Energy cons per unit of material cons for RES elec,455,290,89,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,91,90,11,0,0,0,0,0,128,0,-1--1--1,,1|(545,323)| 1,92,90,12,0,0,0,0,0,128,0,-1--1--1,,1|(642,530)| 10,93,"CED O&M per material RES elec var",689,209,75,19,8,131,0,0,0,0,0,0 1,94,34,93,0,0,0,0,0,128,0,-1--1--1,,1|(558,216)| 1,95,90,93,0,0,0,0,0,128,0,-1--1--1,,1|(564,252)| 10,96,kg per Mt,726,289,42,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,97,96,93,0,0,0,0,0,64,0,-1--1--1,,1|(712,260)| 10,98,MJ per EJ,625,286,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,99,98,93,0,0,0,0,0,64,0,-1--1--1,,1|(649,257)| 10,100,"CEDtot O&M RES elec var",871,241,57,19,8,131,0,0,0,0,0,0 1,101,93,100,0,0,0,0,0,128,0,-1--1--1,,1|(782,226)| 10,102,CEDtot new cap RES elec var,863,347,64,19,8,131,0,0,0,0,0,0 1,103,11,102,0,0,0,0,0,128,0,-1--1--1,,1|(758,357)| 1,104,98,11,0,0,0,0,0,128,0,-1--1--1,,1|(637,313)| 1,105,96,11,0,0,0,0,0,128,0,-1--1--1,,1|(703,316)| 1,106,64,100,0,0,0,0,0,128,0,-1--1--1,,1|(864,197)| 1,107,100,4,0,0,0,0,0,128,0,-1--1--1,,1|(982,269)| 1,108,102,4,0,0,0,0,0,128,0,-1--1--1,,1|(981,321)| 1,109,9,4,0,0,0,0,0,128,0,-1--1--1,,1|(1265,387)| 1,110,6,4,0,0,0,0,0,128,0,-1--1--1,,1|(1195,254)| 1,111,69,17,1,0,0,0,0,128,0,-1--1--1,,1|(1254,632)| 1,112,9,17,1,0,0,0,0,128,0,-1--1--1,,1|(1387,615)| 1,113,71,17,1,0,0,0,0,128,0,-1--1--1,,1|(1183,618)| 1,114,74,17,1,0,0,0,0,128,0,-1--1--1,,1|(1122,728)| 1,115,102,17,1,0,0,0,0,128,0,-1--1--1,,1|(893,545)| 1,116,9,10,1,0,0,0,0,128,0,-1--1--1,,1|(1453,645)| 1,117,14,17,0,0,0,0,0,128,0,-1--1--1,,1|(1111,788)| 1,118,18,17,0,0,0,0,0,128,0,-1--1--1,,1|(1195,879)| 1,119,102,75,0,0,0,0,0,128,0,-1--1--1,,1|(912,398)| 10,120,materials for new RES elec per capacity installed,570,677,86,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,121,quality of electricity 2015,881,1181,54,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,122,"RES elec variables?",1014,1184,59,19,8,3,0,0,-1,0,0,0 1,123,122,46,0,0,0,0,0,128,0,-1--1--1,,1|(969,1139)| 1,124,121,46,0,0,0,0,0,128,0,-1--1--1,,1|(894,1139)| 10,125,CEDtot per material RES elec var,787,558,75,19,8,131,0,0,0,0,0,0 1,126,12,125,1,0,0,0,0,128,0,-1--1--1,,1|(886,657)| 1,127,11,125,1,0,0,0,0,128,0,-1--1--1,,1|(667,499)| 10,128,CEDtot per TW per material RES elec var,546,562,76,26,8,131,0,0,0,0,0,0 1,129,125,128,0,0,0,0,0,128,0,-1--1--1,,1|(673,559)| 1,130,41,128,1,0,0,0,0,128,0,-1--1--1,,1|(412,721)| 10,131,CEDtot per TW RES elec var,429,494,61,18,8,131,0,0,0,0,0,0 1,132,128,131,0,0,0,0,0,128,0,-1--1--1,,1|(486,527)| 10,133,Total final energy invested RES elec var,1111,204,70,23,8,131,0,0,0,0,0,0 1,134,4,133,0,0,0,0,0,128,0,-1--1--1,,1|(1100,260)| 10,135,EPTB dynamic,1548,131,48,11,8,3,0,0,-1,0,0,0 1,136,2,135,0,0,0,0,0,0,0,-1--1--1,,1|(1432,220)| 10,137,lifetime RES elec,1438,96,44,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,138,137,135,0,0,0,0,0,0,0,-1--1--1,,1|(1490,113)| 12,139,0,1682,134,57,19,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-0 EPTB > lifetime if FEI > generation 10,140,"1 year",1553,169,21,11,8,3,0,0,-1,0,0,0 \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *EROI - Water demand RES elec var #N,S $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"water for O&M - PV",979,265,52,19,8,3,0,0,0,0,0,0 10,2,"water for O&M - CSP",982,334,57,19,8,3,0,0,0,0,0,0 10,3,"water for O&M - wind onshore",992,403,57,19,8,3,0,0,0,0,0,0 10,4,"water for O&M - wind offshore",991,469,57,19,8,3,0,0,0,0,0,0 10,5,installed capacity RES elec TW,791,263,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,6,Energy requirements per unit of water consumption,711,28,87,22,8,131,0,0,-1,0,0,0 10,7,"Energy requirements for O&M for water consumption RES elec",704,154,91,30,8,131,0,0,0,0,0,0 1,8,6,7,0,0,0,0,0,128,0,-1--1--1,,1|(707,80)| 10,9,MJ per EJ,469,230,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,10,9,7,1,0,0,0,0,64,0,-1--1--1,,1|(549,181)| 10,11,"Total energy requirements O&M for water consumption RES elec",985,125,123,30,8,131,0,0,0,0,0,0 1,12,7,11,0,0,0,0,0,128,0,-1--1--1,,1|(821,141)| 10,13,"Water for O&M required for RES elec",640,345,70,23,8,131,0,0,0,0,0,0 1,14,5,13,1,0,0,0,0,128,0,-1--1--1,,1|(700,329)| 10,15,kg per Mt,541,283,42,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,16,15,13,1,0,0,0,0,64,0,-1--1--1,,1|(596,295)| 10,17,M per T,589,399,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,18,17,13,1,0,0,0,0,64,0,-1--1--1,,1|(620,382)| 1,19,15,7,1,0,0,0,0,128,0,-1--1--1,,1|(595,220)| 10,20,"Total water for O&M required by RES elec per techn",781,509,101,25,8,131,0,0,0,0,0,0 1,21,13,20,0,0,0,0,0,128,0,-1--1--1,,1|(704,420)| 1,22,13,7,1,0,0,0,0,128,0,-1--1--1,,1|(682,264)| 10,23,"CED O&M over lifetime per water RES elec var",520,451,87,19,8,131,0,0,0,0,0,0 1,24,6,23,1,0,0,0,0,128,0,-1--1--1,,1|(395,250)| 10,25,lifetime RES elec,517,538,44,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,26,25,23,0,0,0,0,0,64,0,-1--1--1,,1|(517,501)| 10,27,RES elec capacity under construction TW,330,465,81,27,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,28,"water for O&M - RES elec",828,351,57,19,8,3,0,0,0,0,0,0 1,29,1,28,0,0,0,0,0,128,0,-1--1--1,,1|(909,304)| 1,30,2,28,0,0,0,0,0,128,0,-1--1--1,,1|(911,341)| 1,31,3,28,0,0,0,0,0,128,0,-1--1--1,,1|(917,379)| 1,32,4,28,0,0,0,0,0,128,0,-1--1--1,,1|(915,414)| 1,33,28,13,0,0,0,0,0,128,0,-1--1--1,,1|(747,348)| 1,34,28,23,1,0,0,0,0,128,0,-1--1--1,,1|(687,419)| 1,35,27,23,0,0,0,0,0,128,0,-1--1--1,,1|(415,459)| 1,36,17,23,1,0,0,0,0,128,0,-1--1--1,,1|(566,422)| 1,37,15,23,1,0,0,0,0,128,0,-1--1--1,,1|(534,356)| 1,38,9,23,1,0,0,0,0,128,0,-1--1--1,,1|(475,327)| 10,39,"Total water for O&M required by RES elec",819,592,72,19,8,3,0,0,0,0,0,0 1,40,20,39,0,0,0,0,0,128,0,-1--1--1,,1|(798,547)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *EROIgrid - Allocation RES elec #N $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,EROI allocation rule per RES elec,949,496,57,19,8,3,0,0,-1,0,0,0 10,2,Time,851,541,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,3,2,1,0,0,0,0,0,0,0,-1--1--1,,1|(884,525)| 10,4,"ratio EROI per techn vs EROItot (static)",937,380,67,19,8,3,0,0,-1,0,0,0 12,5,6619752,513,526,238,159,3,188,0,0,1,0,0,0 ratio_EROI_per_techn_vs_EROItot 1,6,4,1,0,0,0,0,0,128,0,-1--1--1,,1|(941,431)| 10,7,"ratio = 1",789,624,28,11,8,3,0,0,0,0,0,0 10,8,"'static' EROItot-effective for allocation RES elec",535,292,89,25,8,131,0,0,0,0,0,0 10,9,FEI over lifetime RES elec,145,106,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,10,FEI over lifetime RES elec var,540,342,70,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,11,output elec over lifetime RES elec for allocation,327,289,69,28,8,3,0,0,0,0,0,0 10,12,output elec over lifetime RES elec,138,307,73,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,11,0,0,0,0,0,64,0,-1--1--1,,1|(227,298)| 10,14,remaining potential RES elec switch,126,226,59,19,8,3,0,0,-1,0,0,0 1,15,14,11,0,0,0,0,0,64,0,-1--1--1,,1|(214,253)| 1,16,11,8,0,0,0,0,0,128,0,-1--1--1,,1|(414,289)| 10,17,FEI over lifetime RES elec for allocation,338,198,73,19,8,3,0,0,0,0,0,0 1,18,9,17,0,0,0,0,0,128,0,-1--1--1,,1|(234,149)| 1,19,14,17,0,0,0,0,0,128,0,-1--1--1,,1|(218,214)| 1,20,17,8,0,0,0,0,0,128,0,-1--1--1,,1|(423,238)| 10,21,"'static' EROItot RES elec",533,338,61,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,22,"'static' EROIgrid RES elec",904,169,55,22,8,131,0,0,-1,0,0,0 10,23,"'static' EROI RES elec",854,45,46,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,24,23,22,0,0,0,0,0,0,0,-1--1--1,,1|(875,99)| 10,25,"share RES elec generation curtailed&stored",1067,178,63,26,8,131,0,0,-1,0,0,0 1,26,25,22,0,0,0,0,0,0,0,-1--1--1,,1|(988,173)| 10,27,"'static' EROIgrid tot-effective for allocation RES elec",773,264,102,25,8,131,0,0,0,0,0,0 10,28,output elec over lifetime RES elec for allocation2,583,170,77,19,8,3,0,0,0,0,0,0 1,29,22,28,0,0,0,0,0,128,0,-1--1--1,,1|(761,169)| 1,30,17,28,0,0,0,0,0,128,0,-1--1--1,,1|(451,184)| 10,31,"ratio EROIgrid vs EROI (static)",720,87,57,19,8,3,0,0,0,0,0,0 1,32,22,31,1,0,0,0,0,128,0,-1--1--1,,1|(805,137)| 1,33,23,31,0,0,0,0,0,128,0,-1--1--1,,1|(799,61)| 1,34,17,27,0,0,0,0,0,128,0,-1--1--1,,1|(534,227)| 1,35,28,27,0,0,0,0,0,128,0,-1--1--1,,1|(665,210)| 10,36,quality of electricity,423,107,35,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,28,0,0,0,0,0,128,0,-1--1--1,,1|(489,132)| 1,38,22,4,0,0,0,0,0,128,0,-1--1--1,,1|(919,269)| 1,39,27,4,0,0,0,0,0,128,0,-1--1--1,,1|(853,320)| 10,40,remaining potential RES elec after intermitt,121,168,78,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,41,40,14,0,0,0,0,0,0,0,-1--1--1,,1|(122,190)| 10,42,ESOI elec storage,1084,71,47,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,43,rt elec storage efficiency,979,32,50,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,44,43,22,1,0,0,0,0,128,0,-1--1--1,,1|(963,109)| 1,45,42,22,0,0,0,0,0,128,0,-1--1--1,,1|(1003,114)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *EROI - Required final energy invested RES #N $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Total dyn FEI RES,817,146,40,27,8,131,0,0,0,0,0,0 12,2,0,592,20,51,11,8,7,0,8,-1,0,0,0,-1--1--1,0-0-0,|14||255-0-0 Dynamic FEI 10,3,FEI over lifetime RES elec dispatch,1241,99,70,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,4,0,1121,29,106,24,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|14||255-0-0 Static (over the lifetime) FEI 10,5,Total FEI over lifetime RES elec dispatch,1026,101,82,19,8,3,0,0,0,0,0,0 1,6,3,5,0,0,0,0,0,128,0,-1--1--1,,1|(1146,99)| 1,7,5,1,0,0,0,0,0,128,0,-1--1--1,,1|(907,126)| 10,8,Total final energy invested RES elec var,572,98,76,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,1,0,0,0,0,0,128,0,-1--1--1,,1|(705,123)| 10,10,Final energy invested PHS,1152,168,59,24,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,10,1,1,0,0,0,0,128,0,-1--1--1,,1|(926,173)| 10,12,FEI EV batteries,585,181,71,18,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,12,1,0,0,0,0,0,128,0,-1--1--1,,1|(709,162)| 10,14,share dyn FEI for RES vs TFEC,803,256,68,33,8,131,0,0,0,0,0,0 10,15,Real TFEC,629,269,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,16,15,14,0,0,0,0,0,128,0,-1--1--1,,1|(698,264)| 1,17,1,14,0,0,0,0,0,128,0,-1--1--1,,1|(811,191)| 10,18,share tot FEI RES elec var,786,50,59,19,8,3,0,0,0,0,0,0 1,19,8,18,0,0,0,0,0,128,0,-1--1--1,,1|(680,73)| 1,20,1,18,0,0,0,0,0,128,0,-1--1--1,,1|(802,100)| 10,21,TFE required for total material consumption for alt techn,354,72,94,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,22,395694,577,480,215,181,3,188,0,0,1,0,0,0 Total_dyn_FEI_RES 12,23,461410,1003,480,205,182,3,188,0,0,1,0,0,0 share_dyn_FEI_for_RES_vs_TFEC \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *EROI system #N $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Real TFEC,515,210,45,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,2,0,961,145,155,19,8,131,0,0,-1,0,0,0 12,3,0,787,77,156,24,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||255-0-0 Estimation of EROIst of the system 10,4,"energy own-use constant 830 Mtoe in 2013",540,161,68,28,8,131,0,0,0,0,0,0 10,5,EROIst system,762,236,38,20,8,131,0,0,0,0,0,0 1,6,4,5,0,0,0,0,0,128,0,-1--1--1,,1|(659,200)| 1,7,1,5,0,0,0,0,0,128,0,-1--1--1,,1|(635,222)| 10,8,MToe per EJ,730,146,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,5,0,0,0,0,0,128,0,-1--1--1,,1|(741,179)| 12,10,0,245,176,112,28,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||255-0-0 10,11,EROI FC system from 2015 1,698,551,57,22,8,131,0,0,0,0,0,0 10,12,EROIst system delayed 1yr,774,452,54,21,8,131,0,0,0,0,0,0 1,13,5,12,0,0,0,0,0,128,0,-1--1--1,,1|(767,336)| 1,14,12,11,0,0,0,0,0,128,0,-1--1--1,,1|(740,495)| 10,15,EROIst system until 2015,605,467,65,19,8,3,0,0,0,0,0,0 10,16,aux4,439,495,23,11,8,3,0,0,-1,0,0,0 1,17,15,16,1,0,0,0,0,128,0,-1--1--1,,1|(493,465)| 1,18,16,15,1,0,0,0,0,128,0,-1--1--1,,1|(494,498)| 10,19,Time,569,558,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,20,19,15,0,0,0,0,0,64,0,-1--1--1,,1|(582,523)| 1,21,19,11,0,0,0,0,0,128,0,-1--1--1,,1|(611,555)| 10,22,EROIst system delayed,552,413,52,19,8,131,0,0,0,0,0,0 1,23,5,22,1,0,0,0,0,128,0,-1--1--1,,1|(693,347)| 10,24,TIME STEP,385,434,50,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,25,24,22,1,0,0,0,0,64,0,-1--1--1,,1|(442,411)| 10,26,"EROIst(1995)",826,192,46,11,8,3,0,0,0,0,0,0 1,27,26,12,0,0,0,0,0,128,1,-1--1--1,,1|(802,310)| 1,28,26,22,0,0,0,0,0,128,1,-1--1--1,,1|(699,294)| 1,29,22,15,0,0,0,0,0,128,0,-1--1--1,,1|(573,435)| 1,30,24,16,1,0,0,0,0,128,0,-1--1--1,,1|(391,455)| 1,31,26,16,0,0,0,0,0,64,1,-1--1--1,,1|(638,339)| 1,32,15,11,0,0,0,0,0,128,0,-1--1--1,,1|(644,502)| 10,33,EROI FC system from 2015,701,627,68,21,8,131,0,0,0,0,0,0 1,34,11,33,0,0,0,0,0,128,0,-1--1--1,,1|(698,582)| 10,35,Total dyn FEI RES,590,301,40,19,8,2,0,0,-1,0,0,0 1,36,35,5,0,0,0,0,0,128,0,-1--1--1,,1|(670,270)| 12,37,0,1186,255,183,159,3,188,0,0,1,0,0,0 EROIst_system 12,38,0,1186,613,196,188,3,188,0,0,1,0,0,0 EROI_feedback_factor 10,39,"EROI=1",1450,450,38,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,12,11,0,0,0,0,0,128,0,-1--1--1,,1|(740,495)| 10,41,"Total real non-energy use consumption EJ",513,246,73,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,5,0,0,0,0,0,64,0,-1--1--1,,1|(648,240)| 10,43,max EROI FC,879,544,50,21,8,131,0,0,0,0,0,0 1,44,43,11,0,0,0,0,0,128,0,-1--1--1,,1|(798,546)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CLIMATE - Total GHG emissions #C $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,gCO2 per MJ coal,591,387,57,19,8,3,0,0,0,0,0,0 10,2,gCO2 per MJ conv gas,1285,809,57,19,8,3,0,0,0,0,0,0 10,3,gCO2 per MJ conv oil,1104,108,57,19,8,3,0,0,0,0,0,0 10,4,Adapt emissions shale oil,1503,511,53,19,8,3,0,0,0,0,0,0 10,5,Time dmnl,1560,615,34,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,6,5,4,0,0,0,0,0,64,0,-1--1--1,,1|(1534,569)| 10,7,CO2 fossil fuel emissions,989,393,60,25,8,131,0,0,0,0,0,0 10,8,Total CO2 emissions GTCO2,1563,205,62,23,8,131,0,0,0,0,0,0 10,9,Afforestation program 2020,2027,352,46,19,8,3,0,0,0,0,0,0 10,10,BioE CO2 emissions,1731,374,75,14,8,131,0,0,0,0,0,0 10,11,gCO2 per MJ conv gas,1908,411,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,12,11,10,1,0,0,0,0,64,0,-1--1--1,,1|(1807,377)| 1,13,7,8,1,0,0,0,0,64,0,-1--1--1,,1|(1268,301)| 1,14,10,8,1,0,0,0,0,64,0,-1--1--1,,1|(1603,285)| 10,15,Carbon emissions GtC,1859,181,49,19,8,3,0,0,0,0,0,0 10,16,Total cumulative emissions GtC,2222,154,68,29,3,131,0,0,0,0,0,0 12,17,48,1962,150,10,8,0,3,0,0,-1,0,0,0 1,18,20,16,4,0,0,22,0,0,0,-1--1--1,,1|(2111,150)| 1,19,20,17,100,0,0,22,0,0,0,-1--1--1,,1|(2014,150)| 11,20,48,2063,150,6,8,34,3,0,0,1,0,0,0 10,21,new C GtC,2063,169,37,11,40,3,0,0,-1,0,0,0 1,22,8,15,1,0,0,0,0,64,0,-1--1--1,,1|(1707,177)| 1,23,15,21,1,0,0,0,0,64,0,-1--1--1,,1|(1991,196)| 10,24,Total cumulative emissions GtCO2,2190,259,69,28,8,3,0,0,0,0,0,0 1,25,16,24,1,0,0,0,0,64,0,-1--1--1,,1|(2216,216)| 10,26,C per CO2,1987,240,37,11,8,3,0,0,0,0,0,0 1,27,26,15,1,0,0,0,0,64,0,-1--1--1,,1|(1891,223)| 1,28,26,24,1,0,0,0,0,64,0,-1--1--1,,1|(2107,277)| 10,29,activate Affores program,2029,301,60,17,8,131,0,0,0,0,0,0 10,30,gCO2 per MJ unconv oil,956,112,57,19,8,3,0,0,0,0,0,0 10,31,gCO2 per MJ shale oil,1245,105,57,19,8,3,0,0,0,0,0,0 10,32,gCO2 per MJ unconv gas,818,112,57,19,8,3,0,0,0,0,0,0 10,33,CO2 emissions coal without CTL,749,439,71,19,8,3,0,0,0,0,0,0 1,34,1,33,0,0,0,0,0,128,0,-1--1--1,,1|(662,410)| 10,35,CO2 emissions CTL,750,586,48,19,8,3,0,0,0,0,0,0 10,36,extraction coal for CTL EJ,592,584,62,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,35,0,0,0,0,0,64,0,-1--1--1,,1|(671,584)| 10,38,gCO2 per MJ CTL,611,664,57,19,8,3,0,0,0,0,0,0 1,39,38,35,0,0,0,0,0,128,0,-1--1--1,,1|(673,628)| 1,40,33,7,0,0,0,0,0,128,0,-1--1--1,,1|(867,416)| 1,41,35,7,1,0,0,0,0,128,0,-1--1--1,,1|(860,496)| 10,42,CO2 emissions GTL,966,674,48,19,8,3,0,0,0,0,0,0 10,43,CO2 emissions conv gas without GTL,1165,684,70,22,8,131,0,0,0,0,0,0 1,44,2,43,0,0,0,0,0,128,0,-1--1--1,,1|(1231,753)| 10,45,gCO2 per MJ GTL,791,755,57,19,8,3,0,0,0,0,0,0 1,46,45,42,0,0,0,0,0,128,0,-1--1--1,,1|(871,717)| 1,47,42,7,1,0,0,0,0,128,0,-1--1--1,,1|(963,532)| 1,48,43,7,1,0,0,0,0,128,0,-1--1--1,,1|(1054,549)| 10,49,TIME STEP,1669,274,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,50,TIME STEP,2063,199,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,51,TIME STEP,1530,397,50,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,52,"separate conv and unconv gas?",1081,792,63,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,53,52,43,1,0,0,0,0,128,0,-1--1--1,,1|(1109,735)| 1,54,32,43,1,0,0,0,0,128,0,-1--1--1,,1|(1078,368)| 10,55,CO2 emissions unconv gas,738,245,55,19,8,3,0,0,0,0,0,0 1,56,32,55,0,0,0,0,0,128,0,-1--1--1,,1|(781,172)| 1,57,55,7,0,0,0,0,0,128,0,-1--1--1,,1|(851,312)| 10,58,CO2 emissions unconv oil,1368,355,50,23,8,131,0,0,0,0,0,0 1,59,4,58,0,0,0,0,0,64,0,-1--1--1,,1|(1441,440)| 1,60,31,58,1,0,0,0,0,64,0,-1--1--1,,1|(1308,218)| 1,61,30,58,0,0,0,0,0,64,0,-1--1--1,,1|(1152,227)| 1,62,58,7,0,0,0,0,0,128,0,-1--1--1,,1|(1190,372)| 10,63,CO2 emissions conv oil,1345,589,56,20,8,131,0,0,0,0,0,0 10,64,Time,1474,616,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,65,3,63,0,0,0,0,0,64,0,-1--1--1,,1|(1220,341)| 1,66,63,7,0,0,0,0,0,128,0,-1--1--1,,1|(1177,496)| 1,67,64,4,1,0,0,0,0,128,0,-1--1--1,,1|(1491,569)| 10,68,Adapt CO2 emissions unconv gas,1366,749,53,28,8,131,0,0,0,0,0,0 1,69,68,43,0,0,0,0,0,128,0,-1--1--1,,1|(1279,721)| 1,70,64,68,1,0,0,0,0,128,0,-1--1--1,,1|(1434,671)| 1,71,5,68,1,0,0,0,0,128,0,-1--1--1,,1|(1486,679)| 10,72,Cumulative emissions to 1995,2230,101,58,19,8,3,0,0,0,0,0,0 1,73,72,16,0,0,0,0,0,64,1,-1--1--1,,1|(2229,116)| 10,74,carbon budget,2227,329,46,11,8,3,0,0,0,0,0,0 12,75,0,2656,303,207,210,3,188,0,0,1,0,0,0 Cumulative_carbon_emissions 10,76,Mt per Gt,1771,335,44,11,8,3,0,0,0,0,0,0 10,77,Afforestation program 2020 GtCO2,1845,286,72,25,8,131,0,0,0,0,0,0 1,78,9,77,0,0,0,0,0,128,0,-1--1--1,,1|(1953,325)| 1,79,26,77,0,0,0,0,0,128,0,-1--1--1,,1|(1942,254)| 1,80,76,77,0,0,0,0,0,128,0,-1--1--1,,1|(1791,321)| 1,81,77,8,0,0,0,0,0,128,0,-1--1--1,,1|(1705,245)| 1,82,29,77,0,0,0,0,0,128,0,-1--1--1,,1|(1949,294)| 12,83,0,748,879,117,17,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||0-0-0 CH4 emissions natural gas 10,84,gCH4 per MJ unconv gas,771,943,57,19,8,3,0,0,0,0,0,0 10,85,gCH4 per MJ conv gas,959,955,45,19,8,3,0,0,0,0,0,0 10,86,CH4 emissions unconv gas,678,1034,48,19,8,3,0,0,0,0,0,0 1,87,84,86,0,0,0,0,0,128,0,-1--1--1,,1|(729,983)| 10,88,MJ per EJ,850,1007,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,89,88,86,0,0,0,0,0,128,0,-1--1--1,,1|(773,1018)| 10,90,g per Mt,736,1142,29,11,8,3,0,0,0,0,0,0 1,91,90,86,0,0,0,0,0,128,0,-1--1--1,,1|(712,1098)| 10,92,CH4 emissions conv gas without GTL,1034,1042,66,22,8,131,0,0,0,0,0,0 1,93,90,92,0,0,0,0,0,128,0,-1--1--1,,1|(859,1100)| 1,94,88,92,0,0,0,0,0,128,0,-1--1--1,,1|(923,1020)| 1,95,85,92,0,0,0,0,0,128,0,-1--1--1,,1|(990,991)| 10,96,Total CH4 emissions fossil fuels,957,1132,75,24,8,131,0,0,0,0,0,0 1,97,92,96,0,0,0,0,0,128,0,-1--1--1,,1|(1001,1080)| 1,98,86,96,0,0,0,0,0,128,0,-1--1--1,,1|(800,1076)| 1,99,68,92,1,0,0,0,0,64,0,-1--1--1,,1|(1285,931)| 1,100,52,92,0,0,0,0,0,128,0,-1--1--1,,1|(1059,908)| 1,101,84,92,0,0,0,0,0,128,0,-1--1--1,,1|(891,988)| 10,102,gCH4 per MJ coal,598,1264,45,19,8,3,0,0,0,0,0,0 10,103,gCH4 per MJ oil,1037,1329,45,19,8,3,0,0,0,0,0,0 10,104,PES oil EJ,1072,1246,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,105,CH4 emissions coal without CTL,753,1264,63,23,8,131,0,0,0,0,0,0 1,106,102,105,0,0,0,0,0,128,0,-1--1--1,,1|(659,1264)| 1,107,90,105,0,0,0,0,0,64,0,-1--1--1,,1|(742,1190)| 10,108,MJ per EJ,904,1345,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,109,108,105,0,0,0,0,0,64,0,-1--1--1,,1|(845,1313)| 10,110,CH4 emissions oil,916,1265,48,19,8,3,0,0,0,0,0,0 1,111,103,110,0,0,0,0,0,128,0,-1--1--1,,1|(982,1300)| 1,112,104,110,0,0,0,0,0,128,0,-1--1--1,,1|(1001,1254)| 1,113,108,110,0,0,0,0,0,128,0,-1--1--1,,1|(907,1315)| 1,114,90,110,0,0,0,0,0,64,0,-1--1--1,,1|(814,1195)| 1,115,110,96,0,0,0,0,0,128,0,-1--1--1,,1|(932,1207)| 1,116,105,96,0,0,0,0,0,128,0,-1--1--1,,1|(847,1202)| 10,117,PES peat EJ,1404,112,49,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,118,CO2 emissions peat,1354,166,49,19,8,3,0,0,0,0,0,0 1,119,117,118,0,0,0,0,0,128,0,-1--1--1,,1|(1387,129)| 1,120,31,118,0,0,0,0,0,128,0,-1--1--1,,1|(1292,132)| 1,121,118,8,0,0,0,0,0,128,0,-1--1--1,,1|(1445,182)| 10,122,real extraction conv oil emissions relevant EJ,1305,653,77,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,123,real extraction unconv oil emissions relevant EJ,1524,357,65,33,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,124,real extraction conv gas emissions relevant EJ,1173,849,80,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,125,124,43,0,0,0,0,0,128,0,-1--1--1,,1|(1169,774)| 1,126,124,92,0,0,0,0,0,128,0,-1--1--1,,1|(1108,938)| 10,127,"PED nat. gas for GTL EJ",956,745,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,128,127,42,0,0,0,0,0,128,0,-1--1--1,,1|(959,716)| 1,129,123,58,0,0,0,0,0,128,0,-1--1--1,,1|(1445,356)| 1,130,122,63,0,0,0,0,0,128,0,-1--1--1,,1|(1320,627)| 10,131,real extraction unconv gas emissions relevant EJ,572,179,84,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,132,131,55,0,0,0,0,0,128,0,-1--1--1,,1|(647,209)| 1,133,131,86,1,0,0,0,0,128,0,-1--1--1,,1|(584,925)| 10,134,extraction coal emissions relevant EJ,580,482,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,135,134,33,0,0,0,0,0,128,0,-1--1--1,,1|(658,462)| 1,136,134,105,1,0,0,0,0,128,0,-1--1--1,,1|(530,978)| 10,137,"PES tot biogas for heat-com",1738,462,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,138,137,10,0,0,0,0,0,128,0,-1--1--1,,1|(1735,422)| 10,139,solid biofuels emissions relevant EJ,1894,459,72,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,140,"PES RES for heat-com by techn",1731,407,64,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,141,139,10,1,0,0,0,0,128,0,-1--1--1,,1|(1813,417)| 10,142,Oil liquids saved by biofuels EJ,1621,425,67,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,143,142,10,0,0,0,0,0,128,0,-1--1--1,,1|(1674,399)| 10,144,MJ per EJ,668,319,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,145,144,55,0,0,0,0,0,64,0,-1--1--1,,1|(694,291)| 10,146,MJ per EJ,1221,608,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,147,146,43,0,0,0,0,0,64,0,-1--1--1,,1|(1201,634)| 10,148,g per Gt,925,514,40,11,8,3,0,0,0,0,0,0 1,149,148,55,0,0,0,0,0,128,0,-1--1--1,,1|(838,389)| 1,150,148,10,0,0,0,0,0,64,0,-1--1--1,,1|(1303,448)| 1,151,148,58,0,0,0,0,0,64,0,-1--1--1,,1|(1129,439)| 10,152,MJ per EJ,1508,294,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,153,152,58,0,0,0,0,0,64,0,-1--1--1,,1|(1456,316)| 1,154,148,35,0,0,0,0,0,64,0,-1--1--1,,1|(853,543)| 1,155,148,42,0,0,0,0,0,64,0,-1--1--1,,1|(942,583)| 10,156,MJ per EJ,803,675,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,157,156,42,0,0,0,0,0,64,0,-1--1--1,,1|(874,674)| 1,158,148,43,0,0,0,0,0,64,0,-1--1--1,,1|(1030,589)| 1,159,148,63,0,0,0,0,0,64,0,-1--1--1,,1|(1120,548)| 1,160,148,118,0,0,0,0,0,64,0,-1--1--1,,1|(1128,348)| 1,161,148,33,0,0,0,0,0,64,0,-1--1--1,,1|(852,483)| 1,162,144,33,0,0,0,0,0,128,0,-1--1--1,,1|(701,369)| 1,163,156,35,0,0,0,0,0,128,0,-1--1--1,,1|(782,640)| 1,164,146,63,0,0,0,0,0,128,0,-1--1--1,,1|(1269,600)| 1,165,152,10,0,0,0,0,0,128,0,-1--1--1,,1|(1607,330)| 1,166,152,118,0,0,0,0,0,128,0,-1--1--1,,1|(1440,238)| 10,167,gCH4 per MJ CTL,413,975,64,11,8,131,0,0,0,0,0,0 10,168,gCH4 per MJ GTL,1293,1173,45,19,8,131,0,0,0,0,0,0 10,169,CH4 emissions CTL,495,1064,48,19,8,3,0,0,0,0,0,0 1,170,167,169,0,0,0,0,0,128,0,-1--1--1,,1|(445,1010)| 1,171,36,169,0,0,0,0,0,128,0,-1--1--1,,1|(544,817)| 1,172,90,169,0,0,0,0,0,64,0,-1--1--1,,1|(631,1108)| 10,173,MJ per EJ,456,1130,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,174,173,169,0,0,0,0,0,64,0,-1--1--1,,1|(468,1107)| 10,175,CH4 emissions GTL,1139,1185,48,19,8,3,0,0,0,0,0,0 1,176,168,175,0,0,0,0,0,128,0,-1--1--1,,1|(1224,1177)| 1,177,127,175,1,0,0,0,0,128,0,-1--1--1,,1|(1088,918)| 1,178,90,175,1,0,0,0,0,64,0,-1--1--1,,1|(911,1195)| 1,179,175,96,0,0,0,0,0,128,0,-1--1--1,,1|(1068,1164)| 1,180,169,96,0,0,0,0,0,128,0,-1--1--1,,1|(705,1094)| 1,181,108,175,1,0,0,0,0,128,0,-1--1--1,,1|(1145,1278)| 10,182,"Total CO2e [GWP=100 years]",1411,967,70,28,8,131,0,0,0,0,0,0 1,183,96,182,0,0,0,0,0,128,0,-1--1--1,,1|(1175,1052)| 1,184,8,182,0,0,0,0,0,128,0,-1--1--1,,1|(1488,576)| 10,185,GWP 100 years CH4,1398,1084,47,24,8,131,0,0,0,0,0,0 1,186,185,182,0,0,0,0,0,128,0,-1--1--1,,1|(1402,1034)| 12,187,0,1886,725,228,206,3,188,0,0,1,0,0,0 Annual_CO2_emissions 10,188,"Total GHG emissions BAU-CAT MEDEAS D3.2",1549,1166,93,29,8,131,0,0,0,0,0,0 10,189,"Total GHG emissions MLT2030 MEDEAS D3.2",1547,1353,72,28,8,131,0,0,0,0,0,0 10,190,"Total GHG emissions OLT MEDEAS D3.2",1553,1224,72,28,8,131,0,0,0,0,0,0 10,191,"Total GHG emissions MLT2020 MEDEAS D3.2",1547,1285,72,28,8,131,0,0,0,0,0,0 12,192,0,2465,738,212,184,3,188,0,0,1,0,0,0 Annual_CO2e_emissions_COMP 10,193,GHG emissions 2050 MLT2020,1908,1230,70,19,8,131,0,0,0,0,0,0 10,194,GHG emissions 2050 MLT2030,1906,1334,69,19,8,131,0,0,0,0,0,0 10,195,"CO2 soil&LUC emissions",1591,73,52,19,8,3,0,0,-1,0,0,0 1,196,195,8,0,0,0,0,0,128,0,-1--1--1,,1|(1578,130)| 10,197,"CO2 land-use change emissions exogenous",1807,48,70,19,8,3,0,0,-1,0,0,0 1,198,197,195,0,0,0,0,0,0,0,-1--1--1,,1|(1696,60)| 10,199,correction factor all GHGs,1560,924,53,19,8,3,0,0,0,0,0,0 10,200,Total CO2e all GHG,1538,983,48,19,8,3,0,0,0,0,0,0 1,201,199,200,0,0,0,0,0,128,0,-1--1--1,,1|(1551,946)| 12,202,48,1569,1043,10,8,0,3,0,0,-1,0,0,0 1,203,205,208,4,0,0,22,0,0,0,-1--1--1,,1|(1762,1043)| 1,204,205,202,100,0,0,22,0,0,0,-1--1--1,,1|(1637,1043)| 11,205,48,1701,1043,6,8,34,3,0,0,1,0,0,0 10,206,Total Ce all GHG,1701,1062,56,11,40,3,0,0,-1,0,0,0 1,207,199,206,0,0,0,0,0,64,0,-1--1--1,,1|(1629,992)| 10,208,Cumulative CO2e GHG emissions,1880,1043,63,24,3,131,0,0,0,0,0,0 10,209,C per CO2,1821,1110,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,210,209,206,0,0,0,0,0,128,0,-1--1--1,,1|(1767,1088)| 1,211,182,200,1,0,0,0,0,128,0,-1--1--1,,1|(1456,1003)| 1,212,182,206,1,0,0,0,0,128,0,-1--1--1,,1|(1500,1058)| 12,213,0,2366,1187,228,203,3,188,0,0,1,0,0,0 Annual_CO2e_emissions \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CLIMATE - Carbon cycle #C $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,538,45,103,28,3,135,0,0,-1,0,0,0 C-ROADS subclimate model 10,2,one year,1533,207,37,11,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,3,CO2 ppm concentrations,850,461,82,19,8,131,0,0,0,0,0,0 12,4,0,1073,28,59,13,0,7,0,24,0,0,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Carbon cycle 12,5,0,2044,1120,75,19,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 369 - 370 ppm (2000) 12,6,0,2030,1059,69,19,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 Historical Mauna Loa CO2 Record: 12,7,0,2045,1147,78,17,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 400 - 403 ppm (2015) 12,8,0,2044,1095,80,20,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-255 354 - 355 ppm (1990) 10,9,GtC per ppm,919,535,43,11,8,3,0,0,-1,0,0,0 10,10,C in Atmosphere,989,631,40,20,3,3,0,0,0,0,0,0 12,11,48,654,624,10,8,0,3,0,0,-1,0,0,0 1,12,14,10,4,0,0,22,0,0,0,-1--1--1,,1|(833,621)| 1,13,14,11,100,0,0,22,0,0,0,-1--1--1,,1|(685,621)| 11,14,48,712,621,6,8,34,3,0,0,1,0,0,0 10,15,Total C anthro emissions,712,648,47,19,40,131,0,0,-1,0,0,0 10,16,C per CO2,695,502,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,15,1,0,0,0,0,64,0,-1--1--1,,1|(745,586)| 10,18,Total CO2 emissions GTCO2,672,552,64,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,19,18,15,0,0,0,0,0,64,0,-1--1--1,,1|(688,593)| 10,20,init C in Atmos,914,596,47,11,8,3,0,0,-1,0,0,0 1,21,9,20,1,0,0,0,0,64,0,-1--1--1,,1|(921,559)| 1,22,10,3,1,0,0,0,0,64,0,-1--1--1,,1|(875,539)| 10,23,C in Humus,976,316,40,20,3,3,0,0,0,0,0,0 1,24,26,10,4,0,0,22,0,0,0,-1--1--1,,1|(970,540)| 1,25,26,23,100,0,0,22,0,0,0,-1--1--1,,1|(970,397)| 11,26,10092,970,464,8,6,33,3,0,0,4,0,0,0 10,27,Flux Humus to Atmosphere,1025,464,47,19,40,3,0,0,-1,0,0,0 10,28,Humus Res Time,1058,547,54,11,8,3,0,0,0,0,0,0 1,29,28,27,0,0,0,0,0,128,0,-1--1--1,,1|(1045,515)| 1,30,23,27,1,0,0,0,0,128,0,-1--1--1,,1|(1030,379)| 10,31,Init C in Humus,1090,379,49,11,8,131,0,0,0,0,0,0 10,32,C in Biomass,1321,579,40,20,3,3,0,0,0,0,0,0 1,33,35,23,4,0,0,22,0,0,0,-1--1--1,,1|(1096,317)| 1,34,35,32,100,0,0,22,0,0,0,-1--1--1,,1|(1321,317)| 11,35,9932,1183,317,6,8,34,3,0,0,1,0,0,0 10,36,Flux Biomass to Humus,1183,344,52,19,40,3,0,0,-1,0,0,0 10,37,Humification Fraction,1167,428,40,19,8,131,0,0,0,0,0,0 10,38,Biomass Res Time,1213,470,58,11,8,131,0,0,0,0,0,0 10,39,Init C in Biomass,1231,532,54,11,8,131,0,0,0,0,0,0 1,40,32,36,1,0,0,0,0,128,0,-1--1--1,,1|(1271,450)| 1,41,37,36,0,0,0,0,0,128,0,-1--1--1,,1|(1173,392)| 1,42,38,36,1,0,0,0,0,128,0,-1--1--1,,1|(1207,409)| 1,43,45,10,4,0,0,22,0,0,0,-1--1--1,,1|(989,577)| 1,44,45,32,100,0,0,22,0,0,0,-1--1--1,,1|(1200,577)| 11,45,9740,1113,577,6,8,34,3,0,0,1,0,0,0 10,46,Flux Biomass to Atmosphere,1113,593,52,19,40,131,0,0,-1,0,0,0 1,47,37,45,1,0,0,0,0,128,0,-1--1--1,,1|(1147,504)| 1,48,38,45,1,0,0,0,0,128,0,-1--1--1,,1|(1170,530)| 1,49,32,46,1,0,0,0,0,128,0,-1--1--1,,1|(1248,595)| 1,50,52,32,4,0,0,22,0,0,0,-1--1--1,,1|(1321,618)| 1,51,52,10,100,0,0,22,0,0,0,-1--1--1,,1|(1090,618)| 11,52,9916,1157,618,6,8,34,3,0,0,1,0,0,0 10,53,Flux Atm to Biomass,1157,637,39,19,40,131,0,0,-1,0,0,0 1,54,10,53,1,0,0,0,0,128,0,-1--1--1,,1|(1081,658)| 10,55,Preindustrial C,1195,699,47,11,8,3,0,0,0,0,0,0 1,56,55,53,1,0,0,0,0,128,0,-1--1--1,,1|(1163,682)| 10,57,Biostim coeff,1313,694,42,11,8,3,0,0,0,0,0,0 1,58,57,53,1,0,0,0,0,128,0,-1--1--1,,1|(1232,682)| 10,59,Biostim coeff index,1468,677,60,11,8,3,0,0,0,0,0,0 10,60,Biostim coeff mean,1465,707,60,11,8,3,0,0,0,0,0,0 1,61,59,57,1,0,0,0,0,128,1,-1--1--1,,1|(1366,678)| 1,62,60,57,1,0,0,0,0,128,1,-1--1--1,,1|(1372,716)| 10,63,Init NPP,1343,638,29,11,8,3,0,0,0,0,0,0 1,64,63,53,0,0,0,0,0,128,0,-1--1--1,,1|(1261,637)| 10,65,Effect of Warming on C flux to biomass,1537,630,68,19,8,3,0,0,0,0,0,0 1,66,65,53,1,0,0,0,0,128,0,-1--1--1,,1|(1338,664)| 1,67,20,10,0,0,0,0,0,64,1,-1--1--1,,1|(936,606)| 10,68,Strength of Temp Effect on C Flux to Land,1768,563,76,19,8,3,0,0,0,0,0,0 10,69,Strength of temp effect on land C flux mean,1736,493,72,19,8,3,0,0,0,0,0,0 10,70,Sensitivity of C Uptake to Temperature,1769,656,74,19,8,3,0,0,0,0,0,0 1,71,68,65,1,0,0,0,0,128,0,-1--1--1,,1|(1644,595)| 1,72,39,32,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1262,534)| 1,73,31,23,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1039,357)| 1,74,69,68,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1772,519)| 1,75,70,68,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1757,562)| 10,76,C in Mixed Layer,1008,869,40,20,3,3,0,0,0,0,0,0 10,77,C in Deep Ocean,1007,1109,40,20,3,3,0,0,0,0,0,0 1,78,80,76,4,0,0,22,0,0,0,-1--1--1,,1|(1005,805)| 1,79,80,10,68,0,0,22,2,0,0,-1--1--1,|12||0-0-0,1|(1005,700)| 11,80,10444,1005,756,8,6,33,3,0,0,4,0,0,0 10,81,Flux Atm to Ocean,1052,756,39,19,40,3,0,0,-1,0,0,0 1,82,84,77,4,0,0,22,0,0,0,-1--1--1,,1|(1004,1042)| 1,83,84,76,100,0,0,22,0,0,0,-1--1--1,,1|(1004,936)| 11,84,9852,1004,989,8,6,33,3,0,0,4,0,0,0 10,85,Diffusion Flux,1056,989,44,11,40,3,0,0,-1,0,0,0 10,86,Equil C in Mixed Layer,1205,755,54,19,8,131,0,0,0,0,0,0 10,87,Effect of Temp on DIC pCO2,1396,757,58,19,8,3,0,0,0,0,0,0 10,88,Sensitivity of pCO2 DIC to Temperature,1633,792,66,19,8,3,0,0,0,0,0,0 10,89,Sensitivity of pCO2 DIC to Temperature Mean,1676,857,79,19,8,3,0,0,0,0,0,0 10,90,Buffer Factor,1210,820,43,11,8,3,0,0,0,0,0,0 10,91,Mixing Time,1096,815,40,11,8,3,0,0,0,0,0,0 10,92,Preind C in Mixed Layer,1427,820,59,19,8,3,0,0,0,0,0,0 10,93,Buff C Coeff,1337,853,41,11,8,3,0,0,0,0,0,0 10,94,Ref Buffer Factor,1316,877,55,11,8,3,0,0,0,0,0,0 10,95,Init C in Mixed Ocean per meter,1236,914,54,19,8,3,0,0,0,0,0,0 10,96,C in mixed layer per meter,1057,936,52,19,8,3,0,0,0,0,0,0 10,97,Mixed Depth,1280,978,42,11,8,3,0,0,0,0,0,0 10,98,Equil C in Mixed Layer,1454,977,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,99,Equilibrium C per meter in Mixed Layer,1359,1072,69,19,8,3,0,0,0,0,0,0 10,100,C in deep ocean per meter,1070,1045,53,19,8,3,0,0,0,0,0,0 10,101,Layer Depth,1147,1105,40,11,8,3,0,0,0,0,0,0 10,102,Mean Depth of Adjacent Layers,1206,1026,53,19,8,3,0,0,0,0,0,0 10,103,Init C in Deep Ocean per meter,1530,1158,54,19,8,3,0,0,0,0,0,0 1,104,76,81,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1021,818)| 1,105,91,81,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1081,795)| 1,106,86,81,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1180,775)| 1,107,55,86,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1206,717)| 1,108,10,86,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1080,710)| 1,109,90,86,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1196,789)| 1,110,87,86,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1305,756)| 1,111,92,86,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1320,788)| 1,112,92,90,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1317,820)| 1,113,93,90,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1280,838)| 1,114,94,90,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1262,856)| 1,115,88,87,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1517,775)| 1,116,70,88,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1757,730)| 1,117,89,88,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1636,810)| 10,118,Preind Ocean C per meter,1538,901,52,19,8,3,0,0,0,0,0,0 1,119,118,92,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1495,821)| 1,120,97,92,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1399,925)| 1,121,95,76,0,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1121,891)| 1,122,97,76,0,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1156,928)| 1,123,97,102,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1276,1004)| 1,124,97,99,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1331,1008)| 1,125,98,99,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1411,1019)| 1,126,102,85,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1133,1007)| 1,127,96,85,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1053,959)| 1,128,76,96,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1028,897)| 1,129,100,85,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1067,1009)| 1,130,77,100,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1045,1096)| 1,131,101,100,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1119,1083)| 1,132,103,77,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1396,1160)| 1,133,101,77,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1073,1128)| 1,134,101,102,1,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(1185,1078)| 1,135,76,90,0,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1100,846)| 1,136,97,96,1,0,0,0,1,128,0,0-0-255,|12||0-0-0,1|(1160,971)| 10,137,Eddy diff coeff,859,987,47,11,8,3,0,0,0,0,0,0 10,138,Eddy diff coeff index,846,909,47,19,8,3,0,0,0,0,0,0 10,139,Eddy diff mean,853,1064,48,11,8,3,0,0,0,0,0,0 10,140,Layer Time Constant,721,983,37,19,8,3,0,0,0,0,0,0 10,141,Mean Depth of Adjacent Layers,584,983,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,142,Layer Depth,718,1063,49,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,143,137,140,0,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(791,985)| 1,144,139,137,0,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(854,1032)| 1,145,138,137,0,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(851,945)| 1,146,142,140,0,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(718,1033)| 1,147,141,140,0,0,0,0,2,128,1,-1--1--1,|12||0-0-0,1|(656,983)| 1,148,137,84,0,0,0,0,2,128,0,-1--1--1,|12||0-0-0,1|(944,987)| 10,149,Flux Biosphere to CH4,1437,247,57,19,8,3,0,0,0,0,0,0 10,150,CH4 Generation Rate from Biomass,1574,511,70,19,8,3,0,0,0,0,0,0 10,151,CH4 Generation Rate from Humus,1302,184,70,19,8,3,0,0,0,0,0,0 10,152,Sensitivity of Methane Emissions to Temperature,815,172,82,19,8,131,0,0,-1,0,0,0 10,153,Effect of Warming on CH4 Release from Biological Activity,1056,119,86,28,8,3,0,0,0,0,0,0 1,154,152,153,0,0,0,0,0,64,0,-1--1--1,,1|(926,147)| 10,155,Reference Temperature Change for Effect of Warming on CH4 from Respiration,810,97,101,28,8,131,0,0,-1,0,0,0 1,156,155,153,0,0,0,0,0,64,0,-1--1--1,,1|(933,107)| 10,157,Effect of Warming on CH4 Release from Biological Activity,1554,424,91,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,158,48,978,174,10,8,0,3,0,0,-1,0,0,0 1,159,161,158,4,0,0,22,0,0,0,-1--1--1,,1|(978,207)| 1,160,161,23,100,0,0,22,0,0,0,-1--1--1,,1|(978,270)| 11,161,48,978,239,8,6,33,3,0,0,4,0,0,0 10,162,Flux Humus to CH4,1033,239,47,19,40,3,0,0,-1,0,0,0 1,163,151,162,0,0,0,0,0,128,0,-1--1--1,,1|(1162,212)| 1,164,162,149,0,0,0,0,0,128,0,-1--1--1,,1|(1223,241)| 1,165,23,161,1,0,0,0,0,128,0,-1--1--1,,1|(927,262)| 1,166,153,162,0,0,0,0,0,128,0,-1--1--1,,1|(1044,176)| 10,167,Mtons per Gtons,1586,178,54,11,8,3,0,0,0,0,0,0 10,168,CH4 per C,1598,323,37,11,8,3,0,0,0,0,0,0 12,169,48,1512,579,10,8,0,3,0,0,-1,0,0,0 1,170,172,169,4,0,0,22,0,0,0,-1--1--1,,1|(1469,578)| 1,171,172,32,100,0,0,22,0,0,0,-1--1--1,,1|(1393,578)| 11,172,48,1431,578,6,8,34,3,0,0,1,0,0,0 10,173,Flux Biomass to CH4,1431,605,52,19,40,3,0,0,-1,0,0,0 1,174,150,172,0,0,0,0,0,128,0,-1--1--1,,1|(1491,549)| 1,175,157,172,0,0,0,0,0,128,0,-1--1--1,,1|(1487,507)| 1,176,172,149,0,0,0,0,0,128,0,-1--1--1,,1|(1433,426)| 1,177,32,172,1,0,0,0,0,128,0,-1--1--1,,1|(1381,536)| 10,178,Natural CH4 Emissions,1583,239,42,19,8,3,0,0,-1,0,0,0 1,179,168,178,0,0,0,0,0,0,0,-1--1--1,,1|(1592,291)| 1,180,149,178,0,0,0,0,0,0,0,-1--1--1,,1|(1510,242)| 1,181,167,178,0,0,0,0,0,0,0,-1--1--1,,1|(1585,197)| 1,182,183,10,4,0,0,22,0,0,0,-1--1--1,,1|(989,754)| 11,183,9164,851,754,6,8,34,3,0,0,1,0,0,0 10,184,C from CH4 oxidation,851,781,41,19,40,3,0,0,-1,0,0,0 12,185,48,705,748,10,8,0,3,0,0,-1,0,0,0 1,186,183,185,100,0,0,22,0,0,0,-1--1--1,,1|(780,754)| 10,187,CH4 per C,679,812,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,188,Mtons per Gtons,697,848,39,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,189,187,183,0,0,0,0,0,128,0,-1--1--1,,1|(771,780)| 1,190,188,183,1,0,0,0,2,64,0,-1--1--1,|12||0-0-0,1|(749,805)| 10,191,init CO2 in Atmos ppm,810,547,38,19,8,3,0,0,-1,0,0,0 1,192,191,20,0,0,0,0,0,128,0,-1--1--1,,1|(862,571)| 10,193,pre industrial value ppm,1703,1051,59,19,8,131,0,0,-1,0,0,0 10,194,Temperature change,1635,713,70,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,195,194,65,0,0,0,0,0,128,0,-1--1--1,,1|(1591,675)| 1,196,194,87,0,0,0,0,0,128,0,-1--1--1,,1|(1516,734)| 10,197,Temperature change,1304,87,70,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,198,197,153,0,0,0,0,0,128,0,-1--1--1,,1|(1194,100)| 11,199,6636,833,665,6,8,34,3,0,0,1,0,0,0 10,200,Flux C from permafrost release,833,692,64,19,40,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,201,48,769,665,10,8,0,3,0,0,-1,0,0,0 1,202,199,201,100,0,0,22,0,0,0,-1--1--1,,1|(803,665)| 1,203,199,10,4,0,0,22,0,0,0,-1--1--1,,1|(833,631)| 10,204,CH4 Uptake,609,777,65,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,205,204,183,0,0,0,0,0,128,0,-1--1--1,,1|(752,763)| 10,206,CO2 Mauna Loa,1874,956,55,11,8,3,0,0,-1,0,0,0 12,207,0,2167,710,241,216,3,188,0,0,1,0,0,0 CO2_concentrations \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CLIMATE - Other GHG cycles #C $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,CH4 in Atm,575,393,52,33,3,131,0,0,0,0,0,0 12,2,48,772,390,10,8,0,3,0,0,-1,0,0,0 1,3,4,2,4,0,0,22,0,0,0,-1--1--1,,1|(726,389)| 11,4,48,683,389,7,8,34,3,0,0,1,0,0,0 10,5,CH4 Uptake,683,416,60,19,40,3,0,0,-1,0,0,0 1,6,1,5,1,0,0,0,0,64,0,-1--1--1,,1|(627,323)| 10,7,Initial CH4,571,479,35,11,8,3,0,0,-1,0,0,0 10,8,ppb CH4 per Mton CH4,496,610,44,19,8,131,0,0,0,0,0,0 10,9,CH4 atm conc,495,532,47,11,8,3,0,0,0,0,0,0 1,10,8,9,0,0,0,0,0,64,0,-1--1--1,,1|(495,573)| 1,11,1,9,0,0,0,0,0,64,0,-1--1--1,,1|(532,467)| 1,12,8,7,0,0,0,0,0,64,1,-1--1--1,,1|(531,546)| 10,13,Initial CH4 conc,604,560,52,11,8,131,0,0,0,0,0,0 1,14,13,7,0,0,0,0,0,64,1,-1--1--1,,1|(590,525)| 10,15,Global CH4 anthro emissions,621,209,61,19,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-255 10,16,CH4 molar mass,532,680,53,11,8,3,0,0,-1,0,0,0 1,17,16,8,0,0,0,0,0,64,1,-1--1--1,,1|(519,655)| 10,18,g per ton,452,706,29,11,8,3,0,0,-1,0,0,0 1,19,18,8,0,0,0,0,0,64,1,-1--1--1,,1|(469,668)| 10,20,ppt per mol,628,688,37,11,8,3,0,0,-1,0,0,0 1,21,20,8,0,0,0,0,0,64,1,-1--1--1,,1|(575,656)| 10,22,ton per Mton,620,620,42,11,8,3,0,0,-1,0,0,0 1,23,22,8,0,0,0,0,0,64,1,-1--1--1,,1|(565,615)| 10,24,ppt per ppb,404,687,38,11,8,3,0,0,-1,0,0,0 1,25,24,8,0,0,0,0,0,64,1,-1--1--1,,1|(439,657)| 10,26,CH4 Fractional Uptake,763,522,50,19,8,3,0,0,0,0,0,0 10,27,Time Const for CH4,891,474,48,19,8,3,0,0,0,0,0,0 1,28,26,27,0,0,0,0,0,64,0,-1--1--1,,1|(821,500)| 10,29,Reference CH4 time constant,884,571,50,19,8,131,0,0,-1,0,0,0 1,30,29,26,0,0,0,0,0,64,0,-1--1--1,,1|(830,548)| 10,31,Stratospheric CH4 path share,732,598,60,19,8,3,0,0,-1,0,0,0 1,32,31,26,0,0,0,0,0,64,0,-1--1--1,,1|(744,566)| 10,33,Tropospheric CH4 path share,852,628,61,19,8,3,0,0,-1,0,0,0 1,34,33,26,0,0,0,0,0,64,0,-1--1--1,,1|(812,580)| 1,35,1,26,1,0,0,0,2,64,0,-1--1--1,|12||0-0-0,1|(677,469)| 1,36,26,5,1,0,0,0,2,64,0,-1--1--1,|12||0-0-0,1|(727,474)| 1,37,4,1,36,0,0,22,2,64,0,-1--1--1,|12||0-0-0,1|(651,389)| 1,38,7,1,0,0,0,0,0,64,1,-1--1--1,,1|(571,453)| 10,39,Temperature Threshold for Methane Emissions from Permafrost and Clathrate,205,539,85,28,8,3,0,0,-1,0,0,0 10,40,Reference Sensitivity of CH4 from Permafrost and Clathrate to Temperature,140,394,96,28,8,131,0,0,0,0,0,0 10,41,Sensitivity of Methane Emissions to Permafrost and Clathrate,83,468,90,28,8,3,0,0,0,0,0,0 10,42,Global CH4 emissions,405,200,40,19,8,3,0,0,0,0,0,0 12,43,48,559,238,10,8,0,3,0,0,-1,0,0,0 1,44,46,1,4,0,0,22,0,0,0,-1--1--1,,1|(564,336)| 1,45,46,43,100,0,0,22,0,0,0,-1--1--1,,1|(564,273)| 11,46,48,564,306,8,6,33,3,0,0,4,0,0,0 10,47,Global anthropogenic CH4 emissions,640,306,68,19,40,3,0,0,-1,0,0,0 1,48,15,47,0,0,0,0,0,64,0,-1--1--1,,1|(628,250)| 1,49,15,42,0,0,0,0,0,64,0,-1--1--1,,1|(509,204)| 12,50,48,309,404,10,8,0,3,0,0,-1,0,0,0 1,51,53,1,4,0,0,22,0,0,0,-1--1--1,,1|(471,415)| 1,52,53,50,100,0,0,22,0,0,0,-1--1--1,,1|(309,415)| 11,53,48,413,415,7,9,34,131,0,0,1,0,0,0 10,54,CH4 Emissions from Permafrost and Clathrate,413,443,80,19,40,3,0,0,-1,0,0,0 1,55,40,54,0,0,0,0,0,64,0,-1--1--1,,1|(277,418)| 1,56,41,54,0,0,0,0,0,64,0,-1--1--1,,1|(246,456)| 1,57,39,54,0,0,0,0,0,64,0,-1--1--1,,1|(311,489)| 10,58,Total CH4 released,553,811,40,20,3,3,0,0,0,0,0,0 1,59,64,58,0,0,0,0,0,64,0,-1--1--1,,1|(440,839)| 10,60,Mtons per Gtons,432,791,39,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,61,60,58,0,0,0,0,0,64,0,-1--1--1,,1|(485,799)| 10,62,Reference Sensitivity of C from Permafrost and Clathrate to Temperature,119,844,99,28,8,3,0,0,-1,0,0,0 10,63,Total C from permafrost,279,798,59,29,3,131,0,0,0,0,0,0 10,64,CH4 per C,338,866,46,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,65,60,63,0,0,0,0,0,64,0,-1--1--1,,1|(372,793)| 1,66,64,63,0,0,0,0,0,64,0,-1--1--1,,1|(321,846)| 10,67,CH4 Emissions from Permafrost and Clathrate,327,908,84,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,68,67,63,0,0,0,0,0,64,0,-1--1--1,,1|(307,864)| 1,69,67,58,0,0,0,0,0,64,0,-1--1--1,,1|(435,861)| 12,70,48,306,363,10,8,0,3,0,0,-1,0,0,0 1,71,73,1,4,0,0,22,0,0,0,-1--1--1,,1|(474,365)| 1,72,73,70,100,0,0,22,0,0,0,-1--1--1,,1|(364,365)| 11,73,48,419,365,6,8,34,3,0,0,3,0,0,0 10,74,Natural CH4 Emissions,419,338,47,19,40,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,75,74,42,0,0,0,0,0,128,0,-1--1--1,,1|(412,275)| 10,76,N2O in Atm,1411,235,40,20,3,3,0,0,0,0,0,0 12,77,48,1618,236,10,8,0,3,0,0,-1,0,0,0 1,78,79,77,4,0,0,22,0,0,0,-1--1--1,,1|(1571,236)| 11,79,48,1528,236,7,8,34,3,0,0,1,0,0,0 10,80,N2O Uptake,1528,255,43,11,40,3,0,0,-1,0,0,0 12,81,48,1180,236,10,8,0,3,0,0,-1,0,0,0 1,82,83,81,100,0,0,22,0,0,0,-1--1--1,,1|(1227,235)| 11,83,48,1272,235,7,8,34,3,0,0,1,0,0,0 10,84,Global N2O Emissions,1272,262,41,19,40,3,0,0,-1,0,0,0 10,85,Time Const for N2O,1558,322,48,19,8,3,0,0,0,0,0,0 1,86,85,80,0,0,0,0,0,64,0,-1--1--1,,1|(1544,290)| 1,87,76,79,1,0,0,0,0,64,0,-1--1--1,,1|(1464,172)| 10,88,Initial N2O,1491,344,36,11,8,3,0,0,-1,0,0,0 10,89,Natural N2O emissions,1199,334,43,19,8,3,0,0,0,0,0,0 10,90,ppb N2O per MTonN,1371,384,45,19,8,131,0,0,0,0,0,0 1,91,90,92,0,0,0,0,1,64,0,128-128-128,|12||0-0-0,1|(1373,349)| 10,92,N2O atm conc,1378,310,48,11,8,3,0,0,0,0,0,0 1,93,76,92,0,0,0,0,1,64,0,128-128-128,|12||0-0-0,1|(1395,270)| 1,94,90,88,0,0,0,0,0,64,1,-1--1--1,,1|(1430,364)| 10,95,Initial N2O conc,1519,422,53,11,8,131,0,0,0,0,0,0 1,96,95,88,0,0,0,0,0,64,1,-1--1--1,,1|(1507,389)| 1,97,89,84,0,0,0,0,0,64,0,-1--1--1,,1|(1230,302)| 10,98,Global N2O Anthro Emissions,1236,179,65,19,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-255 1,99,98,84,0,0,0,0,0,64,0,-1--1--1,,1|(1250,214)| 10,100,g per ton,1224,388,38,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-255 1,101,100,90,0,0,0,0,0,64,1,-1--1--1,,1|(1287,386)| 10,102,"N2O-N molar mass",1292,471,47,19,8,3,0,0,-1,0,0,0 1,103,102,90,0,0,0,0,0,64,1,-1--1--1,,1|(1326,432)| 10,104,ppt per mol,1384,467,46,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-255 1,105,104,90,0,0,0,0,0,64,1,-1--1--1,,1|(1379,436)| 10,106,ton per Mton,1238,408,51,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-255 1,107,106,90,0,0,0,0,0,64,1,-1--1--1,,1|(1300,396)| 10,108,ppt per ppb,1250,434,47,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-255 1,109,108,90,0,0,0,0,0,64,1,-1--1--1,,1|(1294,415)| 1,110,83,76,4,0,0,22,0,64,0,-1--1--1,,1|(1325,235)| 1,111,79,76,36,0,0,22,2,64,0,-1--1--1,|12||0-0-0,1|(1486,236)| 1,112,88,76,0,0,0,0,0,64,1,-1--1--1,,1|(1458,299)| 12,113,0,515,83,64,14,8,7,0,58,-1,0,0,0,-1--1--1,0-0-0,Century Gothic|18|B|255-0-255 CH4 cycle 12,114,0,1402,84,65,14,8,7,0,58,-1,0,0,0,-1--1--1,0-0-0,Century Gothic|18|B|0-0-255 N2O cycle 10,115,PFC in Atm,2066,433,40,20,3,3,0,0,0,0,0,0 10,116,Time Const for PFC,2166,526,48,19,8,3,0,0,0,0,0,0 10,117,Preindustrial PFC,2359,430,56,11,8,3,0,0,-1,0,0,0 10,118,ppt PFC per Tons PFC,2224,340,41,19,8,131,0,0,0,0,0,0 1,119,118,120,0,0,0,0,0,64,0,-1--1--1,,1|(2172,353)| 10,120,PFC atm conc,2107,371,46,11,8,3,0,0,0,0,0,0 1,121,118,117,0,0,0,0,0,64,1,-1--1--1,,1|(2291,385)| 10,122,Preindustrial PFC conc,2430,222,57,19,8,131,0,0,0,0,0,0 1,123,122,117,0,0,0,0,0,64,1,-1--1--1,,1|(2395,323)| 1,124,115,120,0,0,0,0,0,64,0,-1--1--1,,1|(2085,403)| 10,125,PFC radiative efficiency,2171,197,45,19,8,3,0,0,0,0,0,0 10,126,PFC RF,2169,271,28,11,8,3,0,0,0,0,0,0 1,127,120,126,1,0,0,0,0,64,0,-1--1--1,,1|(2137,320)| 1,128,125,126,0,0,0,0,0,64,0,-1--1--1,,1|(2170,231)| 12,129,48,2253,433,10,8,0,3,0,0,-1,0,0,0 1,130,131,129,4,0,0,22,0,0,0,-1--1--1,,1|(2208,434)| 11,131,48,2167,434,7,8,34,3,0,0,1,0,0,0 10,132,PFC uptake,2167,453,39,11,40,3,0,0,-1,0,0,0 1,133,115,132,1,0,0,0,0,64,0,-1--1--1,,1|(2097,485)| 1,134,116,132,0,0,0,0,0,64,0,-1--1--1,,1|(2166,492)| 10,135,Global PFC emissions,1850,518,39,19,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-255 10,136,Natural PFC emissions,2007,543,42,19,8,3,0,0,0,0,0,0 12,137,48,1825,433,10,8,0,3,0,0,-1,0,0,0 1,138,139,137,100,0,0,22,0,0,0,-1--1--1,,1|(1879,434)| 11,139,48,1930,434,7,8,34,3,0,0,1,0,0,0 10,140,Global Total PFC emissions,1930,461,57,19,40,3,0,0,-1,0,0,0 1,141,136,140,0,0,0,0,0,64,0,-1--1--1,,1|(1973,507)| 1,142,116,136,1,0,0,0,0,64,0,-1--1--1,,1|(2090,543)| 1,143,135,140,0,0,0,0,0,64,0,-1--1--1,,1|(1883,493)| 1,144,117,136,1,0,0,0,0,64,0,-1--1--1,,1|(2225,577)| 1,145,122,126,1,0,0,0,0,64,0,-1--1--1,,1|(2278,243)| 10,146,CF4 molar mass,2347,313,52,11,8,3,0,0,-1,0,0,0 1,147,146,118,0,0,0,0,0,64,1,-1--1--1,,1|(2287,326)| 10,148,g per ton,2263,275,38,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,149,148,118,0,0,0,0,0,64,1,-1--1--1,,1|(2249,297)| 10,150,ppt per mol,2345,263,46,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,151,150,118,0,0,0,0,0,64,1,-1--1--1,,1|(2296,293)| 1,152,131,115,36,0,0,22,2,64,0,-1--1--1,|12||0-0-0,1|(2133,434)| 12,153,0,2125,137,67,14,8,7,0,58,-1,0,0,0,-1--1--1,0-0-0,Century Gothic|18|B|128-0-64 PFCs cycle 10,154,Init PFC in Atm con,1887,290,51,19,8,131,0,0,0,0,0,0 1,155,139,115,4,0,0,22,0,0,0,-1--1--1,,1|(1981,434)| 10,156,ppt per ppb,2049,227,47,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,157,156,126,0,0,0,0,0,128,0,-1--1--1,,1|(2103,246)| 10,158,Init PFC in Atm,1978,356,50,11,8,3,0,0,0,0,0,0 1,159,154,158,0,0,0,0,0,64,0,-1--1--1,,1|(1931,322)| 1,160,118,158,0,0,0,0,0,64,0,-1--1--1,,1|(2112,346)| 1,161,158,115,0,0,0,0,0,128,1,-1--1--1,,1|(2011,385)| 10,162,SF6,1178,976,40,20,3,3,0,0,0,0,0,0 12,163,48,982,974,10,8,0,3,0,0,-1,0,0,0 1,164,165,163,100,0,0,22,0,0,0,-1--1--1,,1|(1022,972)| 11,165,48,1060,972,7,8,34,3,0,0,1,0,0,0 10,166,Global SF6 emissions,1060,999,37,19,40,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-255 12,167,48,1376,971,10,8,0,3,0,0,-1,0,0,0 1,168,169,167,4,0,0,22,0,0,0,-1--1--1,,1|(1329,977)| 11,169,48,1286,977,7,8,34,3,0,0,1,0,0,0 10,170,SF6 uptake,1286,996,38,11,40,3,0,0,-1,0,0,0 10,171,Time Const for SF6,1396,1052,48,19,8,3,0,0,-1,0,0,0 1,172,171,170,0,0,0,0,0,64,0,-1--1--1,,1|(1339,1023)| 1,173,162,170,1,0,0,0,0,64,0,-1--1--1,,1|(1213,1022)| 10,174,Preindustrial SF6 conc,1561,758,55,19,8,131,0,0,0,0,0,0 10,175,SF6 RF,1282,796,27,11,8,3,0,0,0,0,0,0 10,176,Initial SF6,1440,950,33,11,8,3,0,0,-1,0,0,0 10,177,SF6 radiative efficiency,1269,723,43,19,8,3,0,0,-1,0,0,0 10,178,ppt SF6 per Tons SF6,1416,884,57,19,8,3,0,0,-1,0,0,0 1,179,178,176,0,0,0,0,0,64,0,-1--1--1,,1|(1426,914)| 10,180,SF6 atm conc,1201,862,45,11,8,3,0,0,-1,0,0,0 1,181,162,180,0,0,0,0,0,64,0,-1--1--1,,1|(1188,921)| 1,182,178,180,0,0,0,0,0,64,0,-1--1--1,,1|(1309,873)| 1,183,177,175,0,0,0,0,0,64,0,-1--1--1,,1|(1274,756)| 1,184,180,175,0,0,0,0,0,64,0,-1--1--1,,1|(1235,833)| 10,185,ppt per ppb,1193,754,47,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,186,185,175,0,0,0,0,0,64,0,-1--1--1,,1|(1230,771)| 1,187,174,175,1,0,0,0,0,64,0,-1--1--1,,1|(1414,777)| 10,188,g per ton,1405,808,38,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,189,188,178,0,0,0,0,0,64,1,-1--1--1,,1|(1408,835)| 10,190,ppt per mol,1370,834,46,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,191,190,178,0,0,0,0,0,64,1,-1--1--1,,1|(1384,849)| 10,192,SF6 molar mass,1481,795,51,11,8,3,0,0,-1,0,0,0 1,193,192,178,0,0,0,0,0,64,1,-1--1--1,,1|(1455,829)| 1,194,165,162,4,0,0,22,0,64,0,-1--1--1,,1|(1102,972)| 1,195,169,162,36,0,0,22,2,64,0,-1--1--1,|12||0-0-0,1|(1248,977)| 1,196,176,162,1,0,0,0,0,64,1,-1--1--1,,1|(1306,954)| 12,197,0,1377,644,57,15,8,7,0,58,-1,0,0,0,-1--1--1,0-0-0,Century Gothic|18|B|255-128-0 SF6 cycle 10,198,Initial SF6 con,1548,889,46,11,8,131,0,0,0,0,0,0 1,199,198,176,0,0,0,0,0,128,0,-1--1--1,,1|(1500,916)| 10,200,HFC in Atm,1957,971,40,20,3,3,0,0,0,0,0,0 12,201,48,1788,966,10,8,0,3,0,0,-1,0,0,0 1,202,204,200,4,0,0,22,0,0,0,-1--1--1,,1|(1886,966)| 1,203,204,201,100,0,0,22,0,0,0,-1--1--1,,1|(1820,966)| 11,204,48,1849,966,7,8,34,3,0,0,1,0,0,0 10,205,Global HFC emissions,1849,993,40,19,40,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-128-255 10,206,Time Const for HFC,2154,1034,48,19,8,3,0,0,-1,0,0,0 10,207,Preindustrial HFC conc,2472,854,58,19,8,131,0,0,0,0,0,0 10,208,HFC RF,2100,734,29,11,8,3,0,0,0,0,0,0 10,209,Initial HFC,2152,938,36,11,8,3,0,0,-1,0,0,0 1,210,209,200,0,0,0,0,0,64,1,-1--1--1,,1|(2063,952)| 10,211,HFC radiative efficiency,2000,762,46,19,8,3,0,0,-1,0,0,0 10,212,ppt HFC per Tons HFC,2180,871,42,19,8,3,0,0,-1,0,0,0 10,213,HFC atm conc,2028,884,47,11,8,3,0,0,-1,0,0,0 1,214,200,213,0,0,0,0,0,64,0,-1--1--1,,1|(1991,928)| 1,215,212,213,0,0,0,0,0,64,0,-1--1--1,,1|(2113,875)| 1,216,213,208,0,0,0,0,0,64,0,-1--1--1,,1|(2060,815)| 12,217,48,2148,966,10,8,0,3,0,0,-1,0,0,0 1,218,220,217,4,0,0,22,0,0,0,-1--1--1,,1|(2104,968)| 1,219,220,200,100,0,0,22,0,0,0,-1--1--1,,1|(2027,968)| 11,220,48,2064,968,7,8,34,3,0,0,1,0,0,0 10,221,HFC uptake,2064,987,40,11,40,3,0,0,-1,0,0,0 1,222,206,221,0,0,0,0,0,64,0,-1--1--1,,1|(2107,1009)| 1,223,200,221,1,0,0,0,0,64,0,-1--1--1,,1|(1984,1015)| 1,224,212,209,0,0,0,0,0,64,1,-1--1--1,,1|(2167,902)| 1,225,211,208,0,0,0,0,0,64,0,-1--1--1,,1|(2051,748)| 10,226,ppt per ppb,2036,803,47,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,227,226,208,0,0,0,0,0,64,0,-1--1--1,,1|(2062,774)| 10,228,HFC molar mass,2181,798,54,11,8,3,0,0,-1,0,0,0 1,229,228,212,0,0,0,0,0,64,1,-1--1--1,,1|(2180,823)| 1,230,207,208,1,0,0,0,0,64,0,-1--1--1,,1|(2270,779)| 12,231,0,2070,658,69,14,8,7,0,58,-1,0,0,0,-1--1--1,0-0-0,Century Gothic|18|B|0-128-0 HFCs cycle 10,232,Inital HFC con,2310,919,47,11,8,3,0,0,0,0,0,0 1,233,232,209,0,0,0,0,0,128,1,-1--1--1,,1|(2232,927)| 10,234,ppt per mol,2252,817,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,235,234,212,0,0,0,0,0,128,1,-1--1--1,,1|(2227,835)| 10,236,g per ton,2312,841,38,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,237,236,212,0,0,0,0,0,128,1,-1--1--1,,1|(2254,853)| 10,238,Temperature change,364,591,70,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,239,238,54,0,0,0,0,0,128,0,-1--1--1,,1|(385,523)| 10,240,Preindustrial CH4,844,429,56,11,8,3,0,0,0,0,0,0 1,241,240,26,0,0,0,0,0,128,0,-1--1--1,,1|(811,466)| 10,242,Choose RCP,671,138,45,11,8,3,0,19,0,0,0,0,255-192-0,0-0-0,|12|B|128-64-0 10,243,Global CH4 anthro emissions RCP,797,172,61,19,8,3,0,0,0,0,0,0 1,244,243,15,0,0,0,0,0,128,0,-1--1--1,,1|(715,188)| 1,245,242,15,0,0,0,0,0,128,0,-1--1--1,,1|(653,163)| 10,246,Global N2O Anthro Emissions RCP,1059,152,65,19,8,3,0,0,0,0,0,0 10,247,Choose RCP,1232,122,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-64-0 1,248,246,98,0,0,0,0,0,128,0,-1--1--1,,1|(1140,163)| 1,249,247,98,0,0,0,0,0,128,0,-1--1--1,,1|(1232,139)| 10,250,Global PFC emissions RCP,1729,452,48,19,8,3,0,0,0,0,0,0 1,251,250,135,0,0,0,0,0,128,0,-1--1--1,,1|(1782,481)| 10,252,Choose RCP,1889,583,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-64-0 1,253,252,135,0,0,0,0,0,128,0,-1--1--1,,1|(1875,560)| 10,254,Global SF6 emissions RCP,960,888,48,19,8,3,0,0,0,0,0,0 1,255,254,166,0,0,0,0,0,128,0,-1--1--1,,1|(1004,938)| 10,256,Choose RCP,1074,902,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-64-0 1,257,256,165,0,0,0,0,0,128,0,-1--1--1,,1|(1067,932)| 10,258,"Global HFC emissions RCP 2.6",1784,803,61,19,8,3,0,0,0,0,0,0 10,259,"Global HFC emissions RCP 4.5",1736,864,61,19,8,3,0,0,0,0,0,0 10,260,"Global HFC emissions RCP 6.0",1724,922,61,19,8,3,0,0,0,0,0,0 10,261,"Global HFC emissions RCP 8.5",1687,982,61,19,8,3,0,0,0,0,0,0 1,262,258,205,0,0,0,0,0,128,0,-1--1--1,,1|(1813,891)| 1,263,259,205,0,0,0,0,0,128,0,-1--1--1,,1|(1787,923)| 1,264,260,205,0,0,0,0,0,128,0,-1--1--1,,1|(1779,954)| 1,265,261,205,0,0,0,0,0,128,0,-1--1--1,,1|(1771,987)| 10,266,Choose RCP,1891,894,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-64-0 1,267,266,205,0,0,0,0,0,128,0,-1--1--1,,1|(1874,933)| 1,268,261,205,0,0,0,0,0,128,0,-1--1--1,,1|(1771,987)| 10,269,Total CH4 emissions fossil fuels,530,140,69,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,270,269,15,0,0,0,0,0,128,0,-1--1--1,,1|(569,170)| 10,271,Flux C from permafrost release,153,676,59,19,8,3,0,0,-1,0,0,0 1,272,271,63,0,0,0,0,0,128,0,-1--1--1,,1|(205,727)| 1,273,41,271,0,0,0,0,0,128,0,-1--1--1,,1|(116,569)| 1,274,39,271,0,0,0,0,0,128,0,-1--1--1,,1|(180,605)| 1,275,238,271,0,0,0,0,0,128,0,-1--1--1,,1|(264,630)| 1,276,62,271,0,0,0,0,0,128,0,-1--1--1,,1|(135,762)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CLIMATE - Radiative Forcing #C $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,CH4 and N2O Radiative Forcing,275,318,61,19,8,2,0,0,-1,0,0,0 10,2,CO2 Radiative Forcing,520,213,60,19,8,131,0,0,-1,0,0,0 10,3,RF from F gases,285,483,53,11,8,3,0,0,-1,0,0,0 10,4,Halocarbon RF,285,403,49,11,8,3,0,0,0,0,0,0 1,5,3,4,0,0,0,0,0,64,0,-1--1--1,,1|(285,450)| 10,6,Preindustrial C,270,253,56,11,8,2,0,0,-1,0,0,0 1,7,6,2,0,0,0,0,0,0,0,-1--1--1,,1|(386,234)| 10,8,Other Forcings,506,665,48,11,8,3,0,0,0,0,0,0 10,9,HFC RF,90,553,38,11,8,2,0,0,-1,0,0,0 10,10,PFC RF,90,463,37,11,8,2,0,0,-1,0,0,0 1,11,10,3,0,0,0,0,0,64,0,-1--1--1,,1|(172,470)| 10,12,SF6 RF,90,513,36,11,8,2,0,0,-1,0,0,0 1,13,12,3,0,0,0,0,0,64,0,-1--1--1,,1|(172,500)| 10,14,"Well-Mixed GHG Forcing",655,398,58,19,8,3,0,0,0,0,0,0 1,15,2,14,0,0,0,0,0,64,0,-1--1--1,,1|(582,299)| 1,16,1,14,0,0,0,0,0,64,0,-1--1--1,,1|(459,356)| 1,17,4,14,0,0,0,0,0,64,0,-1--1--1,,1|(458,400)| 10,18,MP RF Total,135,403,43,11,8,3,0,0,0,0,0,0 1,19,18,4,0,0,0,0,0,64,0,-1--1--1,,1|(200,403)| 10,20,Time,1134,469,26,11,8,2,0,0,-1,0,0,0 10,21,HFC RF total,294,549,44,11,8,3,0,0,-1,0,0,0 1,22,21,3,0,0,0,0,0,64,0,-1--1--1,,1|(290,522)| 1,23,9,21,0,0,0,0,0,64,0,-1--1--1,,1|(182,551)| 10,24,C in Atmosphere,253,133,44,19,8,2,0,0,-1,0,0,0 10,25,Total Radiative Forcing,866,626,58,19,8,3,0,0,-1,0,0,0 10,26,Adjusted Other Forcings,762,745,50,19,8,3,0,0,0,0,0,0 1,27,8,26,0,0,0,0,0,64,0,-1--1--1,,1|(619,700)| 1,28,26,25,0,0,0,0,0,64,0,-1--1--1,,1|(808,690)| 1,29,14,25,0,0,0,0,0,64,0,-1--1--1,,1|(755,506)| 10,30,Time to Commit RF,1202,639,52,19,8,3,0,0,-1,0,0,0 1,31,24,2,0,0,0,0,0,128,0,-1--1--1,,1|(371,168)| 10,32,CH4 reference conc,2176,479,48,19,8,3,0,0,-1,0,0,0 10,33,CH4 radiative efficiency coefficient,2176,429,64,19,8,3,0,0,-1,0,0,0 10,34,N2O radiative efficiency coefficient,1696,429,64,19,8,3,0,0,-1,0,0,0 10,35,N2O reference conc,1696,479,49,19,8,3,0,0,-1,0,0,0 10,36,Adjustment for CH4ref and N2O,1724,557,57,19,8,3,0,0,0,0,0,0 10,37,Adjustment for CH4ref and N2Oref,1940,277,66,19,8,3,0,0,0,0,0,0 10,38,Adjustment for CH4 and N2Oref,2108,557,66,19,8,3,0,0,0,0,0,0 10,39,N2O reference conc,1574,214,54,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,40,39,37,0,0,0,0,0,64,0,-1--1--1,,1|(1744,242)| 10,41,CH4 N2O unit adj,1934,551,59,11,8,3,0,0,0,0,0,0 10,42,CH4 N2O interaction coeffient,1702,214,67,19,8,2,0,0,-1,0,0,0 10,43,CH4 N2O inter coef 2,1834,214,56,19,8,2,0,0,-1,0,0,0 10,44,CH4 N2O inter coef 3,1961,214,56,19,8,2,0,0,-1,0,0,0 10,45,CH4 N20 inter exp,2088,214,54,19,8,2,0,0,-1,0,0,0 10,46,CH4 N20 inter exp 2,2215,214,54,19,8,2,0,0,-1,0,0,0 1,47,43,37,0,0,0,0,0,64,0,-1--1--1,,1|(1880,241)| 1,48,42,37,0,0,0,0,0,64,0,-1--1--1,,1|(1814,243)| 1,49,46,37,0,0,0,0,0,64,0,-1--1--1,,1|(2090,241)| 1,50,45,37,0,0,0,0,0,64,0,-1--1--1,,1|(2020,242)| 1,51,44,37,0,0,0,0,0,64,0,-1--1--1,,1|(1952,238)| 10,52,CH4 N2O interaction coeffient,1480,452,67,19,8,2,0,0,-1,0,0,0 10,53,CH4 N2O inter coef 2,1480,502,56,19,8,2,0,0,-1,0,0,0 10,54,CH4 N2O inter coef 3,1480,555,56,19,8,2,0,0,-1,0,0,0 10,55,CH4 N20 inter exp,1480,608,54,19,8,2,0,0,-1,0,0,0 10,56,CH4 N20 inter exp 2,1480,664,54,19,8,2,0,0,-1,0,0,0 1,57,53,36,0,0,0,0,0,64,0,-1--1--1,,1|(1594,527)| 1,58,52,36,0,0,0,0,0,64,0,-1--1--1,,1|(1595,501)| 1,59,56,36,1,0,0,0,0,64,0,-1--1--1,,1|(1614,642)| 1,60,54,36,0,0,0,0,0,64,0,-1--1--1,,1|(1594,555)| 1,61,55,36,1,0,0,0,0,64,0,-1--1--1,,1|(1591,614)| 10,62,CH4 N2O unit adj,1480,328,53,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,63,62,36,0,0,0,0,0,64,0,-1--1--1,,1|(1596,437)| 10,64,CH4 reference conc,1480,396,53,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,65,64,36,0,0,0,0,0,64,0,-1--1--1,,1|(1595,472)| 10,66,N2O atm conc,1850,623,57,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 10,67,CH4 atm conc,2050,623,56,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,68,66,36,0,0,0,0,0,64,0,-1--1--1,,1|(1800,597)| 1,69,67,38,0,0,0,0,0,64,0,-1--1--1,,1|(2070,599)| 10,70,N2O Radiative Forcing,1860,473,49,19,8,3,0,0,-1,0,0,0 1,71,36,70,0,0,0,0,0,64,0,-1--1--1,,1|(1785,518)| 1,72,37,70,1,0,0,0,0,64,0,-1--1--1,,1|(1842,362)| 1,73,66,70,0,0,0,0,0,64,0,-1--1--1,,1|(1853,558)| 1,74,35,70,0,0,0,0,0,64,0,-1--1--1,,1|(1771,476)| 1,75,34,70,0,0,0,0,0,64,0,-1--1--1,,1|(1778,450)| 1,76,41,70,0,0,0,0,0,64,0,-1--1--1,,1|(1905,521)| 10,77,CH4 Radiative Forcing,2025,465,48,19,8,3,0,0,-1,0,0,0 1,78,38,77,0,0,0,0,0,64,0,-1--1--1,,1|(2071,516)| 1,79,37,77,1,0,0,0,0,64,0,-1--1--1,,1|(2017,356)| 1,80,67,77,0,0,0,0,0,64,0,-1--1--1,,1|(2039,554)| 1,81,32,77,0,0,0,0,0,64,0,-1--1--1,,1|(2107,472)| 1,82,33,77,0,0,0,0,0,64,0,-1--1--1,,1|(2099,446)| 1,83,41,77,0,0,0,0,0,64,0,-1--1--1,,1|(1969,516)| 10,84,CH4 N2O interaction coeffient,2386,452,67,19,8,2,0,0,-1,0,0,0 10,85,CH4 N2O inter coef 2,2386,502,56,19,8,2,0,0,-1,0,0,0 10,86,CH4 N2O inter coef 3,2386,555,56,19,8,2,0,0,-1,0,0,0 10,87,CH4 N20 inter exp,2386,608,54,19,8,2,0,0,-1,0,0,0 10,88,CH4 N20 inter exp 2,2386,664,54,19,8,2,0,0,-1,0,0,0 10,89,CH4 N2O unit adj,2386,328,53,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||0-192-192 1,90,89,38,1,0,0,0,0,128,0,-1--1--1,,1|(2261,450)| 1,91,84,38,1,0,0,0,0,128,0,-1--1--1,,1|(2300,515)| 1,92,85,38,1,0,0,0,0,128,0,-1--1--1,,1|(2297,536)| 1,93,87,38,1,0,0,0,0,128,0,-1--1--1,,1|(2289,596)| 1,94,88,38,1,0,0,0,0,128,0,-1--1--1,,1|(2277,637)| 1,95,86,38,1,0,0,0,0,128,0,-1--1--1,,1|(2293,565)| 10,96,CH4 reference conc,2335,214,53,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|10||0-192-192 1,97,96,37,0,0,0,0,0,128,0,-1--1--1,,1|(2150,242)| 1,98,62,37,0,0,0,0,0,128,0,-1--1--1,,1|(1696,304)| 10,99,N2O reference conc,2386,396,54,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|10||0-192-192 1,100,99,38,1,0,0,0,0,128,0,-1--1--1,,1|(2261,486)| 10,101,CH4 and N2O Radiative Forcing,1932,389,56,19,8,3,0,0,-1,0,0,0 1,102,70,101,0,0,0,0,0,128,0,-1--1--1,,1|(1890,436)| 1,103,77,101,0,0,0,0,0,128,0,-1--1--1,,1|(1983,431)| 10,104,Last historical RF year,617,809,56,19,8,3,0,0,-1,0,0,0 10,105,"Other GHG Rad Forcing (non CO2)",880,338,62,19,8,3,0,0,0,0,0,0 1,106,2,105,0,0,0,0,0,128,0,-1--1--1,,1|(692,273)| 1,107,25,105,0,0,0,0,0,128,0,-1--1--1,,1|(872,488)| 10,108,Effective Radiative Forcing,1045,573,59,19,8,3,0,0,-1,0,0,0 1,109,30,108,0,0,0,0,0,128,0,-1--1--1,,1|(1129,608)| 1,110,20,108,0,0,0,0,0,128,0,-1--1--1,,1|(1097,511)| 1,111,25,108,0,0,0,0,0,128,0,-1--1--1,,1|(948,601)| 10,112,Other Forcings History,447,594,48,19,8,3,0,0,0,0,0,0 1,113,112,8,0,0,0,0,0,128,0,-1--1--1,,1|(474,628)| 1,114,104,8,0,0,0,0,0,64,0,-1--1--1,,1|(562,738)| 10,115,Other Forcings RCP,439,734,48,19,8,3,0,0,-1,0,0,0 1,116,115,8,0,0,0,0,0,64,0,-1--1--1,,1|(471,700)| 10,117,Time,518,780,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,118,117,8,0,0,0,0,0,64,0,-1--1--1,,1|(512,729)| 1,119,104,26,0,0,0,0,0,64,0,-1--1--1,,1|(682,779)| 10,120,Mineral aerosols and land RF,729,829,53,19,8,3,0,0,-1,0,0,0 1,121,120,26,0,0,0,0,0,64,0,-1--1--1,,1|(742,793)| 10,122,Time,831,837,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,123,122,26,0,0,0,0,0,64,0,-1--1--1,,1|(803,800)| 10,124,Other Forcings RCP Scenario,299,702,48,19,8,3,0,0,0,0,0,0 10,125,Choose RCP,423,801,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,126,125,115,0,0,0,0,0,128,0,-1--1--1,,1|(427,778)| 1,127,124,115,0,0,0,0,0,128,0,-1--1--1,,1|(362,715)| 10,128,CO2 Rad Force,255,199,58,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,129,128,2,0,0,0,0,0,128,0,-1--1--1,,1|(379,205)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CLIMATE - Temperature change #C $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Atm and Upper Ocean Heat Cap,1381,286,55,19,8,3,0,0,0,0,0,0 10,2,area,1300,236,15,11,8,3,0,0,-1,0,0,0 1,3,2,1,0,0,0,0,0,64,1,-1--1--1,,1|(1326,252)| 10,4,volumetric heat capacity,1511,307,48,19,8,3,0,0,-1,0,0,0 1,5,4,1,0,0,0,0,0,64,1,-1--1--1,,1|(1456,298)| 10,6,upper layer volume Vu,1480,248,36,19,8,3,0,0,-1,0,0,0 1,7,6,1,0,0,0,0,0,64,1,-1--1--1,,1|(1443,261)| 10,8,density,1506,392,23,11,8,3,0,0,-1,0,0,0 1,9,8,4,0,0,0,0,0,64,1,-1--1--1,,1|(1507,360)| 10,10,mass heat cap,1569,374,45,11,8,3,0,0,-1,0,0,0 1,11,10,4,0,0,0,0,0,64,1,-1--1--1,,1|(1548,349)| 10,12,sec per yr,1614,341,32,11,8,3,0,0,-1,0,0,0 1,13,12,4,0,0,0,0,0,64,1,-1--1--1,,1|(1577,328)| 10,14,watt per J s,1622,284,37,11,8,3,0,0,-1,0,0,0 1,15,14,4,0,0,0,0,0,64,1,-1--1--1,,1|(1578,292)| 1,16,2,6,1,0,0,0,0,64,1,-1--1--1,,1|(1372,214)| 10,17,land area fraction,1680,242,54,11,8,3,0,0,-1,0,0,0 1,18,17,6,0,0,0,0,0,64,1,-1--1--1,,1|(1577,244)| 10,19,land thickness,1569,209,44,11,8,3,0,0,-1,0,0,0 1,20,19,6,0,0,0,0,0,64,1,-1--1--1,,1|(1536,223)| 12,21,0,1479,78,172,47,8,7,0,4,-1,0,0,0,0-0-0,192-192-192,|12||255-0-255 Illustrative calculation of surface land/ocean heat capacity, as in S. Schneider & S. Thompson (1981) "Atmospheric CO2 and Climate: Importance of the Transient Response" Journal of Geophysical Research, Vol. 86 No. C4 Pgs. 3135-3147. 10,22,Deep Ocean Heat Cap,1423,355,41,19,8,3,0,0,0,0,0,0 10,23,lower layer volume Vu,1317,407,36,19,8,3,0,0,-1,0,0,0 1,24,23,22,0,0,0,0,0,64,1,-1--1--1,,1|(1362,385)| 1,25,30,23,0,0,0,0,0,64,1,-1--1--1,,1|(1380,414)| 1,26,4,22,0,0,0,0,0,64,1,-1--1--1,,1|(1473,327)| 1,27,2,23,1,0,0,0,0,64,1,-1--1--1,,1|(1283,314)| 1,28,17,23,1,0,0,0,0,64,1,-1--1--1,,1|(1665,344)| 1,29,2,22,1,0,0,0,0,64,1,-1--1--1,,1|(1329,313)| 10,30,Layer Depth,1444,423,49,11,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|10||255-0-255 10,31,Climate Sensitivity to 2x CO2,742,85,58,19,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-64-128 10,32,Climate Feedback Param,843,159,79,11,0,3,0,0,-1,0,0,0 10,33,Relative Deep Ocean Temp,529,536,45,19,8,3,0,0,0,0,0,0 1,34,32,48,1,0,0,0,0,0,0,-1--1--1,,1|(808,193)| 10,35,Heat in Atmosphere and Upper Ocean,704,331,55,27,3,131,0,0,0,0,0,0 10,36,Heat in Deep Ocean,703,524,56,27,3,131,0,0,0,0,0,0 1,37,39,36,4,0,0,22,0,0,0,-1--1--1,,1|(702,459)| 1,38,39,35,100,0,0,22,0,0,0,-1--1--1,,1|(702,383)| 11,39,6924,702,415,8,7,33,3,0,0,4,0,0,0 10,40,Heat Transfer,786,415,44,11,32,3,0,0,-1,0,0,0 12,41,48,962,329,10,8,0,3,0,0,-1,0,0,0 1,42,50,35,4,0,0,22,0,0,0,-1--1--1,,1|(812,331)| 1,43,50,41,100,0,0,22,0,0,0,-1--1--1,,1|(916,331)| 12,44,48,702,144,10,8,0,3,0,0,-1,0,0,0 1,45,47,44,4,0,0,22,0,0,0,-1--1--1,,1|(702,181)| 1,46,47,35,100,0,0,22,0,0,0,-1--1--1,,1|(702,264)| 11,47,48,702,217,8,7,33,3,0,0,4,0,0,0 10,48,Feedback Cooling,800,217,58,11,32,3,0,0,-1,0,0,0 1,49,36,33,1,0,0,0,0,64,0,-1--1--1,,1|(633,575)| 11,50,7036,873,331,7,8,34,3,0,0,1,0,0,0 10,51,Effective Radiative Forcing,873,350,92,11,32,2,0,0,-1,0,0,0 1,52,31,32,0,0,0,0,0,64,1,-1--1--1,,1|(791,122)| 10,53,Deep Ocean Heat Cap,719,620,46,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|10||255-0-255 10,54,Heat Transfer Coeff,919,426,44,19,8,3,0,0,-1,0,0,0 1,55,54,40,0,0,0,0,0,64,0,-1--1--1,,1|(859,421)| 10,56,Mean Depth of Adjacent Layers,839,478,58,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||255-0-255 1,57,56,40,0,0,0,0,0,64,0,-1--1--1,,1|(814,447)| 1,58,33,39,1,0,0,0,0,64,0,-1--1--1,,1|(605,451)| 1,59,56,54,1,0,0,0,0,64,1,-1--1--1,,1|(902,469)| 10,60,Heat Diffusion Covar,1088,493,46,19,8,3,0,0,-1,0,0,0 1,61,60,54,0,0,0,0,0,64,1,-1--1--1,,1|(1008,461)| 10,62,Heat Transfer Rate,1008,551,60,11,8,3,0,0,-1,0,0,0 1,63,62,54,0,0,0,0,0,64,1,-1--1--1,,1|(970,498)| 10,64,sec per day,1678,415,37,11,8,3,0,0,-1,0,0,0 1,65,64,12,0,0,0,0,0,64,1,-1--1--1,,1|(1650,383)| 10,66,Atm and Upper Ocean Heat Cap,568,257,59,19,8,2,0,0,-1,0,0,0 1,67,66,35,0,0,0,0,0,64,1,-1--1--1,,1|(621,286)| 1,68,53,36,0,0,0,0,0,64,1,-1--1--1,,1|(712,582)| 1,69,53,33,1,0,0,0,0,64,0,-1--1--1,,1|(600,616)| 10,70,Mixed Depth,1414,166,51,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,71,70,6,0,0,0,0,0,128,1,-1--1--1,,1|(1438,197)| 10,72,Temp change 2,1805,569,68,17,8,131,0,0,-1,0,0,0 10,73,init Atmos UOcean Temp,852,269,48,19,8,3,0,0,-1,0,0,0 1,74,73,35,0,0,0,0,0,128,1,-1--1--1,,1|(789,294)| 10,75,Init Deep Ocean Temp,862,573,55,19,8,131,0,0,-1,0,0,0 1,76,75,36,0,0,0,0,0,128,1,-1--1--1,,1|(789,551)| 10,77,CO2 Rad Force CoeffCROADS,935,135,58,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,78,0,1159,661,83,28,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-128 NASA GISS Surface Temperature (GISTEMP) 5-year mean data: 12,79,0,1172,700,50,11,8,7,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-128 1990: +0.57 C 12,80,0,1169,720,48,11,8,7,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-128 2000: +0.75 C 12,81,0,1174,741,50,11,8,135,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||0-0-128 2013: +0.91 C 10,82,"2x CO2 Forcing",894,85,52,11,8,3,0,0,0,0,0,0 1,83,82,32,0,0,0,0,0,128,1,-1--1--1,,1|(872,117)| 10,84,days per year,1757,384,52,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,85,84,12,0,0,0,0,0,128,1,-1--1--1,,1|(1690,363)| 10,86,CO2 Rad Force,934,30,53,19,8,3,0,0,-1,0,0,0 1,87,86,82,0,0,0,0,0,128,1,-1--1--1,,1|(915,56)| 10,88,Temperature change,442,365,65,19,8,3,0,2,-1,0,0,0,-1--1--1,0-0-0,|12||128-0-128 1,89,35,88,0,0,0,0,0,128,0,-1--1--1,,1|(584,346)| 1,90,66,88,0,0,0,0,0,128,0,-1--1--1,,1|(510,306)| 1,91,88,48,1,0,0,0,0,128,0,-1--1--1,,1|(506,205)| 1,92,88,40,0,0,0,0,0,128,0,-1--1--1,,1|(617,389)| 10,93,Eddy diff coeff index,1115,308,47,19,8,3,0,0,-1,0,0,0 10,94,Eddy diff coeff,1109,367,47,11,8,3,0,0,-1,0,0,0 10,95,Eddy diff mean,1114,429,48,11,8,3,0,0,-1,0,0,0 1,96,95,94,0,0,0,0,0,0,1,-1--1--1,,1|(1112,404)| 1,97,93,94,0,0,0,0,0,128,1,-1--1--1,,1|(1112,334)| 1,98,94,54,0,0,0,0,0,128,1,-1--1--1,,1|(1025,392)| 1,99,95,54,0,0,0,0,0,128,1,-1--1--1,,1|(1021,427)| 10,100,HadCRUT4 Temperature,1142,814,41,19,8,3,0,0,0,0,0,0 10,101,GISS NASA Temperature,1147,872,43,19,8,3,0,0,0,0,0,0 12,102,2425756,1491,754,241,209,3,188,0,0,1,0,0,0 Temperature_change 10,103,"Temp change 1.5C",1815,597,66,16,8,131,0,0,-1,0,0,0 \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CLIMATE - IMPACTS CC: energy losses function #C $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,"share E-losses CC",1089,148,44,18,8,131,0,0,-1,0,0,0 10,2,ELF concentrations logistic,532,152,47,17,8,131,0,0,0,0,0,0 10,3,"activate ELF by scen?",1255,164,59,19,8,3,0,0,0,0,0,0 10,4,a logistic,355,115,28,11,8,3,0,0,0,0,0,0 10,5,b logistic,349,154,29,11,8,3,0,0,0,0,0,0 1,6,4,2,0,0,0,0,0,128,0,-1--1--1,,1|(427,129)| 1,7,5,2,0,0,0,0,0,128,0,-1--1--1,,1|(424,153)| 10,8,"share E-losses CC from 2015",854,144,64,19,8,3,0,0,0,0,0,0 1,9,8,1,0,0,0,0,0,128,0,-1--1--1,,1|(974,145)| 12,10,0,863,34,209,21,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Climate change impacts - Energy losses function 1,11,3,1,0,0,0,0,0,128,0,-1--1--1,,1|(1171,156)| 10,12,"share-E losses CC until 2015",855,240,64,19,8,3,0,0,0,0,0,0 10,13,Time,993,202,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,14,13,12,0,0,0,0,0,64,0,-1--1--1,,1|(949,213)| 10,15,aux1,773,287,23,11,8,3,0,0,-1,0,0,0 1,16,12,15,1,0,0,0,0,128,0,-1--1--1,,1|(801,265)| 1,17,15,12,1,0,0,0,0,128,0,-1--1--1,,1|(815,282)| 1,18,12,8,0,0,0,0,0,128,0,-1--1--1,,1|(854,198)| 1,19,13,8,0,0,0,0,0,128,0,-1--1--1,,1|(939,180)| 1,20,13,1,0,0,0,0,0,128,0,-1--1--1,,1|(1028,181)| 12,21,4523406,812,487,222,165,3,188,0,0,1,0,0,0 Share_energy_losses_due_to_CC 10,22,"activate ELF all scen?",1257,102,85,20,8,131,0,2,0,0,0,0,-1--1--1,0-0-0,|12||0-128-0 1,23,22,1,0,0,0,0,0,128,0,-1--1--1,,1|(1165,126)| 10,24,ELF,650,186,16,11,8,3,0,0,0,0,0,0 1,25,2,24,0,0,0,0,0,128,0,-1--1--1,,1|(599,171)| 1,26,24,8,0,0,0,0,0,128,0,-1--1--1,,1|(721,171)| 1,27,24,12,0,0,0,0,0,128,0,-1--1--1,,1|(721,204)| 10,28,CO2 ppm concentrations,344,206,46,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,29,28,2,0,0,0,0,0,128,0,-1--1--1,,1|(430,180)| 10,30,"Percent E-losses CC",1034,83,54,19,8,3,0,0,0,0,0,0 1,31,1,30,1,0,0,0,0,128,0,-1--1--1,,1|(1057,98)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *INDICATORS - Water use & resources #S $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Water intensity by sector,853,267,41,33,3,131,0,0,0,0,0,0 12,2,48,482,262,10,8,0,3,0,0,-1,0,0,0 1,3,5,1,4,0,0,22,0,0,0,-1--1--1,,1|(735,262)| 1,4,5,2,100,0,0,22,0,0,0,-1--1--1,,1|(569,262)| 11,5,48,652,262,6,8,34,3,0,0,1,0,0,0 10,6,Variation water intensity by sector,652,293,64,23,40,131,0,0,-1,0,0,0 10,7,Initial water use by sector,709,155,72,19,8,131,0,0,0,0,0,0 10,8,Water use by sector,1051,310,49,31,8,131,0,0,0,0,0,0 1,9,1,8,0,0,0,0,0,128,0,-1--1--1,,1|(941,285)| 10,10,Time,555,422,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,10,6,0,0,0,0,0,128,0,-1--1--1,,1|(594,369)| 10,12,Total water use,1213,497,45,28,8,131,0,0,0,0,0,0 10,13,Real total output by sector,1046,215,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,14,13,8,0,0,0,0,0,128,0,-1--1--1,,1|(1047,249)| 10,15,Historic water by type intensities by sector,386,403,62,30,8,131,0,0,0,0,0,0 10,16,Real total output by sector,225,395,57,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,17,16,15,0,0,0,0,0,128,0,-1--1--1,,1|(296,397)| 1,18,15,6,0,0,0,0,0,128,0,-1--1--1,,1|(515,349)| 10,19,Household demand total,261,756,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,20,Household demand total,1060,681,46,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,21,Water intensity for households,836,619,41,33,3,131,0,0,0,0,0,0 12,22,48,465,614,10,8,0,3,0,0,-1,0,0,0 1,23,25,21,4,0,0,22,0,0,0,-1--1--1,,1|(718,614)| 1,24,25,22,100,0,0,22,0,0,0,-1--1--1,,1|(552,614)| 11,25,48,635,614,6,8,34,3,0,0,1,0,0,0 10,26,Variation water intensity households,635,640,72,18,40,131,0,0,-1,0,0,0 10,27,Initial water intensity for households,876,678,65,19,8,131,0,0,0,0,0,0 10,28,Water use by households,1038,592,62,19,8,131,0,0,0,0,0,0 1,29,27,21,0,0,0,0,0,128,1,-1--1--1,,1|(865,660)| 1,30,21,28,0,0,0,0,0,128,0,-1--1--1,,1|(919,607)| 10,31,Time,606,744,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,32,31,26,0,0,0,0,0,128,0,-1--1--1,,1|(617,702)| 10,33,Historic water use by type for households,534,872,75,28,8,131,0,0,0,0,0,0 10,34,Historic water by type intensities for households,433,764,62,27,8,131,0,0,0,0,0,0 1,35,33,34,0,0,0,0,0,128,0,-1--1--1,,1|(487,822)| 1,36,34,26,0,0,0,0,0,128,0,-1--1--1,,1|(534,701)| 10,37,Real total output by sector,1069,678,57,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,38,20,28,0,0,0,0,0,128,0,-1--1--1,,1|(1050,643)| 10,39,Real total output by sector,416,839,57,19,8,2,1,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,19,34,0,0,0,0,0,128,0,-1--1--1,,1|(331,759)| 10,41,Initial water intensity by sector,813,212,65,19,8,3,0,0,0,0,0,0 10,42,Initial water use by households,928,747,52,28,8,3,0,0,0,0,0,0 1,43,42,27,0,0,0,0,0,128,0,-1--1--1,,1|(902,713)| 1,44,41,1,0,0,0,0,0,128,1,-1--1--1,,1|(822,227)| 1,45,7,41,0,0,0,0,0,128,0,-1--1--1,,1|(754,180)| 10,46,Time,846,141,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,47,46,41,0,0,0,0,0,64,0,-1--1--1,,1|(834,166)| 10,48,Time,797,739,26,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,49,48,27,0,0,0,0,0,64,0,-1--1--1,,1|(825,716)| 1,50,10,15,0,0,0,0,0,128,0,-1--1--1,,1|(495,415)| 1,51,31,34,0,0,0,0,0,128,0,-1--1--1,,1|(544,750)| 10,52,Mt to dam3,1332,339,38,11,8,3,0,0,0,0,0,0 10,53,"Total water for O&M required by RES elec",1256,292,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,54,"Total water for O&M required by RES elec dam3",1196,399,70,28,8,3,0,0,0,0,0,0 1,55,52,54,0,0,0,0,0,128,0,-1--1--1,,1|(1289,357)| 1,56,53,54,0,0,0,0,0,128,0,-1--1--1,,1|(1232,334)| 1,57,13,41,0,0,0,0,0,128,0,-1--1--1,,1|(940,213)| 1,58,20,27,0,0,0,0,0,128,0,-1--1--1,,1|(984,680)| 10,59,Total water use by type,987,451,66,19,8,3,0,0,0,0,0,0 1,60,8,59,0,0,0,0,0,64,0,-1--1--1,,1|(1018,380)| 1,61,28,59,0,0,0,0,0,64,0,-1--1--1,,1|(1014,528)| 1,62,54,59,0,0,0,0,0,128,0,-1--1--1,,1|(1096,423)| 10,63,Historic water use by type sectors,455,489,78,19,8,131,0,0,0,0,0,0 1,64,63,15,0,0,0,0,0,128,0,-1--1--1,,1|(429,456)| 12,65,0,818,89,149,39,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|16||255-0-0 Estimation of water use by type (blue, green and gray) 10,66,Historic water intensities by sector delayed 1yr,373,295,77,19,8,131,0,0,-1,0,0,0 10,67,Historic water intensities for households delayed 1yr,383,653,86,28,8,131,0,0,-1,0,0,0 1,68,66,6,0,0,0,0,0,128,0,-1--1--1,,1|(512,294)| 1,69,67,26,0,0,0,0,0,128,0,-1--1--1,,1|(509,646)| 1,70,15,66,0,0,0,0,0,64,0,-1--1--1,,1|(379,350)| 1,71,41,66,0,0,0,0,0,64,1,-1--1--1,,1|(605,250)| 1,72,34,67,0,0,0,0,0,64,0,-1--1--1,,1|(410,715)| 1,73,27,67,0,0,0,0,0,64,1,-1--1--1,,1|(646,666)| 1,74,59,12,0,0,0,0,0,128,0,-1--1--1,,1|(1103,474)| 12,75,0,1708,279,314,263,3,188,0,0,1,0,0,0 Total_water_use 10,76,Renewable water resources,1282,609,57,22,8,131,0,0,0,0,0,0 10,77,dam3 per km3,1313,757,56,19,8,131,0,0,0,0,0,0 10,78,share total water use vs renewable water resources,1426,692,86,25,8,131,0,0,0,0,0,0 1,79,76,78,0,0,0,0,0,128,0,-1--1--1,,1|(1344,645)| 1,80,12,78,1,0,0,0,0,128,0,-1--1--1,,1|(1369,581)| 1,81,77,78,0,0,0,0,0,128,0,-1--1--1,,1|(1357,731)| 10,82,share blue water use vs renewable water resources,1222,687,62,28,8,131,0,0,0,0,0,0 1,83,59,82,0,0,0,0,0,128,0,-1--1--1,,1|(1094,559)| 1,84,77,82,0,0,0,0,0,64,0,-1--1--1,,1|(1279,730)| 1,85,76,82,0,0,0,0,0,64,0,-1--1--1,,1|(1258,639)| 12,86,0,1767,769,248,223,3,188,0,0,1,0,0,0 Share_blue_water_use_vs_resources 10,87,AR water,1336,880,56,19,8,131,0,0,0,0,0,0 10,88,share total water use vs AR,1434,830,85,28,8,131,0,0,0,0,0,0 10,89,share blue water use vs AR,1201,828,85,28,8,131,0,0,0,0,0,0 1,90,87,89,0,0,0,0,0,64,0,-1--1--1,,1|(1286,860)| 1,91,77,89,0,0,0,0,0,64,0,-1--1--1,,1|(1270,784)| 1,92,59,89,0,0,0,0,0,64,0,-1--1--1,,1|(1087,628)| 1,93,87,88,0,0,0,0,0,64,0,-1--1--1,,1|(1369,862)| 1,94,77,88,0,0,0,0,0,64,0,-1--1--1,,1|(1359,785)| 1,95,12,88,0,0,0,0,0,64,0,-1--1--1,,1|(1319,657)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *INDICATORS - Energy #S $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Population,805,271,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,2,TPES EJ,421,288,39,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,3,Average TPES per capita,628,304,70,20,8,131,0,0,0,0,0,0 1,4,2,3,0,0,0,0,0,128,0,-1--1--1,,1|(502,294)| 1,5,1,3,0,0,0,0,0,128,0,-1--1--1,,1|(736,283)| 10,6,GJ per EJ,623,538,32,11,8,3,0,0,0,0,0,0 1,7,6,3,1,0,0,0,0,128,0,-1--1--1,,1|(564,429)| 10,8,Average elec consumption per capita,628,215,69,17,8,131,0,0,0,0,0,0 1,9,1,8,0,0,0,0,0,128,0,-1--1--1,,1|(732,248)| 10,10,kWh per TWh,609,150,47,11,8,3,0,0,-1,0,0,0 1,11,10,8,0,0,0,0,0,128,0,-1--1--1,,1|(615,172)| 12,12,10487288,1526,228,213,188,3,188,0,0,1,0,0,0 Average_electricity_consumption_per_capita 10,13,PE traditional biomass EJ delayed 1yr,212,273,78,20,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,14,Population dependent on trad biomass,802,412,74,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,15,Pop not dependent on trad biomass,636,408,58,28,8,3,0,0,0,0,0,0 1,16,14,15,0,0,0,0,0,128,0,-1--1--1,,1|(717,410)| 1,17,1,15,0,0,0,0,0,128,0,-1--1--1,,1|(736,326)| 10,18,"TPES (without trad biomass)",293,341,62,19,8,3,0,0,0,0,0,0 1,19,2,18,0,0,0,0,0,128,0,-1--1--1,,1|(372,307)| 1,20,13,18,0,0,0,0,0,128,0,-1--1--1,,1|(247,303)| 10,21,"Average TPESpc (without trad biomass)",447,403,71,19,8,3,0,0,0,0,0,0 1,22,18,21,0,0,0,0,0,128,0,-1--1--1,,1|(363,369)| 1,23,15,21,0,0,0,0,0,128,0,-1--1--1,,1|(554,405)| 1,24,6,21,0,0,0,0,0,64,0,-1--1--1,,1|(545,478)| 12,25,2688044,1095,229,213,188,3,188,0,0,1,0,0,0 Average_TPESpc_(without_trad_biomass) 10,26,TPEFpc threshold high development,1863,214,64,19,8,131,0,0,0,0,0,0 10,27,TPED acceptable standard living,1846,296,73,19,8,131,0,0,0,0,0,0 12,28,0,1953,106,115,37,8,135,0,24,-1,3,0,0,-1--1--1,0-0-0,|16|I|0-0-0 Energy indicators from the literature 10,29,Total FE Elec consumption TWh,386,173,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,8,0,0,0,0,0,128,0,-1--1--1,,1|(497,192)| 10,31,Net TFEC per capita,474,479,68,16,8,131,0,0,-1,0,0,0 1,32,6,31,0,0,0,0,0,0,0,-1--1--1,,1|(561,513)| 10,33,Population,240,534,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,34,33,31,0,0,0,0,0,0,0,-1--1--1,,1|(337,510)| 10,35,Real TFEC,290,448,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,36,35,31,0,0,0,0,0,0,0,-1--1--1,,1|(364,459)| 10,37,TFEC RES EJ,266,564,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,38,TFEC from RES per capita,446,547,65,19,8,131,0,0,-1,0,0,0 1,39,33,38,0,0,0,0,0,128,0,-1--1--1,,1|(325,538)| 1,40,37,38,0,0,0,0,0,128,0,-1--1--1,,1|(344,556)| 1,41,6,38,0,0,0,0,0,64,0,-1--1--1,,1|(557,540)| 10,42,share RES vs TFEC,214,735,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,43,share RES vs TPES,214,850,48,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,44,share RES vs TFEC delayed 1yr,408,668,61,19,8,131,0,0,-1,0,0,0 10,45,Annual share RES vs TFEC growth rate,416,753,67,23,8,131,0,0,-1,0,0,0 1,46,44,45,1,0,0,0,0,128,0,-1--1--1,,1|(416,709)| 1,47,42,44,0,0,0,0,0,128,0,-1--1--1,,1|(300,705)| 1,48,42,45,0,0,0,0,0,128,0,-1--1--1,,1|(298,742)| 10,49,share RES vs TPES delayed 1yr,409,815,65,19,8,131,0,0,-1,0,0,0 10,50,Annual share RES vs TPES growth rate,417,900,67,19,8,131,0,0,-1,0,0,0 1,51,49,50,1,0,0,0,0,128,0,-1--1--1,,1|(417,856)| 1,52,43,49,0,0,0,0,0,128,0,-1--1--1,,1|(296,835)| 1,53,43,50,0,0,0,0,0,128,0,-1--1--1,,1|(299,870)| 10,54,TFEC RES EJ,587,737,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,55,TPE from RES EJ,575,858,53,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,56,TFEC RES delayed 1yr,743,690,65,19,8,131,0,0,-1,0,0,0 10,57,Annual TFEC RES growth rate,751,775,67,19,8,131,0,0,-1,0,0,0 1,58,56,57,1,0,0,0,0,128,0,-1--1--1,,1|(751,731)| 1,59,54,56,0,0,0,0,0,128,0,-1--1--1,,1|(644,719)| 1,60,54,57,0,0,0,0,0,128,0,-1--1--1,,1|(652,751)| 10,61,TPES RES delayed 1yr,746,822,65,19,8,131,0,0,-1,0,0,0 10,62,Annual TPES RES growth rate,754,907,67,19,8,131,0,0,-1,0,0,0 1,63,61,62,1,0,0,0,0,128,0,-1--1--1,,1|(754,863)| 1,64,55,61,0,0,0,0,0,128,0,-1--1--1,,1|(647,842)| 1,65,55,62,0,0,0,0,0,128,0,-1--1--1,,1|(650,878)| 12,66,7078630,1070,778,210,172,3,188,0,0,1,0,0,0 Annual_TFEC_RES_growth_rate 12,67,7865842,1507,777,222,173,3,188,0,0,1,0,0,0 Annual_TPES_RES_growth_rate 10,68,EROI FC system from 2015,281,484,47,19,8,2,0,1,-1,0,0,0,128-128-128,0-0-0,|12||255-0-0 1,69,68,31,0,0,0,0,0,128,0,-1--1--1,,1|(360,481)| 10,70,Low range FEC good standard of living,2070,223,88,29,8,131,0,0,0,0,0,0 10,71,High range FEC good standard of living,2077,282,70,19,8,131,0,0,0,0,0,0 10,72,Threshold FEC 'high development',2064,355,70,19,8,131,0,0,0,0,0,0 10,73,Dynamic low range FEC good standard of living,2261,231,79,19,8,3,0,0,0,0,0,0 1,74,70,73,0,0,0,0,0,128,0,-1--1--1,,1|(2163,226)| 10,75,Dynamic high range FEC good standard of living,2270,291,79,19,8,3,0,0,0,0,0,0 1,76,71,75,0,0,0,0,0,128,0,-1--1--1,,1|(2162,285)| 10,77,Dynamic threshold 'high development',2258,384,85,19,8,3,0,0,0,0,0,0 1,78,72,77,0,0,0,0,0,128,0,-1--1--1,,1|(2146,366)| 10,79,TFEC per capita,128,469,53,11,8,3,0,0,0,0,0,0 1,80,6,79,1,0,0,0,0,64,0,-1--1--1,,1|(273,606)| 1,81,35,79,0,0,0,0,0,128,0,-1--1--1,,1|(219,456)| 1,82,33,79,0,0,0,0,0,128,0,-1--1--1,,1|(190,504)| 10,83,Cumulative TFEC intensity change from 2009,2149,126,67,28,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,84,83,73,0,0,0,0,0,128,0,-1--1--1,,1|(2203,178)| 1,85,83,75,0,0,0,0,0,128,0,-1--1--1,,1|(2208,207)| 1,86,83,77,0,0,0,0,0,128,0,-1--1--1,,1|(2201,253)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *INDICATORS - Social and Env impacts #S $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 10,1,Potential max HDI,1037,198,58,11,8,3,0,0,-1,0,0,0 10,2,Net TFEC per capita,852,211,38,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,3,2,1,0,0,0,0,0,0,0,-1--1--1,,1|(927,206)| 10,4,"Carbon footprint tonnesC/person",1076,370,67,27,8,131,0,0,0,0,0,0 10,5,"Carbon footprint tCO2/person",1029,564,73,21,8,131,0,0,-1,0,0,0 10,6,Population,820,595,43,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,7,6,5,0,0,0,0,0,0,0,-1--1--1,,1|(902,582)| 10,8,t per Gt,841,521,35,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,9,8,5,0,0,0,0,0,0,0,-1--1--1,,1|(909,536)| 10,10,Total CO2 emissions GTCO2,808,665,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,11,10,5,0,0,0,0,0,0,0,-1--1--1,,1|(909,618)| 10,12,C per CO2,889,370,46,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,13,5,4,0,0,0,0,0,128,0,-1--1--1,,1|(1049,476)| 1,14,12,4,0,0,0,0,0,128,0,-1--1--1,,1|(965,370)| 12,15,0,1481,646,248,218,3,188,0,0,1,0,0,0 Carbon_footprint 12,16,0,1558,209,327,213,3,188,0,0,1,0,0,0 Potential_HDI_given_energy_availability 10,17,GDP,833,750,27,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,18,CO2 emissions per value added,1024,696,54,19,8,131,0,0,-1,0,0,0 1,19,17,18,0,0,0,0,0,128,0,-1--1--1,,1|(908,728)| 1,20,10,18,0,0,0,0,0,128,0,-1--1--1,,1|(914,680)| 12,21,0,2008,650,264,217,3,188,0,0,1,0,0,0 CO2_emissions_per_value_added 10,22,days per year,785,938,43,11,8,3,0,0,-1,0,0,0 10,23,Working hours per day,782,878,48,19,8,3,0,0,-1,0,0,0 10,24,Working hours per year,956,902,48,19,8,3,0,0,-1,0,0,0 1,25,22,24,0,0,0,0,0,0,0,-1--1--1,,1|(861,921)| 1,26,23,24,0,0,0,0,0,0,0,-1--1--1,,1|(862,888)| 10,27,Total jobs RES,1111,850,58,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 12,28,0,1484,1073,250,202,3,188,0,0,1,0,0,0 Total_jobs_RES 10,29,TFEC RES EJ,953,982,56,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,30,Annual work hours for RES,1101,910,61,19,8,3,0,0,0,0,0,0 1,31,24,30,0,0,0,0,0,128,0,-1--1--1,,1|(1015,904)| 1,32,27,30,0,0,0,0,0,128,0,-1--1--1,,1|(1108,869)| 10,33,Hours work per GJ RES delivered,1109,994,64,19,8,3,0,0,0,0,0,0 1,34,29,33,0,0,0,0,0,128,0,-1--1--1,,1|(1020,986)| 1,35,30,33,0,0,0,0,0,128,0,-1--1--1,,1|(1103,945)| 10,36,GJ per EJ,942,1037,41,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,37,36,33,0,0,0,0,0,128,0,-1--1--1,,1|(1007,1020)| 10,38,Water use per type per capita,652,573,55,20,8,131,0,0,-1,0,0,0 10,39,Total water use,609,679,45,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,40,6,38,0,0,0,0,0,128,0,-1--1--1,,1|(748,585)| 10,41,Total water use by type,675,455,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,42,41,38,0,0,0,0,0,128,0,-1--1--1,,1|(664,506)| 10,43,Total water use per capita,637,622,49,19,8,3,0,0,0,0,0,0 1,44,6,43,0,0,0,0,0,128,0,-1--1--1,,1|(738,606)| 1,45,39,43,0,0,0,0,0,128,0,-1--1--1,,1|(619,656)| 12,46,0,311,477,243,201,3,188,0,0,1,0,0,0 Total_water_use_per_capita \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *INDICATORS - RES employment #S $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,637,73,114,21,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Jobs in RES for electricity 12,2,0,590,481,95,18,8,135,0,8,-1,0,0,0,-1--1--1,0-0-0,|15||0-0-0 Jobs in RES for heat 10,3,RES elec capacity under construction TW,606,198,80,19,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,4,installed capacity RES elec TW,602,335,59,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,5,Employment factors new RES elec,608,137,64,19,8,3,0,0,0,0,0,0 10,6,Employment factors new RES heat,789,510,64,19,8,3,0,0,0,0,0,0 10,7,D jobs new installed RES elec per techn,800,174,73,20,8,131,0,0,0,0,0,0 1,8,5,7,0,0,0,0,0,128,0,-1--1--1,,1|(692,152)| 1,9,3,7,0,0,0,0,0,128,0,-1--1--1,,1|(699,187)| 10,10,Total D jobs RES elec per techn,933,226,64,19,8,3,0,0,0,0,0,0 1,11,7,10,0,0,0,0,0,128,0,-1--1--1,,1|(860,197)| 10,12,Total jobs RES elec,1081,311,49,19,8,3,0,0,0,0,0,0 10,13,"Employment factors O&M RES elec",613,278,64,19,8,3,0,0,0,0,0,0 10,14,"Employment factors O&M RES heat",582,711,64,19,8,3,0,0,0,0,0,0 10,15,"new RES capacity for heat-com TW",590,520,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,16,"replacement RES for heat-com TW",588,561,60,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,17,"installed capacity RES heat-com TW",582,760,69,21,8,130,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,18,D jobs new installed RES heat per techn,813,567,68,20,8,131,0,0,0,0,0,0 1,19,6,18,0,0,0,0,0,128,0,-1--1--1,,1|(797,531)| 1,20,15,18,0,0,0,0,0,128,0,-1--1--1,,1|(692,541)| 1,21,16,18,0,0,0,0,0,128,0,-1--1--1,,1|(689,563)| 10,22,"Jobs O&M RES elec per techn",793,304,54,19,8,131,0,0,0,0,0,0 1,23,13,22,0,0,0,0,0,128,0,-1--1--1,,1|(701,290)| 1,24,4,22,0,0,0,0,0,128,0,-1--1--1,,1|(693,320)| 1,25,22,10,0,0,0,0,0,128,0,-1--1--1,,1|(856,268)| 10,26,M per T,746,235,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,27,26,7,0,0,0,0,0,128,0,-1--1--1,,1|(763,214)| 1,28,26,22,0,0,0,0,0,128,0,-1--1--1,,1|(762,259)| 10,29,M per T,776,666,37,11,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,30,29,18,0,0,0,0,0,128,0,-1--1--1,,1|(790,627)| 10,31,"Jobs O&M RES heat per techn",788,738,69,19,8,131,0,0,0,0,0,0 1,32,14,31,0,0,0,0,0,128,0,-1--1--1,,1|(675,722)| 1,33,17,31,0,0,0,0,0,128,0,-1--1--1,,1|(678,749)| 1,34,29,31,0,0,0,0,0,128,0,-1--1--1,,1|(779,691)| 10,35,Total D jobs RES heat per techn,936,656,64,19,8,3,0,0,0,0,0,0 1,36,18,35,0,0,0,0,0,128,0,-1--1--1,,1|(868,607)| 1,37,31,35,0,0,0,0,0,128,0,-1--1--1,,1|(855,700)| 10,38,Total jobs RES heat,1080,559,49,19,8,3,0,0,0,0,0,0 10,39,Total jobs RES,1083,395,49,19,8,3,0,0,0,0,0,0 1,40,38,39,0,0,0,0,0,128,0,-1--1--1,,1|(1080,483)| 1,41,12,39,0,0,0,0,0,128,0,-1--1--1,,1|(1081,346)| 12,42,0,1355,188,174,175,3,188,0,0,1,0,0,0 Total_jobs_RES_elec 12,43,0,1356,670,173,169,3,188,0,0,1,0,0,0 Total_jobs_RES_heat 10,44,PES solids bioE EJ,748,386,56,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,45,D jobs fuel supply solids bioE,925,407,66,19,8,3,0,0,0,0,0,0 1,46,44,45,0,0,0,0,0,128,0,-1--1--1,,1|(824,394)| 1,47,45,39,0,0,0,0,0,128,0,-1--1--1,,1|(1005,400)| 10,48,Employment factor fuel supply solids bioE,745,431,73,19,8,3,0,0,0,0,0,0 1,49,48,45,0,0,0,0,0,128,0,-1--1--1,,1|(831,419)| 10,50,"new RES capacity for heat-nc TW",584,605,64,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,51,"replacement RES for heat-nc TW",591,654,71,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,52,"installed capacity RES heat-nc TW",578,810,60,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 1,53,52,31,0,0,0,0,0,128,0,-1--1--1,,1|(675,776)| 1,54,50,18,0,0,0,0,0,128,0,-1--1--1,,1|(689,587)| 1,55,51,18,0,0,0,0,0,128,0,-1--1--1,,1|(693,613)| 10,56,FES total biofuels production EJ,1413,385,61,19,8,2,0,3,-1,0,0,0,128-128-128,0-0-0,|12||128-128-128 10,57,Employment factor biofuels,1422,459,73,19,8,3,0,0,0,0,0,0 10,58,total jobs biofuels,1249,400,55,11,8,3,0,0,0,0,0,0 1,59,56,58,0,0,0,0,0,128,0,-1--1--1,,1|(1334,391)| 1,60,57,58,0,0,0,0,0,128,0,-1--1--1,,1|(1330,427)| 1,61,58,39,0,0,0,0,0,128,0,-1--1--1,,1|(1169,397)| 10,62,Ratio total vs D jobs RES elec,1056,153,64,19,8,3,0,0,0,0,0,0 10,63,Ratio total vs D jobs RES heat,1084,753,64,19,8,3,0,0,0,0,0,0 10,64,"Total D+I jobs RES elec per techn",1091,228,65,19,8,3,0,0,0,0,0,0 1,65,10,64,0,0,0,0,0,128,0,-1--1--1,,1|(1004,226)| 1,66,64,12,0,0,0,0,0,128,0,-1--1--1,,1|(1086,262)| 1,67,62,64,0,0,0,0,0,128,0,-1--1--1,,1|(1069,184)| 10,68,"Total D+I jobs RES heat per techn",1101,657,65,19,8,3,0,0,0,0,0,0 1,69,35,68,0,0,0,0,0,128,0,-1--1--1,,1|(1011,656)| 1,70,63,68,0,0,0,0,0,128,0,-1--1--1,,1|(1090,711)| 1,71,68,38,0,0,0,0,0,128,0,-1--1--1,,1|(1091,614)| \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *---- CONTROL PANEL - RESULTS VISUALIZATION ---- $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - GPDpc & POPULATION $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,622,82,150,30,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 GDP and Population 12,2,1182658,234,305,200,175,3,188,0,0,1,0,0,0 Population 12,3,920494,627,302,190,175,3,188,0,0,1,0,0,0 GDP 12,4,2821052,999,302,179,174,3,188,0,0,1,0,0,0 GDPpc \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - SECTORAL INTENSITIES EVOLUTION $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,10748788,636,309,193,197,3,188,0,0,1,0,0,0 TPES_intensity 12,2,919060,1046,714,205,196,3,188,0,0,1,0,0,0 real_PED_intensity_of_Electricity 12,3,0,857,45,234,23,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Energy demand intensities evolution 12,4,14812178,1042,309,196,195,3,188,0,0,1,0,0,0 TFES_intensity 12,5,984598,637,710,192,194,3,188,0,0,1,0,0,0 TFED_intensity_of_Transport 12,6,919018,1484,307,242,194,3,188,0,0,1,0,0,0 Cumulative_TFEC_intensity_change_from_2009 \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - ELECTRICITY $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,248,153,120,30,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Electricity sector 12,2,534218,592,543,188,150,3,188,0,0,1,0,0,0 Electricity_generation_from_nuclear 12,3,4392194,207,541,193,149,3,188,0,0,1,0,0,0 Electricity_generation_from_fossil_fuels 12,4,468610,592,234,188,155,3,188,0,0,1,0,0,0 Total_electricity_generation 12,5,468720,981,235,196,156,3,188,0,0,1,0,0,0 Electricity_generation_from_RES 12,6,468646,982,544,196,150,3,188,0,0,1,0,0,0 Share_Electricity_covered_by_RES \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - RES INSTALLED CAPACITY & ELEC GENERATION $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,594,143,339,69,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 RES for elec: installed capacity & elec generation 12,2,0,608,202,332,38,8,135,0,24,-1,0,0,0,-1--1--1,0-0-0,|20|I|0-0-0 Select one scenario or one RES source to visualize outputs 12,3,3018270,1041,541,340,283,3,188,0,0,1,0,0,0 Electricity_generation_from_RES_by_source 12,4,1057356,361,540,332,284,3,188,0,0,1,0,0,0 RES_elec_installed_capacity_by_source \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - HEAT $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,730288,542,300,150,150,3,44,0,0,1,0,0,0 Total_FE_heat_generation 12,2,531772,849,605,150,150,3,44,0,0,1,0,0,0 Share_heat_covered_by_RES 12,3,0,253,177,75,18,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Heat sector 12,4,730324,541,606,150,150,3,44,0,0,1,0,0,0 Heat_generation_from_NRE 12,5,664716,849,301,150,150,3,44,0,0,1,0,0,0 Heat_generation_from_RES \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - TRANSPORT $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,1086,44,131,23,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Transport sector 12,2,1312828,1726,303,306,197,3,188,0,0,1,0,0,0 Share_of_electric_ligth_ 12,3,459194,1402,728,316,215,3,188,0,0,1,0,0,0 Share_demand_by_fuel_in_ 12,4,1444060,1093,308,303,199,3,188,0,0,1,0,0,0 Number_of_electric_ligth 12,5,1509426,741,732,288,217,3,188,0,0,1,0,0,0 Final_energy_demand_by_h 12,6,1771534,494,308,283,200,3,188,0,0,1,0,0,0 Transport_final_energy_demand \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - TPES & TPED $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,730,244,204,24,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Total primary energy 12,2,3738160,368,440,181,167,3,188,0,0,1,0,0,0 Total_primary_energy_demand 12,3,1968728,1099,440,181,167,3,188,0,0,1,0,0,0 Abundance_total_energy 12,4,5245246,734,439,177,166,3,188,0,0,1,0,0,0 Total_Primary_Energy_supply \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - FINAL ENERGY SUPPLY BY FINAL FUEL $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,151,119,126,49,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Final energy supply by fuel 12,2,4786760,1097,174,150,150,3,44,0,0,1,0,0,0 Total_FE_heat_generation 12,3,32508460,791,174,150,150,3,44,0,0,1,0,0,0 Total_electricity_generation 12,4,5637282,784,479,150,150,3,44,0,0,1,0,0,0 FE_consumption_gases 12,5,16254774,479,480,150,150,3,44,0,0,1,0,0,0 FE_consumption_liquids 12,6,11077504,1089,477,150,150,3,44,0,0,1,0,0,0 FE_consumption_solids 12,7,8586774,474,171,150,150,3,44,0,0,1,0,0,0 Total_final_energy_consumption \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - LIQUIDS $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,3802560,798,327,179,150,3,188,0,0,1,0,0,0 Liquids_extraction 12,2,3933576,448,328,164,149,3,188,0,0,1,0,0,0 Total_demand_liquids 12,3,3999134,1134,325,150,150,3,44,0,0,1,0,0,0 Abundance_liquids 12,4,6423472,182,632,145,150,3,188,0,0,1,0,0,0 Conventional_oil_extraction 12,5,3148216,476,634,146,149,3,188,0,0,1,0,0,0 Unconventional_oil_extraction 12,6,1312534,1336,632,137,150,3,188,0,0,1,0,0,0 GTL_production 12,7,5309388,1057,631,141,148,3,188,0,0,1,0,0,0 CTL_production 12,8,0,156,218,50,19,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Liquids 12,9,0,142,433,111,30,8,135,0,24,-1,0,0,0,-1--1--1,0-0-0,|10|I|0-0-0 Comment: if depletion curves includes conventional and unconventional oil aggregated, conventional graph figure depicts both 12,10,3868100,771,631,150,150,3,44,0,0,1,0,0,0 Total_biofuel_production \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - OIL $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,100,0 12,1,0,51,53,23,19,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Oil 12,2,1508836,417,479,150,150,3,44,0,0,1,0,0,0 Conventional_oil_extraction 12,3,1115132,724,480,150,150,3,44,0,0,1,0,0,0 Unconventional_oil_extraction 12,4,2033624,895,173,150,150,3,44,0,0,1,0,0,0 Abundance_total_oil 12,5,2360864,273,168,150,150,3,44,0,0,1,0,0,0 Total_demand_oil 12,6,329942,580,171,150,150,3,44,0,0,1,0,0,0 Total_extraction_oil \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - GAS $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,122,135,75,18,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Natural gas 12,2,6555036,396,237,150,150,3,44,0,0,1,0,0,0 Total_gas_demand 12,3,2170460,702,239,150,150,3,44,0,0,1,0,0,0 Total_gas_extraction 12,4,3867350,891,542,179,150,3,188,0,0,1,0,0,0 Unconventional_gas_extraction 12,5,3611820,521,541,185,150,3,188,0,0,1,0,0,0 Conventional_gas_extraction 12,6,4981772,1008,238,150,150,3,44,0,0,1,0,0,0 abundance_natural_gas \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - COAL $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,4720410,763,335,178,172,3,188,0,0,1,0,0,0 Coal_extraction 12,2,9244060,410,335,171,171,3,188,0,0,1,0,0,0 Coal_demand 12,3,6491222,1119,334,172,170,3,188,0,0,1,0,0,0 Abundance_coal 12,4,0,765,134,32,19,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Coal \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - URANIUM $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,610,240,57,19,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Uranium 12,2,4917828,1041,446,191,159,3,188,0,0,1,0,0,0 Abundance_uranium 12,3,2884640,641,444,205,157,3,188,0,0,1,0,0,0 Uranium_extraction 12,4,3342982,222,444,207,158,3,188,0,0,1,0,0,0 Uranium_demand \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - ABUND NON-RENEW RESOURCES $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,1185512,319,552,150,150,3,44,0,0,1,0,0,0 Abundance_coal 12,2,799136,485,248,150,150,3,44,0,0,1,0,0,0 Abundance_liquids 12,3,537532,931,549,150,150,3,44,0,0,1,0,0,0 Abundance_uranium 12,4,2297366,789,248,150,150,3,44,0,0,1,0,0,0 Abundance_total_oil 12,5,0,215,167,76,36,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 NRE abundances 12,6,4720028,621,552,150,150,3,44,0,0,1,0,0,0 abundance_gases \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - REMAINING POTENTIAL RENEW $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,410,307,221,187,3,188,0,0,1,0,0,0 Remaining_potential_RES_for_electricity 12,2,0,619,68,381,53,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Remaining potential aggregated RES by final use 12,3,0,410,659,223,161,3,188,0,0,1,0,0,0 Remaining_potential_tot_RES_elec_(after_intermitt) 12,4,0,845,471,204,201,3,188,0,0,1,0,0,0 Remaining_potential_RES_for_heat \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - RES FOR ELEC $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,134,228,53,27,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|18||0-0-0 RES for Electricity 12,2,798164,479,643,227,149,3,188,0,0,1,0,0,0 Share_of_GDP_of_investments_for_RES_for_Elec 12,3,798344,926,643,213,149,3,188,0,0,1,0,0,0 Cumulated_total_investment_RES_for_Electricity 12,4,3017698,479,331,226,159,3,188,0,0,1,0,0,0 Electricity_generation_from_RES 12,5,1125988,923,329,215,158,3,188,0,0,1,0,0,0 Share_variable_vs_total_Electricity_generation \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - REMAINING POTENTIAL ELEC RES $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,4917620,1188,286,173,147,3,188,0,0,1,0,0,0 Remaining_potential_oceanic 12,2,6621446,188,286,162,145,3,188,0,0,1,0,0,0 Remaining_potential_hydro 12,3,6687838,519,286,162,147,3,188,0,0,1,0,0,0 Remaining_potential_geot 12,4,6622268,906,590,150,150,3,44,0,0,1,0,0,0 Remaining_potential_onshore_wind 12,5,2885192,1214,590,150,150,3,44,0,0,1,0,0,0 Remaining_potential_offshore_wind 12,6,0,672,99,255,24,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|18||0-0-0 RES for Electricity - Remaining potential 12,7,0,718,793,334,40,8,135,0,0,-1,0,0,0 Comment: increasing abundance when increasing installed capacity indicates that the Cp of the operating capacity is decreasing at a higher rate (only for technologies able to operate as baseload plants) 12,8,4524638,200,588,182,147,3,188,0,0,1,0,0,0 Remaining_potential_solar_PV_on_land 12,9,3999300,568,589,182,149,3,188,0,0,1,0,0,0 Remaining_potential_CSP 12,10,6884438,848,286,160,149,3,188,0,0,1,0,0,0 Remaining_potential_BioE \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - TOTAL RES $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,678,203,98,27,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|18||0-0-0 Non-Electric RES 12,2,0,234,191,107,26,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|18||0-0-0 RES for Electricity 12,3,1114780,1058,560,193,149,3,188,0,0,1,0,0,0 Share_of_RES_vs_TPES 12,4,21497986,1060,255,193,151,3,188,0,0,1,0,0,0 TPE_from_RES 12,5,2035064,216,421,191,200,3,188,0,0,1,0,0,0 Electricity_generation_(PE)_by_RES 12,6,18810122,637,422,223,201,3,188,0,0,1,0,0,0 PES_from_RES_non-electric_(without_trad._biomass) \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - MATERIALS DEMAND VS RESERVES/RESOURCES $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,6424798,1004,366,317,287,3,188,0,0,1,0,0,0 Share_other_cum_mat_demand_vs_reserves 12,2,7670034,1005,947,318,286,3,188,0,0,1,0,0,0 Share_other_cum_mat_demand_vs_resources 12,3,3802528,1670,365,337,286,3,188,0,0,1,0,0,0 Share_cum_mat_demand_vs_reserves_for_RES_elec 12,4,7669754,1672,947,341,286,3,188,0,0,1,0,0,0 Share_cum_mat_demand_vs_resources_for_RES_elec 12,5,5507318,346,364,326,286,3,188,0,0,1,0,0,0 Share_tot_cum_dem_materials_vs_reserves 12,6,4589456,347,949,325,292,3,188,0,0,1,0,0,0 Share_tot_cum_dem_materials_vs_resources \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - LAND-USE FOR RES $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,740,95,59,19,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Land-use 12,2,3608016,494,343,237,210,3,188,0,0,1,0,0,0 Biomass_land_compet_occupation 12,3,7277654,981,343,237,210,3,188,0,0,1,0,0,0 Renewables_land_occupati \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - EMISSIONS AND CLIMATE CHANGE $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,298,160,145,35,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Emissions and Climate Change 12,2,2033652,675,618,227,178,3,188,0,0,1,0,0,0 Total_radiative_forcing 12,3,1640430,1138,617,226,176,3,188,0,0,1,0,0,0 Temperature_change 12,4,1509404,675,243,223,189,3,188,0,0,1,0,0,0 Annual_CO2_emissions 12,5,1640394,1132,244,227,191,3,188,0,0,1,0,0,0 Annual_CO2e_emissions 12,6,1574868,1547,244,183,190,3,188,0,0,1,0,0,0 CO2_concentrations \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - ENERGY INDICATORS (1) $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,1912780,705,288,150,150,3,44,0,0,1,0,0,0 Average_TPES_per_capita 12,2,2897584,700,601,189,147,3,188,0,0,1,0,0,0 Average_electricity_consumption_per_capita 12,3,1845444,373,288,178,150,3,188,0,0,1,0,0,0 Average_TPESpc_(without_trad_biomass) 12,4,0,690,93,164,43,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Energy indicators (1) 12,5,4983778,1030,288,159,151,3,188,0,0,1,0,0,0 Average_FEC_per_capita \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - ENERGY INDICATORS (2) $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,0,899,105,90,36,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Energy indicators (2) 12,2,657612,894,316,150,150,3,44,0,0,1,0,0,0 Share_RES_vs_TFEC 12,3,854266,1251,620,150,150,3,44,0,0,1,0,0,0 Annual_TFEC_RES_growth_rate 12,4,592090,1249,315,150,150,3,44,0,0,1,0,0,0 Annual_TPES_RES_growth_rate 12,5,854052,589,317,150,150,3,44,0,0,1,0,0,0 TFES_intensity 12,6,1442646,778,625,211,155,3,188,0,0,1,0,0,0 EROIst_system \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *CP - SOCIAL & ENVIRONMENTAL IMPACTS INDICATORS $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,5441498,362,305,178,173,3,188,0,0,1,0,0,0 GDPpc 12,2,2427756,720,650,170,164,3,188,0,0,1,0,0,0 Total_jobs_RES 12,3,0,547,90,302,55,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 Social and environmental impacts indicators 12,4,1247942,1136,304,173,168,3,188,0,0,1,0,0,0 Carbon_footprint 12,5,1182428,360,651,179,166,3,188,0,0,1,0,0,0 Potential_HDI_given_energy_availability 12,6,5572724,720,304,171,170,3,188,0,0,1,0,0,0 Annual_GDP_growth_rate 12,7,6621092,1490,304,174,169,3,188,0,0,1,0,0,0 CO2_emissions_per_value_added 12,8,2361180,1134,651,171,167,3,188,0,0,1,0,0,0 Total_water_use_per_capita 12,9,6030618,1492,653,175,167,3,188,0,0,1,0,0,0 Share_blue_water_use_vs_resources \\\---/// Sketch information - do not modify anything except names V300 Do not put anything below this section - it will be ignored *2050-AIMS: RESULT COMPARISON $192-192-192,0,Times New Roman|12||0-0-0|0-0-0|0-0-255|-1--1--1|-1--1--1|96,96,5,0 12,1,3213264,650,350,227,214,3,156,0,0,1,0,0,0 Average_FEC_per_capita_COMP 12,2,0,898,87,335,22,8,135,0,8,-1,3,0,0,-1--1--1,0-0-0,|24||0-0-0 RESULTS: COMPARISON WITH 2050-AIMS 12,3,1771748,1090,348,204,215,3,188,0,0,1,0,0,0 Annual_GHG_emissions_COMP ///---\\\ :GRAPH Population :TITLE Population :SCALE :VAR Population[scenarios] :Y-MAX 1.2e+010 :GRAPH TPES_intensity :TITLE TPES intensity :SCALE :VAR TPES intensity EJ T$[scenarios] :Y-MIN 0 :GRAPH Real_PED_intensity_of_Industry&Buildings :TITLE real PED intensity of Industry&Buildings :SCALE :VAR real PED intensity IB[scenarios] :Y-MIN 0 :GRAPH real_PED_intensity_of_Electricity :TITLE real PED intensity of Electricity :SCALE :VAR real PED intensity of Electricity[scenarios] :Y-MIN 0 :GRAPH Annual_CO2_emissions :TITLE Annual CO2 emissions :SCALE :VAR Total CO2 emissions GTCO2[scenarios] :GRAPH Electricity_demand :TITLE Electricity demand :SCALE :VAR Total FE Elec demand TWh[scenarios] :Y-MIN 0 :GRAPH Abundance_electricity :TITLE Abundance electricity :SCALE :VAR Abundance electricity[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Cumulated_total_investment_RES_for_Electricity :TITLE Cumulated total investment RES for Electricity :SCALE :VAR Cumulated total monet invest RES for Elec[scenarios] :GRAPH Proportion_of_var_electr :TITLE Proportion of var electric gen vs total :SCALE :VAR "proportion E var-base percent"[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Share_of_GDP_of_investments_for_RES_for_Elec :TITLE Share of GDP of investments for RES for Elec :SCALE :VAR share tot monet invest Elec RES vs GDP[scenarios] :GRAPH Biomass_land_compet_occupation :TITLE Biomass land-use (in arable lands) :SCALE :VAR Land compet required dedicated crops for biofuels[scenarios] :VAR Global arable land :VAR urban surface 2008 :GRAPH Renewables_land_occupati :TITLE Renewables land-use :SCALE :VAR Total land requirements renew Mha[scenarios] :VAR urban surface 2008 :GRAPH Transport_final_energy_demand :TITLE Transport final energy demand :SCALE :VAR Transport TFED[scenarios] :GRAPH Abundance_PE_for_transportation :TITLE Abundance PE for transportation :SCALE :VAR abundance transport[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH IB_PE_demand :TITLE IB PE demand :SCALE :VAR PE demand for IB after RES EJ[scenarios] :Y-MAX 1500 :GRAPH Abundance_PE_for_IB :TITLE Abundance PE for IB :SCALE :VAR abundance IB[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Total_renewable_extracti :TITLE Total renewable extraction (primary energy) :SCALE :VAR Total Renw Prim E EJ[scenarios] :VAR WEO2012 renew 450 Scen EJ :VAR WEO2012 renew current policies EJ :GRAPH Total_primary_energy_demand :TITLE Total primary energy demand :SCALE :VAR TPED by fuel[scenarios] :GRAPH Abundance_total_energy :TITLE Abundance total energy :SCALE :VAR abundance TPE[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Total_Primary_Energy_supply :TITLE Total primary energy supply :SCALE :VAR TPES EJ[scenarios] :GRAPH Coal_demand :TITLE Coal demand :SCALE :VAR PED coal EJ[scenarios] :GRAPH Abundance_coal :TITLE Abundance coal :SCALE :VAR abundance coal[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Total_gas_demand :TITLE Total gas demand :SCALE :VAR "PED nat. gas EJ"[scenarios] :GRAPH abundance_gases :TITLE abundance gases :SCALE :VAR abundance gases[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Oil_demand :TITLE Oil demand :SCALE :VAR Total demand convOIL EJ[scenarios] :VAR WEO2012 oil 450 Scen EJ :VAR WEO2012 oil current policies EJ :GRAPH Abundance_liquids :TITLE Abundance liquids :SCALE :VAR abundance liquids[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Abundance_uranium :TITLE Abundance uranium :SCALE :VAR abundance uranium[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Coal_extraction :TITLE Coal extraction :SCALE :VAR extraction coal EJ[scenarios] :GRAPH Total_gas_extraction :TITLE Total gas extraction :SCALE :VAR "PES nat. gas"[scenarios] :GRAPH Liquids_extraction :TITLE Liquids extraction :SCALE :VAR PES Liquids EJ[scenarios] :GRAPH Remaining_potential_solar_PV_on_land :TITLE Remaining potential solar PV on land :SCALE :VAR "remaining potential solar-elec PV"[scenarios] :GRAPH Remaining_potential_BioE :TITLE Remaining potential BioE :SCALE :VAR remaining potential BioE[scenarios] :GRAPH Remaining_potential_geot :TITLE Remaining potential geot :SCALE :VAR "Remaining potential geot-elec"[scenarios] :GRAPH Remaining_potential_hydro :TITLE Remaining potential hydro :SCALE :VAR remaining potential hydro[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Remaining_potential_oceanic :TITLE Remaining potential oceanic :SCALE :VAR remaining potential oceanic[scenarios] :GRAPH Remaining_potential_onshore_wind :TITLE Remaining potential onshore wind :SCALE :VAR remaining potential onshore wind[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH GRAPH :TITLE GRAPH :SCALE :VAR solar TWe[BAU] :VAR wear solar[BAU] :VAR max solarTWe[BAU] :GRAPH Remaining_potential_offshore_wind :TITLE Remaining potential offshore wind :SCALE :VAR remaining potential offshore wind[scenarios] :GRAPH Share_variable_vs_total_Electricity_generation :TITLE Share variable vs total Electricity generation :SCALE :VAR Share variable RES elec generation vs total[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH TFED_intensity_of_Transport :TITLE TFED intensity of Transport :SCALE :VAR Transport TFED energy intensity[scenarios] :Y-MIN 0 :GRAPH Total_electricity_generation :TITLE Total electricity generation :SCALE :VAR Total FE Elec generation TWh[scenarios] :GRAPH Transport_PE_supply :TITLE Transport PE supply :SCALE :VAR PES for Transp EJ[scenarios] :GRAPH IB_PE_supply :TITLE IB PE supply :SCALE :VAR PES for IB EJ[scenarios] :GRAPH Conventional_oil_extraction :TITLE Conventional_oil_extraction :SCALE :VAR real extraction conv oil EJ[scenarios] :Y-MIN 0 :GRAPH Unconventional_oil_extraction :TITLE Unconventional oil extraction :SCALE :VAR real extraction unconv oil EJ[scenarios] :GRAPH Conventional_gas_extraction :TITLE Conventional gas extraction :SCALE :VAR real extraction conv gas EJ[scenarios] :GRAPH Unconventional_gas_extraction :TITLE Unconventional gas extraction :SCALE :VAR real extraction unconv gas EJ[scenarios] :GRAPH Total_demand_liquids :TITLE Total demand liquids :SCALE :VAR PED liquids EJ[scenarios] :GRAPH CTL_production :TITLE CTL production :SCALE :VAR CTL production[scenarios] :GRAPH GTL_production :TITLE GTL production :SCALE :VAR GTL production[scenarios] :GRAPH Electricity_generation_from_nuclear :TITLE Electricity generation from nuclear :SCALE :VAR FE nuclear Elec generation TWh[scenarios] :GRAPH Electricity_generation_from_fossil_fuels :TITLE Electricity generation from fossil fuels :SCALE :VAR FE Elec generation from fossil fuels TWh[scenarios] :GRAPH Uranium_extraction :TITLE Uranium extraction :SCALE :VAR extraction uranium EJ[scenarios] :GRAPH Uranium_demand :TITLE Uranium demand :SCALE :VAR PE demand uranium EJ[scenarios] :GRAPH Abundance_total_oil :TITLE Abundance total oil :SCALE :VAR abundance total oil[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Total_demand_oil :TITLE Total demand oil :SCALE :VAR PED total oil EJ[scenarios] :GRAPH Total_extraction_oil :TITLE Total extraction oil :SCALE :VAR PES oil EJ[scenarios] :GRAPH Land_for_dedicated_crops_for_biofuels :TITLE Land for dedicated crops for biofuels :SCALE :VAR Land compet biofuels 2gen Mha :Y-MIN 0 :Y-MAX 300 :VAR Land compet biofuels 3gen Mha :Y-MIN 0 :Y-MAX 300 :GRAPH Total_radiative_forcing :TITLE Total radiative forcing :SCALE :VAR Total Radiative Forcing[scenarios] :GRAPH PES_from_RES_non-electric_(without_trad._biomass) :TITLE PES from RES non-electric (without trad. biomass) :SCALE :VAR "PE supply from RES non-elec without trad bioE EJ"[scenarios] :VAR "Max potential non-electric RES"[scenarios] :GRAPH Share_of_RES_vs_TPES :TITLE Share of RES vs TPES :SCALE :VAR share RES vs TPES[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Share_RES_for_Elec_vs._TPE_RES :TITLE Share RES for Elec vs. TPE RES :SCALE :VAR share RES for Elec vs TPE RES[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH TPE_from_RES :TITLE TPE from RES :SCALE :VAR TPE from RES EJ[scenarios] :GRAPH Electricity_generation_(PE)_by_RES :TITLE Electricity generation (PE) by RES :SCALE :VAR PE Elec generation from RES EJ[scenarios] :GRAPH Share_RES+efficiency_for_Ind :TITLE Share RES+efficiency for Ind :SCALE :VAR "share RES+efficiency for Ind"[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Share_RES+efficiency_for_Buildings :TITLE Share RES+efficiency for Buildings :SCALE :VAR "share RES+efficiency for Build"[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Cumulative_carbon_emissions :TITLE Cumulative carbon emissions :SCALE :VAR Total cumulative emissions GtC[scenarios] :VAR carbon budget :GRAPH PE_traditional_biomass :TITLE PE traditional biomass :SCALE :VAR PE traditional biomass consum EJ[scenarios] :GRAPH check_TPED_by_sector :TITLE check TPED by sector :SCALE :VAR check TPED by sector[scenarios] :GRAPH check_transport :TITLE check transport :SCALE :VAR check transport[scenarios] :GRAPH Check_emissions_vs_historic :TITLE Check emissions vs historic :X-MIN 1995 :X-MAX 2014 :SCALE :VAR check hist emissions :GRAPH Check_TPES_vs_historic :TITLE Check TPES vs historic :X-MIN 1995 :X-MAX 2014 :SCALE :VAR check hist TPES :GRAPH check_hist_fossil_fuels_&_RES :TITLE check historic fossil fuels & RES :X-MIN 1995 :X-MAX 2014 :SCALE :VAR check hist coal :VAR check hist liquids :VAR check hist natural gas :VAR check hist RES :VAR check hist Elec :VAR check hist crude oil :GRAPH RES_supply_for_heat :TITLE RES supply for heat :SCALE :VAR RES supply for heat[scenarios] :GRAPH Electricity_generation_from_solar_PV :TITLE Electricity generation from solar PV :SCALE :VAR max potential RES elec after intermitt TWh[solar PV,SCEN2] :VAR real generation RES elec TWh[solar PV,SCEN2] :VAR wear RES elec[solar PV,SCEN2] :GRAPH Capacity_solar_PV :TITLE Capacity solar PV :SCALE :VAR installed capacity RES elec TW[solar PV,SCEN2] :Y-MIN 0 :VAR wear RES elec[solar PV,SCEN2] :Y-MIN 0 :VAR replacement RES elec[solar PV,SCEN2] :Y-MIN 0 :GRAPH Remaining_potential_RES_for_electricity :TITLE Remaining potential RES for electricity :SCALE :VAR remaining potential tot RES elec[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Remaining_potential_RES_for_heat :TITLE Remaining potential RES for heat :SCALE :VAR remaining potential tot RES heat[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Average_TPES_per_capita :TITLE Average TPES per capita :SCALE :VAR Average TPES per capita[scenarios] :GRAPH Average_electricity_consumption_per_capita :TITLE Average electricity consumption per capita :SCALE :VAR Average elec consumption per capita[scenarios] :GRAPH Share_PE_RES_for_Industry :TITLE Share PE RES for Industry :SCALE :VAR share PE RES for Industry[scenarios] :Y-MIN 0 :GRAPH Share_PE_RES_for_Buildings :TITLE Share PE RES for Buildings :SCALE :VAR share PE RES for Buildings[scenarios] :Y-MIN 0 :GRAPH Population_dependent_on_traditional_biomass :TITLE Population dependent on traditional biomass :SCALE :VAR Population dependent on trad biomass[scenarios] :GRAPH Nuclear_generation :TITLE Nuclear generation :SCALE :VAR demand Nuclear TWh[SCEN1] :VAR Elec gen nuclear capacity available TWh[SCEN1] :VAR FE nuclear Elec generation TWh[SCEN1] :GRAPH Carbon_footprint :TITLE Carbon footprint :SCALE :VAR "Carbon footprint tCO2/person"[scenarios] :GRAPH Average_TPESpc_(without_trad_biomass) :TITLE Average TPESpc (without trad biomass) :SCALE :VAR "Average TPESpc (without trad biomass)"[scenarios] :VAR TPEFpc threshold high development :VAR TPED acceptable standard living :GRAPH Share_Electricity_covered_by_RES :TITLE Share Electricity covered by RES :SCALE :VAR share RES electricity generation[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH New_capacity_installed_RES_elec_solar_PV :TITLE New capacity installed RES elec solar PV :SCALE :VAR new capacity installed RES elec TW[solar PV,SCEN2] :Y-MIN 0 :GRAPH Remaining_potential_tot_RES_elec_(after_intermitt) :TITLE Remaining potential tot RES elec (after intermitt) :SCALE :VAR remaining potential tot RES elec after intermitt[scenarios] :GRAPH GDP :TITLE GDP :SCALE :VAR GDP[scenarios] :GRAPH Share_energy_losses_due_to_CC :TITLE Share_energy_losses_due_to_CC :SCALE :VAR "share E-losses CC"[scenarios] :GRAPH GDPpc :TITLE GDPpc :SCALE :VAR GDPpc[scenarios] :GRAPH Electricity_generation_from_RES_by_source :TITLE Electricity generation from RES by source :SCALE :VAR real generation RES elec TWh[RES elec,scenarios] :GRAPH RES_elec_installed_capacity_by_source :TITLE RES elec installed capacity by source :SCALE :VAR installed capacity RES elec TW[RES elec,scenarios] :GRAPH Remaining_potential_CSP :TITLE Remaining potential CSP :SCALE :VAR remaining potential CSP[scenarios] :GRAPH Solar_PV_electricity_generation :TITLE Solar PV electricity generation :SCALE :VAR real generation RES elec TWh[solar PV,SCEN2] :GRAPH Electricity_generation_from_RES :TITLE Electricity generation from RES :SCALE :VAR FE real tot generation RES elec TWh[scenarios] :GRAPH RES_heat-com_installed_capacity_by_source :TITLE RES heat-com installed capacity by source :SCALE :VAR "installed capacity RES heat-com TW"[RES heat,scenarios] :GRAPH Total_energy_for_total_material_consumption_for_alt_techn :TITLE Total energy for total material consumption for alt techn :SCALE :VAR TFE required for total material consumption for alt techn[scenarios] :GRAPH Share_energy_for_material_consumption_for_alt_techn_vs_TFEC :TITLE Share energy for material consumption for alt techn vs TFEC :SCALE :VAR share energy for material consumption for alt techn vs TFEC[scenarios] :GRAPH dynamic_CED_vs_elec_output_PV_solar :TITLE dynamic CED vs elec output PV solar :SCALE :VAR CEDtot solar PV[scenarios] :VAR real generation solar PV EJ[scenarios] :GRAPH Dynamic_EROI_solar_PV :TITLE Dynamic EROI solar PV :SCALE :VAR "'dynamic' EROI solar PV"[scenarios] :Y-MIN 0 :Y-MAX 10 :VAR "EROI=1" :GRAPH EROIst_system :TITLE EROIst system :SCALE :VAR EROIst system[scenarios] :VAR "EROI=1" :GRAPH Dynamic_EROI_RES_elec_variables :TITLE Dynamic EROI RES elec variables :SCALE :VAR "'dynamic' EROI RES elec var"[RES elec,scenarios] :Y-MIN 0 :Y-MAX 20 :VAR "EROI=1" :Y-MIN 0 :Y-MAX 20 :GRAPH EROI_RES_elec :TITLE EROI RES elec :SCALE :VAR "'static' EROI RES elec"[RES elec,scenarios] :VAR "EROI=1" :GRAPH Check_electricity_plants :TITLE Elec plants :Y-DIV 12 :X-MIN 1995 :X-MAX 2015 :SCALE :VAR check primary coal Elec plants[scenarios] :VAR check primary gas Elec gas[scenarios] :VAR check primary liquids Elec plants[scenarios] :GRAPH Check_heat_plants :TITLE Heat plants :X-MIN 1995 :X-MAX 2015 :SCALE :VAR check primary coal for Heat plants[scenarios] :VAR check primary gases Heat plants[scenarios] :VAR check primary liquids Heat plants[scenarios] :GRAPH Check_CHP_plants :TITLE CHP plants :X-MIN 1995 :X-MAX 2015 :SCALE :VAR check coal primary CHP plants[scenarios] :VAR check gas primary CHP plants[scenarios] :VAR check liquids CHP plants[scenarios] :GRAPH Primary_energy_for_Elec_ :TITLE Primary energy for Elec, Heat and CHP plants :Y-DIV 10 :X-MIN 1995 :X-MAX 2015 :SCALE :VAR "check primary coal for Elec, Heat and CHP plants"[scenarios] :VAR "check primary gas for Elec, Heat and CHP plants"[scenarios] :VAR "check primary liquids for Elec, Heat and CHP plants"[scenarios] :GRAPH share_FE_Elec :TITLE check share FE Elec :X-MIN 1995 :X-MAX 2015 :SCALE :VAR share coal Elec check[scenarios] :VAR share fossil fuel CHP Elec check[scenarios] :VAR share gases Elec check[scenarios] :VAR share liquids Elec check[scenarios] :VAR share Renewables Elec check[scenarios] :VAR share Nuclear Elec check[scenarios] :GRAPH check_TPES :TITLE check TPES :X-MIN 1995 :X-MAX 2015 :SCALE :VAR check TPES[scenarios] :GRAPH Total_EROI_of_RES_for_electricity :TITLE Total EROI of RES for electricity :SCALE :VAR "'static' EROItot RES elec"[scenarios] :VAR "EROI=1" :GRAPH ratio_EROI_per_techn_vs_EROItot :TITLE ratio EROI per techn vs EROItot :SCALE :VAR "ratio EROI per techn vs EROItot (static)"[RES elec,scenarios] :VAR "ratio = 1" :GRAPH Share_cum_mat_demand_vs_resources_for_RES_elec :TITLE Share cum mat demand vs resources for RES elec :SCALE :VAR share materials cum demand to extract vs resources for RES elec[materials,scenarios] :GRAPH Share_cum_mat_demand_vs_reserves_for_RES_elec :TITLE Share cum mat demand vs reserves for RES elec :SCALE :VAR share materials cum demand to extract vs reserves for RES elec[materials,scenarios] :GRAPH Total_natural_gas_extraction :TITLE Total natural gas extraction :SCALE :VAR "PES nat. gas"[scenarios] :GRAPH Heat_demand :TITLE Heat demand :SCALE :VAR Total FED Heat EJ[scenarios] :GRAPH PES_waste :TITLE PES waste :SCALE :VAR PES waste EJ[scenarios] :GRAPH Share_tot_cum_dem_materials_vs_resources :TITLE Share tot cum dem materials vs resources :SCALE :VAR share tot cum dem vs resources materials[materials,scenarios] :GRAPH Share_tot_cum_dem_materials_vs_reserves :TITLE Share tot cum dem materials vs reserves :SCALE :VAR share tot cum dem vs reserves materials[materials,scenarios] :GRAPH Share_other_cum_mat_demand_vs_reserves :TITLE Share other cum mat demand vs reserves :SCALE :VAR share other cumulative demand to extract vs reserves materials[materials,scenarios] :GRAPH Share_other_cum_mat_demand_vs_resources :TITLE Share other cum mat demand vs resources :SCALE :VAR share other cumulative demand to extract vs resources materials[materials,scenarios] :GRAPH share_cum_dem_materials_to_extract_alt_techn_vs_total :TITLE share cum dem materials to extract alternative techn vs total :SCALE :VAR share cum dem materials to extract alt techn vs total[materials,scenarios] :GRAPH Recycling_rates_minerals_alternative_techn :TITLE Recycling rates minerals alternative techn :SCALE :VAR recycling rates minerals alt techn[materials,scenarios] :GRAPH Recycling_rates_minerals_Rest :TITLE Recycling rates minerals Rest :SCALE :VAR recycling rates minerals Rest[materials,scenarios] :GRAPH Biogas_PES :TITLE Biogas PES :SCALE :VAR PES Biogas EJ[scenarios] :GRAPH Abundance_heat :TITLE Abundance heat :SCALE :VAR Abundance heat :GRAPH Share_heat_covered_by_RES :TITLE Share heat covered by RES :SCALE :VAR share RES heat generation[scenarios] :GRAPH Total_FE_heat_generation :TITLE Total FE heat generation :SCALE :VAR Total FE Heat generation EJ[scenarios] :GRAPH Heat-com_generation_from_RES_by_source :TITLE Heat-com generation from RES by source :SCALE :VAR "FE real generation RES heat-com EJ"[RES heat,scenarios] :Y-MIN 0 :VAR FES elec from biogas EJ[scenarios] :Y-MIN 0 :GRAPH Available_solid_bioE_for_heat/elec :TITLE Available solid bioE for heat/elec :SCALE :VAR available PE potential solid bioE for heat EJ[scenarios] :VAR available PE potential solid bioE for elec EJ[scenarios] :GRAPH EROIst_tot_elec :TITLE EROIst tot elec :SCALE :VAR EROIst tot elec[scenarios] :GRAPH Overdemand_elec_EROI :TITLE Overdemand elec EROI :SCALE :VAR overdemand elec EROI[scenarios] :GRAPH check_TPE :TITLE check TPE :SCALE :VAR check TPE[scenarios] :GRAPH Labor_share :TITLE Labor share :SCALE :VAR labour share[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH Desired_annual_GDP_growth_rate :TITLE Desired annual GDP growth rate :SCALE :VAR Desired annual GDP growth rate[scenarios] :GRAPH Household_enconomic_dema :TITLE Household enconomic demand :SCALE :VAR Household demand total[scenarios] :GRAPH Demand :TITLE World Total Demand :SCALE :VAR total demand[scenarios] :GRAPH Cp_exogenous_RES_elec_reduction :TITLE Cp exogenous RES elec reduction :SCALE :VAR Cp exogenous RES elec reduction[RES elec,scenarios] :GRAPH Total_jobs_RES_elec :TITLE Total jobs RES elec :SCALE :VAR Total jobs RES elec[scenarios] :GRAPH Total_jobs_RES_heat :TITLE Total jobs RES heat :SCALE :VAR Total jobs RES heat[scenarios] :GRAPH Total_jobs_RES :TITLE Total jobs RES :SCALE :VAR Total jobs RES[scenarios] :GRAPH TFES_intensity :TITLE TFES intensity :SCALE :VAR TFES intensity EJ T$[scenarios] :GRAPH Annual_GDP_growth_rate :TITLE Annual GDP growth rate :SCALE :VAR Annual GDP growth rate[scenarios] :GRAPH Energy_losses_due_to_CC_impacts :TITLE Energy losses due to CC impacts :SCALE :VAR "Total E-losses due to CC impacts"[scenarios] :GRAPH Share_final_energy_vs_TFES :TITLE Share final energy vs TFES :SCALE :VAR share electricity vs TFES[scenarios] :Y-MIN 0 :VAR share heat vs TFES[scenarios] :VAR share liquids vs TFES[scenarios] :VAR share gases vs TFES[scenarios] :VAR share solids vs TFES[scenarios] :GRAPH Final_energy_consumption_by_fuel :TITLE Final energy consumption by fuel :SCALE :VAR Total FE Elec consumption EJ[scenarios] :Y-MIN 0 :VAR Total FE Heat consumption EJ[scenarios] :VAR real FE consumption by liquids EJ[scenarios] :VAR real FE consumption by gas EJ[scenarios] :VAR real FE consumption solids EJ[scenarios] :GRAPH Total_final_energy_consumption :TITLE Total final energy consumption :SCALE :VAR Real TFEC[scenarios] :GRAPH Share_RES_heat-com_vs_RES_heat_tot :TITLE Share RES heat-com vs RES heat tot :SCALE :VAR "Share RES heat-com vs RES heat tot"[RES heat,scenarios] :Y-MIN 0 :VAR Max share[scenarios] :GRAPH Final_energy_intensity_H :TITLE Final energy intensity Households :SCALE :VAR Evol final energy intensity H[scenarios,final sources] :GRAPH Households_energy_demand :TITLE Households energy demand :SCALE :VAR Households final energy demand[scenarios,final sources] :GRAPH Share_RES_vs_TFEC :TITLE Share RES vs TFEC :SCALE :VAR share RES vs TFEC[scenarios] :GRAPH Average_FEC_per_capita :TITLE Average FEC per capita :SCALE :VAR TFEC per capita[scenarios] :GRAPH Installed_capacity_electricity_storage :TITLE Installed capacity electricity storage :SCALE :VAR Total capacity elec storage TW[scenarios] :GRAPH check_GDP :TITLE check GDP :X-MIN 1995 :X-MAX 2009 :SCALE :VAR check GDP[scenarios] :GRAPH Potential_HDI_given_energy_availability :TITLE Potential HDI given energy availability :SCALE :VAR Potential max HDI[scenarios] :Y-MIN 0 :Y-MAX 1 :GRAPH RES_heat-nc_installed_capacity_by_source :TITLE RES heat-nc installed capacity by source :SCALE :VAR "installed capacity RES heat-nc TW"[RES heat,scenarios] :GRAPH Heat-nc_generation_from_RES_by_source :TITLE Heat-nc generation from RES by source :SCALE :VAR "FE real generation RES heat-nc EJ"[RES heat,scenarios] :GRAPH Non-energy_use_demand_by_fuel :TITLE Non-energy use demand by fuel :SCALE :VAR "Non-energy use demand by final fuel EJ"[scenarios,final sources] :GRAPH Annual_TFEC_RES_growth_rate :TITLE Annual TFEC RES growth rate :SCALE :VAR Annual TFEC RES growth rate[scenarios] :GRAPH Annual_TPES_RES_growth_rate :TITLE Annual TPES RES growth rate :SCALE :VAR Annual TPES RES growth rate[scenarios] :GRAPH Total_biofuel_production :TITLE Total biofuel production :SCALE :VAR FES total biofuels production EJ[scenarios] :GRAPH Share_minerals_consumption_alt_techn_vs_total :TITLE Share minerals consumption alt techn vs total :SCALE :VAR share minerals consumption alt techn vs total economy[materials,scenarios] :GRAPH Share_FEH_over_FED_by_final_fuel :TITLE Share FEH over FED by final fuel :SCALE :VAR share FEH over FED by final fuel[final sources,scenarios] :GRAPH H_alternative_vehicles__4w_ :TITLE Households alternative vehicles 4w :SCALE :VAR Number vehicles H[SCEN1,hib 4wheels] :VAR Number vehicles H[SCEN1,elec 4wheels] :VAR Number vehicles H[SCEN1,gas 4wheels] :GRAPH Heat_generation_from_NRE :TITLE Heat generation from NRE :SCALE :VAR FES NRE for heat[scenarios] :GRAPH Heat_generation_from_RES :TITLE Heat generation from RES :SCALE :VAR FES RES for heat EJ[scenarios] :GRAPH FE_consumption_liquids :TITLE FE consumption liquids :SCALE :VAR real FE consumption liquids EJ[scenarios] :GRAPH FE_consumption_gases :TITLE FE consumption gases :SCALE :VAR real FE consumption gases EJ[scenarios] :GRAPH FE_consumption_solids :TITLE FE consumption solids :SCALE :VAR real FE consumption solids EJ[scenarios] :GRAPH CO2_emissions_per_value_added :TITLE CO2 emissions per value added :SCALE :VAR CO2 emissions per value added[scenarios] :GRAPH abundance_natural_gas :TITLE abundance natural gas :SCALE :VAR "abundance total nat. gas"[scenarios] :GRAPH Share_demand_by_fuel_in_ :TITLE Share demand by fuel in transport :SCALE :VAR Share demand by fuel in transport[scenarios,final sources] :GRAPH Number_of_electric_ligth :TITLE Number of electric ligth duty vehicles :SCALE :VAR total number elec light vehicles[scenarios] :GRAPH Share_of_electric_ligth_ :TITLE Share of electric ligth duty vehicles :SCALE :VAR share of electric light vehicles[scenarios] :GRAPH Final_energy_demand_by_h :TITLE Energy demand households transp :SCALE :VAR Transport households final energy demand[scenarios,final sources] :GRAPH Total_standard_electric_batteries :TITLE Total standard electric batteries :SCALE :VAR "batteries EV+hib+2wE"[scenarios] :VAR required number standard batteries :GRAPH Transport_energy_demand_IOT_sectors :TITLE Transport energy demand IOT sectors :SCALE :VAR Total required final energy transport IOT sectors[scenarios,final sources] :GRAPH Total_LD_vehicles :TITLE Total Light Duty vehicles :SCALE :VAR total number light vehicles[scenarios] :GRAPH Total_dyn_FEI_RES :TITLE Total dyn FEI RES :SCALE :VAR total dyn fei res[scenarios] :GRAPH share_dyn_FEI_for_RES_vs_TFEC :TITLE share dyn FEI for RES vs TFEC :SCALE :VAR share dyn FEI for RES vs TFEC[scenarios] :GRAPH ESOI_elec_storage :TITLE ESOI elec storage :SCALE :VAR ESOI elec storage[scenarios] :GRAPH TFEC :TITLE TFEC :SCALE :VAR Real TFEC[scenarios] :GRAPH Annual_CO2e_emissions :TITLE Annual CO2e emissions :SCALE :VAR Total CO2e all GHG[scenarios] :GRAPH Average_FEC_per_capita_COMP :TITLE Average FEC per capita COMP :SCALE :VAR TFEC per capita[scenarios] :VAR Dynamic low range FEC good standard of living[scenarios] :LINE-WIDTH 2 :VAR Dynamic high range FEC good standard of living[scenarios] :LINE-WIDTH 2 :VAR Dynamic threshold 'high development'[scenarios] :LINE-WIDTH 2 :GRAPH Annual_CO2e_emissions_COMP :TITLE Annual CO2e emissions COMP :SCALE :VAR Total CO2e all GHG[scenarios] :VAR "Total GHG emissions BAU-CAT MEDEAS D3.2" :VAR "Total GHG emissions MLT2020 MEDEAS D3.2" :VAR "Total GHG emissions MLT2030 MEDEAS D3.2" :VAR "Total GHG emissions OLT MEDEAS D3.2" :GRAPH Annual_GHG_emissions_COMP :TITLE Annual GHG emissions COMP :SCALE :VAR Total CO2e all GHG[scenarios] :VAR GHG emissions 2050 MLT2030 :LINE-WIDTH 2 :VAR GHG emissions 2050 MLT2020 :LINE-WIDTH 2 :GRAPH Cumulative_TFEC_intensity_change_from_2009 :TITLE Cumulative TFEC intensity change from 2009 :SCALE :VAR Cumulative TFEC intensity change from 2009[scenarios] :GRAPH Cumulative_TPES_intensity_change_from_2009 :TITLE Cumulative TPES intensity change from 2009 :SCALE :VAR Cumulative TPES intensity change from 2009[scenarios] :GRAPH Annual_growth_rate_electricity_generation_RES :TITLE Annual growth rate electricity generation RES :SCALE :VAR Annual growth rate electricity generation RES elec tot[scenarios] :GRAPH Annual_growth_rate_RES_for_heat :TITLE Annual growth rate RES for heat :SCALE :VAR Annual growth rate RES for heat[scenarios] :GRAPH EROI_metabolic_of_the_system :TITLE EROI metabolic of the system :SCALE :VAR EROImet[scenarios] :VAR "EROI=1" :GRAPH EROI_feedback_factor :TITLE EROI feedback factor :SCALE :VAR EROI FC system from 2015[scenarios] :VAR "ratio = 1" :GRAPH Agricultural_Land :TITLE Agricultural Land :SCALE :VAR agricultural land conventional :VAR agricultural land conversion :VAR agricultural land conservation :VAR agricultural land conservation saturated :VAR agricultural land for food :GRAPH Land :TITLE Land :SCALE :VAR agricultural land for food :VAR primary forest :VAR forest available :VAR degraded land :VAR land for solar and hydro RES :VAR urban land :GRAPH Total_water_use :TITLE Total water use :SCALE :VAR Total water use[scenarios] :GRAPH Temperature_change :TITLE Temperature change :SCALE :VAR Temperature change[scenarios] :VAR HadCRUT4 Temperature :VAR GISS NASA Temperature :VAR Temp change 2 :LINE-WIDTH 2 :VAR "Temp change 1.5C" :LINE-WIDTH 2 :GRAPH CO2_concentrations :TITLE CO2 concentrations :SCALE :VAR CO2 ppm concentrations[scenarios] :VAR CO2 Mauna Loa :LINE-WIDTH 2 :VAR pre industrial value ppm :GRAPH Potential_vs_demand_biomass_for_energy_non_trad :TITLE Potential vs demand biomass for energy non trad :SCALE :VAR max E forest energy non trad[scenarios] :VAR consum forest energy non traditional EJ[scenarios] :GRAPH Total_water_use_per_capita :TITLE Total water use per capita :SCALE :VAR Total water use per capita[scenarios] :GRAPH Share_blue_water_use_vs_resources :TITLE Share blue water use vs resources :SCALE :VAR share blue water use vs renewable water resources[scenarios] :L<%^E!@ 1:v130_Py.vdf 9:v130_Py 22:$,Dollar,Dollars,$s 22:Day,Days 22:Hour,Hours 22:Month,Months 22:Person,People,Persons 22:Unit,Units 22:Week,Weeks 22:Year,Years 23:0 15:0,0,0,0,0,0 19:5,8 27:0, 34:0, 4:Time 5:TFES intensity EJ T$ without EROI[scenarios] 35:Date 36:YYYY-MM-DD 37:1995 38:1 39:1 40:0 41:0 42:0 24:1995 25:2050 26:2050 6:Agriculture Hunting Forestry and Fishing 6:BAU 6:blue water 6:bus elec 6:bus gas 6:bus hib 6:bus liq 6:"clean, pumped water" 6:elec 2wheels 6:elec 4wheels 6:electricity 6:gas 4wheels 6:gases 6:gray water 6:green water 6:heat 6:HFC134a 6:hib 4wheels 6:HV gas 6:HV hib 6:HV liq 6:Layer1 6:liq 2wheels 6:liq 4wheels 6:liquids 6:LV elec 6:LV gas 6:LV hib 6:LV liq 6:RCP26 6:RCP45 6:RCP60 6:RCP85 6:SCEN2 6:"solid bioE-heat" 6:solids 6:tellurium 6:train elec 6:train liq 6:wind onshore